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Abstract: This paper presents the design of a 
robust controller for a turbogenerator. The robust 
controller is an Artificial Neural Network (ANN) 
that is trained offline on a family of ANN models 
of the turbogenerator. This ANN controller 
augmentsheplaces the traditional Automatic 
Voltage Controller (AVR) and the turbine 
governor of the generator. Simulation results are 
presented to show that the ANN controller is 
robust when the transmission line configuration 
changes. 

1. Introduction 

Synchronous generators supply most of the electrical 
energy produced by mankind and are largely 
responsible for maintaining the stability and security 
of the electrical network. The effective control of 
these devices is, therefore, important. A continuous 
balance between power generation and a changing 
load demand, while maintaining voltage levels, 
system frequency and network security is required for 
power system control. However, the turbogenerator 
can be subjected to numerous types of disturbance 
varying from imbalances in mechanical and electrical 
generated power together with significant changes in 
the characteristics of the power system, such as 
varying numbers of generating units and transmission 
lines in operation at different times. This results in a 
highly complex and nonlinear dynamic system 
difficult to control. 

With increasing focus on qualitatively (stable) and 
quantitative (performance) robustness, traditional 
controllers do not cope well with changing 
turbogenerator conditions and dynamics. The 
traditional AVRs and turbine governors are fixed 
parameter controllers designed to control, in some 
optimal fashion, the turbogenerator around one 
operating point; at any other point the generator's 
performance is degraded. In addition, the tuning and 
integration of a large number of control loops 
typically used in a power station can be expensive and 
demand skilled manpower. 

In contrast, neural networks offer a flexible structure 
that can map arbitrary nonlinear functions, making 

neural networks suitable for modeling and control of 
complex, nonlinear systems [I]. They are suitable for 
multi-variable applications, where they can easily 
identify the interactions between the inputs and 
outputs. It has been showed that a multilayer 
feedforward neural network using deviation signals as 
inputs can identify [2] the complex and nonlinear 
dynamics of a single machine infinite bus 
configuration with sufficient accuracy to design a 
controller. Such an adaptive controllers based on 
Continually Online Trained (COT) ANNs have been 
designed and implemented to address performance 
degradation of conventional controllers [3, 41. COT 
A " s  are used to overcome the difficulty in 
acquiring a great deal of information of the spectrum 
of the operating points of the turbogenerator in order 
to train the ANN offline. 

This paper presents a technique that uses the ANN 
identifier of [2]  to obtain a family of models of the 
turbogenerators under different operating points and 
system configurations to design an ANN controller 
with fixed parameters resulting in robust control. The 
fixed parameters of the neural network assures the 
stability of the controller. 

Simulation studies are carried out on a 
MATLAB/SIMULINK model of a . micro-alternator 
described in the next section. Results are presented to 
show that the ANN controller exhibits robustness 
when the transmission line parameters change. 

2. Simulation Model of a Turbonenerator 

A 3 kW micro-alternator with per-unit parameters 
typical of those expected of 30 - 1000 MW 
generators [ 5 ] ,  with traditional governor and 
excitation controls connected to an infinite bus 
through a transmission line shown in figure 1 is used 
in this study. The micro-alternator is driven by a 
specially controlled d.c. motor acting as a turbine 
simulator. The nonlinear time-invariant system 
equations are of the form: 
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where g(x) contains the nonlinear terms. 

Equation (1) is developed from the two axis dq- 
equations with the following selected states: 

x = [S S id if i, i,f ikf] 

where the first two states are the rotor angle and the 
speed deviation, the other states are the currents in the 
d, q, field, and damper coils. Details of the system 
equations are given in [3]. 

The transmission line is modeled using the following 
equations in the state space form. 

U,, = U ,  sinS- Rei, + X,i,l - Le id (3) 

uIf = U ,  COSS- R,i, + X,i, - L, id (4) 

where u , ~  and U,, are voltage components at the 
machine terminals, U,,, is the voltage at the infinite 
bus and Re, Le, Xe  are transmission line parameters. 

