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INTRODUCTION

Artificial Neural Networks (ANNs)
lated by others [1,2] to provide
ing signals, (such as power system
ogenerators. ANNs are basically
5 and have the potential to allow

turbogenerators to operate more closely to their steady

state stability limits

and nevertheless “ride through”

severe transient distl‘nbances such as three phase faults.

This allows greater u

sage of existing power plant.

Ref. [3] improyed on earlier work of others by
proposing the use of two Continually Online Trained
(COT) Artificial Neural Networks (ANNS), one as an

adaptive turbogener

ator identifier, and the other as a

controller to augment and perhaps even replace not only
the automatic voltagg regulator (as previous researchers
have suggested), but also the turbine governor. The

conventional automy
turbine governor arg

tic voltage regulator (AVR) and
usually designed to control the

nonlinear turbogengrator in some optimal fashion,

around a fixed

operating point; therefore this

performance is degrpded at any other operating point,
but the COT ANN identifier/controller designed in
Ref.[3] overcomes this problem. The present paper is an
extension of the work of Ref.[3].
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II. POWER SYSTEM MODELLING

A 3 kW Mawdsley micro-alternator shown in Fig. 1 is
available in the “micro-machine” research laboratory at
the University of Natal and is modelled by using the
general state variable equation of a synchronous
machine:

x = Ax+ Bu+ F(x) 6

where F(x) represents the non-linear terms.

This micro-alternator is designed to have per-unmit
parameters which are typical of those normally expected
of 30-1000 MW generators, except for the field winding
resistance.

Governor |«
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AV,
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Fig. 1 Laboratory setup of a single machine connected to
an infinite bus through a short line.

A Time Constant Regulator (TCR) which stimulates
negative resistance in the field winding circuit is used to
reduce the actual field winding resistance to the correct
per-unit value.

The micro-alternator is described by the two axis dg-
equations with the machine currents, speed and rotor
angle taken to be the state variables, with one damper
winding on each axis giving a seventh order model.

The AVR and the exciter combination are modelled in
state space as a second order device with limits on its
output voltage levels. The turbine (simulator) and



governor combination are also modelled in state space as
a fourth order device so that reheating between the high
pressure and intermediate pressure stages may be
included in the model. The output of the turbine
simulator is limited between zero and 120%.

A relatively short transmission line connecting the
generator to the infinite bus is modelled.

The mathematical implementations of these state space
equations were carried under the MATLAB/SIMULINK
environment.

III. ANN CONTROLLER ARCHITECTURE

The following aspects make it difficult to apply ANNs
to complex nonlinear devices such as turbogenerators:
(a) a turbogenerator is a nonlinear device and it is
difficult to use a simple model as a reference
for adaptive control as proposed by Ref.[4].
an inverse model suggested by Ref.[5] would
be  difficult to implement reliably and
consistently due to the high gain loops around
turbogenerators.
the ANN based model structure as suggested
by Ref.[6] is for a single-input-single-output
system and therefore not suitable because the
turbogenerator is a multivariable device.

(b)

©

The ANN regulator adapted in this paper is the one
proposed in Ref.[3] and has a two stage architecture
shown in Fig. 2. The ANN regulator consists of two
separate ANNSs, namely one for the identifier and one for
the controller.

Desired
—" Turbogenemtori Response
Predictor

ANN

Conntroller | | Backprop
[ Error
A 1
i i
: Y

A ANN
Identifier

_________________

Fig. 2 Neural network identifier and controller
architecture

A. COT ANN Turbogenerator Identifier

The Identifier ANN (IANN) in Fig. 2 is of the
feedforward type and has three layers consisting of an
input layer with twelve inputs, a single hidden layer with
fourteen neurons and an output layer with two outputs.
The inputs to the IANN are also the actual deviation in
the input to the turbine simulator, the actual deviation in
the input to the exciter, the actual terminal voltage
deviation and the actual speed deviation of the
generator. These four ANN inputs are delayed by the
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sample period of 20 ms and together with eight
previously delayed values form twelve inputs altogether
to the JANN. The IANN outputs are the estimated
terminal voltage deviation and estimated speed deviation
of the generator.

The number of neurons in the hidden layer of the
TIANN was determined empirically. The IANN weights
were set to small random values and the conventional
backpropagation algorithm was used to update these
weights of the IANN. The differences between the
respective actual outputs of the turbogenerator model
and the estimated outputs of IANN form the error
signals for the updating of weights in the JANN. A
reasonable learning rate was determined by training this
neural network and setting the learning rate parameter so
that a compromise between the training time and the
accuracy of the network is achieved.

