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11. POWER SYSTEM MODELLING . 

A 3 kW Mawdsley micro-alternator shown in Fig. 1 is 
available in the "micro-machine" research laboratory at 
the University of Natal and is modelled by using the 
general state variable equation of a synchronous 
machine: 

. 
x = A x + B u + F ( x )  (1) 

where F(x) represents the non-linear terms. 

This micro-alternator is designed to have per-unit 
parameters which are typical of those normally expected 
of 30-1000 MW generators, except for the field winding 
resistance. 

Fig. 1 Laboratory setup of a single machine connected to 
an infmite bus through a short line. 

A Time Constant Regulator (TCR) which stimulates 
negative resistance in the field winding circuit is used to 
reduce the actual field winding resistance to the correct 
per-unit value. 

The micro-alternator is described by the two axis dq- 
equations with the machine currents, speed and rotor 
angle taken to be the state variables, with one damper 
winding on each axis giving a seventh order model. 

The AVR and the exciter combination are modelled in 
state space as a second order device with limits on its 
output voltage levels. The turbine (simulator) and 
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governor combination are also modelled in state space as 
a fourth order device so that reheating between the high 
pressure and intermediate pressure stages may be 
included in the model. The output of the turbine 
simulator is limited between zero and 120%. 

A relatively short transmission line connecting the 
generator to the infinite bus is modelled. 

The mathematical implementations of these state space 
equations were carried under the MATLAB/SIMULrNK 
environment. 

111. ANN CONTROLLER ARCHITECTURE 

The following aspects make it difficult to apply ANNs 
to complex nonlinear devices such as turbogenerators: 

(a) a turbogenerator is a nonlinear device and it is 
difficult to use a simple model as a reference 
for adaptive control as proposed by Ref.[4]. 
an inverse model suggested by Ref.[5] would 
be difficult to implement reliably and 
consistently due to the high gain loops around 
turbogenerators. 
the ANN based model structure as suggested 
by Ref.[6] is for a single-input-single-output 
system and therefore not suitable because the 
turbogenerator is a multivariable device. 

(b) 

(c) 

The ANN regulator adapted in this paper is the one 
proposed in Ref.[3] and has a two stage architecture 
shown in Fig. 2. The ANN regulator consists of two 
separate ANNs, namely one for the identifier and one for 
the controller. 

Desired 
* Response 

Predictor 

Conntroller -il”r-y 
Fig. 2 Neural network identifier and controller 

architecture 

A. COT ANN Turbogenerator Identifier 

The Identifier ANN (IANN) in Fig. 2 is of the 
feedfonvard type and has three layers consisting of an 
input layer with twelve inputs, a single hidden layer with 
fourteen neurons and an output layer with two outputs. 
The inputs to the IANN are also the actual deviation in 
the input to the turbine simulator, the actual deviation in 
the input to the exciter, the actual terminal voltage 
deviation and the actual speed deviation of the 
generator. These four ANN inputs are delayed by the 

sample period of 20 ms and together with eight 
previously delayed values form twelve inputs altogether 
to the IANN. The IANN outputs are the estimated 
terminal voltage deviation and estimated speed deviation 
of the generator. 

The number of neurons in the hidden layer of the 
IANN was determined empirically. The IANN weights 
were set to small random values and the conventional 
backpropagation algorithm was used to update these 
weights of the IANN. The differences between the 
respective actual outputs of the turbogenerator model 
and the estimated outputs of IANN form the error 
signals for the updating of weights in the IANN. A 
reasonable learning rate was determined by training this 
neural network and setting the learning rate parameter so 
that a compromise between the training time and the 
accuracy of the network is achieved. 

B. COT ANN Turbogenerator Controller 

In addition, Ref.[5] proposed a controller ANN as a 
nonlinear controller to augmentheplace the AVR and 
governor and this COT ANN is similar in structure to the 
identifier ANN above. 

The COT Neural Network Controller (NNC) is a three 
layer network with six inputs, ten hidden neurons and 
two outputs. The inputs are the turbogenerator’s actual 
speed and terminal voltage deviations. Each of these 
inputs was time delayed for one, two and three sample 
periods. The outputs of the NNC formed the inputs to 
the turbogenerator’s exciter and the turbine simulator. 
The number of neurons and learning rate were 
determined empirically as for the IANN. 

The NNC in Fig. 2 operates with online learning, 
however, it is necessary to train the NNC initially before 
online control operation is undertaken. Once the 
controller has undertaken online operation the following 
basic steps are used thereafter: 

For a set of input signals, sample the output of 
theturbogenerator and the IANN (see Fig. 2). Use 
the differences between these two outputs and the 
backpropagation algorithm to update the weights in 
the IANN and fix these weights. 
For the same input signals applied for step (a), again 
sample the output of the IANN and compare the 
output of the identifier with the output of the 
desired response predictor for the turbogenerator. 
Use the difference between these two signals to 
form the error and backpropagate this error signal 
through the IANN to the output of the NNC. 
Compare the output of the NNC with the 
backpropagated signal and use the difference 
between these two signals to form the error signal, 
and with the backpropagation algorithm, update the 
weights in the NNC. Apply the output of the NNC 
(obtained with the updated weights) to the exciter 
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In each of the above tests carried out, the ANN 
regulator has a performance at least comparable to that 
of a conventional controller and in each the NNC has 
similar response times with better damping. 

Tests at other operating points c o n f i e d  that the 
controller is self-learning and performance does not 
degrade as with the conventional controllers. 

V. CONCLUSIONS 

Early conclusions of this work indicate that the two 
COT ANNs can identify and control the turbogenerator 
almost as well as a traditional AVR and governor 
combination, when the network configuration and 
system operating point conforms to that for which the 
AVR and governor were tuned. However, when system 
conditions change, such as different power levels and 
transmission line configurations, the ANN identifier and 
controller track these changes and do not give a 
degraded performance as the AVR and governor do. The 
successful performance of the COT ANNs even when 
the system configuration changes comes about because 
the online training never stops. 
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Fig. 4 Terminal voltage deviation signal AVt of the 
turbogenerator (TB) and IANN 
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Fig. 5 Speed deviation signal 6' of the turbogenerator 
(TB) and IANN when the training is 
terminated 
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Fig. 6 Practical neural network modelling of the 
dynamics of the turbogenerator (Speed 
deviation) 
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Fig. 12 A 50ms three phase short circuit at the infinite 
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