The traditional AVR and excitation system are 
modeled in state space as -a second order device with 
limits on its output voltage levels. The turbine 
simulator and governor system are modeled in state 
space as a fourth order device so that re-heating 
between the high pressure and intermediate pressure 
stages may be included in the model. The output of 
the turbine simulator is limited between zero and 
120%. 

The mathematical implementations of these state 
space equations are carried out in the 
MATLAB/SIMULINK environment [ 31. 

Govanor 

Figure 1: The Single Machine Infinite Bus 
Configuration 

3. Robust ANN Controller 

The ability of neural networks to model nonlinear 
dynamical systems has led to the development of 
numerous neural networks based control strategies. 
Most of these techniques are simply nonlinear 
extensions of existing linear techniques, such as direct 
inverse control [I] ,  model reference adaptive control 
[6], predictive control [l] and internal model control 

[7]. There are number of successful applications of 
such ANN based controllers. However, there are still 
many unresolved issues relating to their use. Stability 
and robustness cannot be guaranteed in general for 
most ANN based controllers especially if the ANN 
appears directly in the controVfeedback loop. This is 
because the mathematical framework for dealing with 
nonlinear control techniques has not yet been 
developed. 

This paper presents the design of an ANN controller 
which naturally includes the robustness feature in its 
design. In this robust ANN controller design, a family 
of ANN process models is used instead of just one 
ANN model. These ANN models are described in 
section 3.1. 

The robust ANN based controller design is 
formulated as follows: 

ANN: min F { Y *  - Y",(u, ...)I, 
W (5 )  
U = G(w, ...), V mi E M 

where mi stands the ith member of the model family 
M, y* is the desired output, U is output of the ANN 
controller which is [Am, AV,] and w are the weights in 
the ANN. 

3.1. ANN Familv of Models for the Controller 
Training 

An ANN model obtained at one of the generator's 
operating point is not good enough to train the A" 
controller for robust performance over the entire 
operating range of the generator. Therefore a family 
of ANN models of the generator are obtained at 
different operating points and system configurations, 
and used in training the controller. The ANN model 
learning architecture is shown in figure 2. Binary 
pseudorandom signals are applied to the exciter and 
turbine simulator inputs to first train the neural 
network identifier at a particular operating point and 
this yields a set of ANN weights called the model. 
The neural network identifier in figure 2 is used in 
obtaining a number of models at different operating 
points. In this paper five operating points are used and 
thus five models are obtained for subsequent training 
of the ANN controller. These five operating points 
are: 

(i) P = 1.0 p.u, 0.85 lagging power factor (PO, 
Z = 0.02 + j 0.4 p.u, 

(ii) P = 1.0 p.u, 0.85 lagging pf, Z = 0.025 + j 0.6 p.u, 
(iii) P = 0.8 p.u, 0.85 lagging pf, Z = 0.025 + j 0.6 p.u, 
(iv) P = 0.4 p.u, 0.85 lagging pf, Z = 0.02 + j 0.4 p.u, 
(v) P = 0.2 p.u, 0.85 lagging pf, Z = 0.025 + j 0.6 p.u. 

The ANN model structure is fixed as a three layer 
feedforward neural networks with twelve inputs, a 
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single hidden layer with fourteen neurons and two 
outputs. The -inputs are the actual deviation in the 
input to the exciter, the actual deviation in the input 
to the turbine, the actual terminal voltage deviation 
and the actual speed deviation of the generator. These 
four inputs are time delayed by a sample period of 20 
ms and together with the eight previously delayed 
values form the twelve inputs for the model. The 
ANN model outputs are the estimated .terminal 
voltage deviation and estimated speed deviation of the 
turbogenerator. 

The number of neurons in the hidden layer of the 
ANN model is determined empirically. The ANN 
weights are set to small random values and the 
conventional backpropagation algorithm is used to 
update these weights. The differences between the 
respective actual outputs of the turbogenerator and 
the estimated outputs of the ANN model form the 
error signals for the updating of weights. A 
reasonable learning rate is determined by training this 
neural network and setting the learning rate parameter 
so that a compromise is achieved between the training 
time and the accuracy of the network. 