B. COT ANN Turbogenerator Controller

In addition, Ref.[5] proposed a controller ANN as a
nonlinear controller to augment/replace the AVR and
governor and this COT ANN is similar in structure to the
identifier ANN above.

The COT Neural Network Controller (NNC) is a three
layer network with six inputs, ten hidden neurons and
two outputs. The inputs are the turbogenerator’s actual
speed and terminal voltage deviations. Each of these
inputs was time delayed for one, two and three sample
periods. The outputs of the NNC formed the inputs to
the turbogenerator’s exciter and the turbine simulator.
The number of neurons and learning rate were
determined empirically as for the IANN.

The NNC in Fig. 2 operates with online learning,
however, it is necessary to train the NNC initially before
online control operation is undertaken. Once the
controller has undertaken online operation the following
basic steps are used thereafter:

(a) For a set of input signals, sample the output of
theturbogenerator and the IANN (see Fig. 2). Use
the differences between these two outputs and the
backpropagation algorithm to update the weights in
the IANN and fix these weights.

For the same input signals applied for step (a), again
sample the output of the IANN and compare the
output of the identifier with the output of the
desired response predictor for the turbogenerator.
Use the difference between these two signals to
form the error and backpropagate this error signal
through the IANN to the output of the NNC.
Compare the output of the NNC with the
backpropagated signal and use the difference
between these two signals to form the error signal,
and with the backpropagation algorithm, update the
weights in the NNC. Apply the output of the NNC
(obtained with the updated weights) to the exciter

(b)

©



and turbine

imulator of the turbogenerator to

achieve the deﬁLired control.

(d) Repeat steps (¢

An advantage of|
signals used are
therefore when the
desired operating ¢

) to (d).

this controller architecture is that the
deviations from the setpoints and

turbogenerator is operating at the
oint there will be zero inputs to the

NNC and zero outputs. This means that online learning
takes place only when deviations from setpoints occur,
and therefore ensurjng minimum controller drift.

IV. SIMULATION AND PRACTICAL RESULTS
A. COT ANN Turbogenenator Identifier

The training ¢f the JANN was simulated using
pseudorandom bingry signals generated in MATLAB
and fed into the exciter and the turbine. These random
signals excite the fiill range of the dynamic response of
the turbogenerator.| The results obtained proved that a
COT ANN can puccessfully model or identify a
turbogenerator (Figf. 3 and. 4), thereby eliminating the

need to have any
accurate machine p
of the IANN wg¢
backpropagation tra
the simulations of
IANN for a further

detailed mathematical model and
arameters. The tracking capabilities
re tried out by terminating the
ining after 25s, but continuing with
the turbogenerator model and the
5s. Fig. 5 shows that the IANN can

also track, albeit with reduced accuracy, outputs even

when the training
obtained are showr
results verify that
nonlinear dynamics

is terminated. Practical results
in Figs. 6 and 7. These practical
an ANN can identify the complex
of turbogenerators.

B. COT ANN TurbHogenenator Controller

The dynamic and transient operation of the ANN
regulator was comjpared with the operation of the

conventional contrg

ller (AVR and turbine governor)

under two different conditions: a three phase short
circuit on the infinite bus, and + 4.5% step changes in

the terminal volta

e setpoint. Each of these was

investigated for the| turbogenerator at different power
factors and transmis$ion line configurations.

Results obtained are shown in Figs. 8 to 13. Figs. 8

and 9 show the perf(

rmance of the NNC for + 4.5% step

changes in the terminal voltage with turbogenerator
operating at 1 pu power and 0.85 lagging power factor
(in all the result graphs conventional controller is shown

with solid lines whi
lines).

le the neural network with dashed

Figs. 10 and 11 s]Jmow a turbogenerator operating at 1

pu power and 0.85 1
ms three phase short

hgging factor and experiencing a 50
circuit on the infinite bus.

Figs. 12 and 13 shpw a turbogenerator operating at 0.4

pu power and (.98 leading power factor

and
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experiencing a 50 ms three phase short circuit on the
infinite bus.

In each of the above tests carried out, the ANN
regulator has a performance at least comparable to that
of a conventional controller and in each the NNC has
similar response times with better damping.

Tests at other operating points confirmed that the
controller is self-learning and performance does not
degrade as with the conventional controllers.

V. CONCLUSIONS

- Early conclusions of this work indicate that the two
COT ANNSs can identify and control the turbogenerator
almost as well as a traditional AVR and governor
combination, when the network configuration and
system operating point conforms to that for which the
AVR and governor were tuned. However, when system
conditions change, such as different power levels and
transmission line configurations, the ANN identifier and
controller track these changes and do not give a
degraded performance as the AVR and governor do. The
successful performance of the COT ANNs even when
the system configuration changes comes about because
the online training never stops.
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