Model Identifier 

U 

Figure 2: ANN Model Learning Architecture 

3.2. ANN based Controller Design 

A second ANN forms the controller which is a three 
layer feedforward neural network with six inputs, a 
single hidden layer with ten neurons and two outputs. 
The inputs are the turbogenerator's actual speed and 
actual terminal voltage deviations. Each of these 
inputs is time delayed by 20 rns and, together with 
four previously delayed values, form the six inputs. 
The two outputs of the ANN controller, the deviation 
in the field voltage and the deviation in the power 
signal, augments the inputs to the turbogenerator's 
exciter and turbine simulator respectively as shown in 
figure 3. 
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ANN 
Controller 

Figure 3: A Robust ANN based Controller 

With reference to figure 4, the ANN controller is 
trained on the family of ANN models of the 
turbogenerator obtained above. The training is first 
carried out offline with binary pseudorandom signals 
applied to exciter and turbine simulator inputs to 
create deviations in U' and Pref respectively at 
different operating points and system configurations. 
The ANN controller is then further trained online for 
severe transient disturbances such as three phase short 
circuits. The ANN controller is trained on five ANN 
models (developed in section 3.1) one after another 
until a global minimum is achieved. 

A a  AV, 

error 

Figure 4: ANN based Controller Training 
Architecture 

4. Simulation Results 

The ANN models and the ANN based controller are 
all implemented in the MATLAB/SIMULINK 
environment similar to ones reported in [3]. 

4.1. ANN models 

The training of the ANN model (figure 2) is carried 
out using pseudorandom binary signals generated in 
MATLAB and fed into the exciter and the turbine 
simulator without the traditional AVR and governor 
present. These random signals excite the full range of 
the dynamic response of the turbogenerator. A 
constant field voltage U, and a turbine power signal 
Pref, for a given operating P and Q, are applied to the 



plant, and disturbances in the field voltage AUrand in 
the turbine power signal APrefare applied for training 
the ANN model. The training signal AU,, applied to 
the exciter, and AP,,,applied to the turbine, are shown 
in figures 5 and 6 respectively. The initial weights for 
the ANN model are set to some random values in  the 
range of [-0.1 0.11 to achieve fast learning of the plant 
dynamics. A learning gain of 0.05 is used for the 
backpropagation algorithm. 

I I I U I I 
5 20 25 30 

lo Timelinssemmls 
-0.1; 

Figure 5: Training Signal Applied to the Exciter 

I I 
I I l l  4.03 

0.1 

I 
I 

I 

5 20 25 30 10 
limln5s- 

Figure 6: Training Signal Applied to the Turbine 
S imulator 

The speed deviation and the terminal voltage 
deviation plots in figures 7 and 8 respectively show 
that the ANN model is able to identify the 
turbogenerator dynamics for the generator operating 
at P =1.0 p.u  and 0.85 lagging power factor, with a 
transmission line impedance Z = 0.02 + j 0.4 p.u. The 
simulated outputs of the turbogenerator (TB) are the 
solid lines and those of the ANN model are the 
dashed lines. Between t = 25 s and t = 30 s, the 
training is terminated. The ANN model is then tested 
at the same operating point of the generator to show 
that the model gives a good estimation of the actual 
generator outputs. 

The speed deviation and the terminal voltage 
deviation plots in figures 9 and 10 show the training 
of a second ANN model at a different operating point, 
P = 1.0 p.14 and 0.85 lagging power factor, with a 
transmission line impedance Z = 0.025 + j 0.6 p.u. It 
can also be seen that between t .= 25 s and t = 30 s 
when the training is terminated the ANN model gives 
a good estimation of the generator outputs. 

Figure 7: Speed Deviation of the Turbogenerator (TB) 
and ANN Model for Z = 0.02 + j 0.4 p.u 

I I 
5 10 15 20 25 J) 

lime in seccnds 

Figure 8: Terminal Voltage Deviation of the 
Turbogenerator (TB) and ANN Model for 2 = 0.02 + 
j 0.4 p.u 

Similarly, different ANN models are obtained at each 
of the other three operating points (altogether five) 
within the safety margin of the operating region of the 
generator. It has been observed that generally the 
ANN with initial random weights takes about 15 s of 
training to make the errors in the estimation of the 
generator outputs significantly small. It is also 
observed that a trained model needs about 5 s or less 
of further training to adequately identify the 
turbogenerator dynamics at a new operating point. 
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Figure 9: Speed Deviation of the Turbogenerator (TB) 
and ANN Model for Z = 0.025 + j 0.6 p.u 
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Figure 10: Terminal Voltage Deviation of the 
Turbogenerator (TB) and ANN Model for Z = 0.025 
+ j 0.6 p.u 

4.2. ANN based Controller 

The controller is trained using the ANN models 
obtained for the different operating points. The 
training signals are generated in a similar fashion to 
those used in the training of the ANN models and are 
applied to the exciter and the turbine simulator inputs. 
The outputs of the desired response predictor and the 
estimated outputs by ANN model are compared and 
the error signals are backpropagated through the ANN 
model keeping the weights of the model fixed. These 
backpropagated error signals are used to adapt the 
weights in the ANN based controller. The ANN based 
controller is further trained online, undertaking 
control of the turbogenerator, for step changes in the 
field voltage and three short phase circuits on the 
infinite bus. This process is repeated using the 
different models until the ANN based controller has 
achieved a global minimum. To achieve this global 
minimum, the different ANN models are presented to 
the ANN based controller at random during the 
training phase. 

The ANN based controller now with the fixed weights 
is allowed to undertake online control operation of the 
turbogenerator as shown in figure 3. The performance 
of the controller is now tested under a 50 ms three 
phase short circuit at the infinite bus at two different 
transmission line impedances, Z = 0.02 + j 0.4 p.u 
and Z = 0.025 + j 0.7 p.u for the generating operating 
at P =1.0 p.u and 0.85 lagging power factor. The 
performance of the ANN based controller (ANN) is 
compared with that of a conventional controller 
(CONV). The conventional controller is designed to 
control the turbogenerator in an optimal fashion 
around the operating point P = 1.0 p.u and 0.85 
lagging power factor with 2 = 0.02 + j 0.4 p.u, using 
the procedures similar to that of [8]. 

Figures 11 and 12 show the rotor angle and terminal 
voltage of the generator for the first transmission 
impedance and, figures 13 and 14 show the rotor 
angle and terminal voltage of the generator for the 
second transmission impedance. 

c 
0 I 2 3 4 5 6 

lime in seconds 

Figure 1 I: A 3-Phase Short Circuit at the Infinite Bus 
(P = 1 p.u, pf = 0.85 lagging, Z = 0.02 + j 0.4) 
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Figure 12: A 3-Phase Short Circuit at the Infinite Bus 
(P = 1 p.u, pf = 0.85 lagging, Z = 0.02 + j 0.4) 
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.Figure 13: A 3-Phase Short Circuit at the Infinite Bus 
(P = 1 p-U, pf = 0.85 lagging, Z = 0.025 + j 0.7) 
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Figure 14: A 3-Phase Short Circuit at the Infinite Bus 
(P = 1 p.u, pf = 0.85 lagging, Z = 0.025 + j 0.7) 

In each of the above tests carried out, the ANN 
controller has a performance comparable to that of the 
conventional controller and in each test the 
performance of the ANN controller is acceptable, 
hence it is robust and in addition has a better damping 
than the conventional controller. Tests at other 
operating points, in addition to the five operating 
points at which ANN controller was trained, 
confirmed that the ANN controller is robust and its 
performance does not degrade as in the case of the 
conventional controller. 

5. Conclusions 

This paper has shown that with this particular method 
of creating a number of neural networks to represent 
the process over a number of operating points, yields 
an ANN controller with fixed parameters, thus 
assuring stability of a closed loop system. The 
simulation results indicate that the ANN controller 
with fixed parameters can control the turbogenerator 
without much performance degradation at numerous 
other operating points especially with changes in 

transmission line configurations. The robustness of 
this ANN controller is as a direct result of using a 
family of models in this controller design. 
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