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Nonlinear response theory: Transport coefficients for driving fields of arbitrary magnitude

P. E. Parris,* M. Kuś,† D. H. Dunlap, and V. M. Kenkre
Department of Physics and Astronomy, Center for Advanced Studies, University of New Mexico, Albuquerque, New Mexico 87131

~Received 21 July 1997!

A theory of nonlinear response is developed for driving fields of arbitrary magnitude. Exact and usable
expressions are provided for electrical and thermal mobility, and related transport coefficients, in terms of
correlation functions of the system. A generalization into the nonlinear domain is provided of the Wiedemann-
Franz law connecting electrical and thermal response and of the Einstein relation relating the diffusion constant
and the mobility.@S1063-651X~97!08511-5#

PACS number~s!: 05.60.1w, 44.30.1v, 66.10.Cb, 66.30.2h

I. INTRODUCTION AND THE PRIMARY RESULT

Until the middle of this century, the standard manner of
calculating the response of a system to externally imposed
fields consisted of attempting the solution of the full dynami-
cal equations of motion, such as the Liouville equation or the
Boltzmann equation, incorporating the external field into the
system Hamiltonian or evolution matrix. One of the great
simplifications introduced by Kubo@1# and others@2–4# lies
in the possibility of the description of the effect of external
fields in terms of a system’s own correlation functions. Thus,
if mobility is the property under investigation, one now cal-
culates merely the velocity autocorrelation function of the
system,without including the field in the Hamiltonian, and
expresses the mobility in the linear response limit as the time
integral of the autocorrelation function. This simplification,
conceptual as well as practical, is unfortunately present only
in the linear limit, i.e., for cases in which the external field is
weak. The purpose of the present paper is to show that such
a highly desirable feature can be obtained in nonlinear re-
sponse theory as well, in a well-defined and practical situa-
tion.

The system we first consider is a charged particle of
chargeq and massm moving in a one-dimensional space and
subjected to a system potentialU(x) and an external electric
field E. Our result for the nonlinear mobilitym, defined as
the ratio of the particle velocity to the fieldE, is

m~e!5
m`

eE
0

`

dy e2eyc~y!

. ~1!

Heree is the ratioqE/kT of the electric force on the particle
to its thermal energykT and has the dimensions of a recip-
rocal length,y is the distance coordinate along the electric
field, andc(y) is the system correlation function given by an
ensemble average~denoted by an overbar!

c~y!5exp@U~y!/kT#exp@2U~0!/kT# ~2!

over the random potentialU. An equivalent expression for
the ensemble average is

c~y!5 lim
L→`

~1/L !E
0

L

dx e2@U~x!2U~x1y!#/kT, ~3!

whereL is the spatial extent of the system, taken to be infi-
nite in the limit.

Equation~1! is our primary result. It shows that the mo-
bility at arbitrary strength of the applied field is expressed in
terms of a Laplace transform of the system correlation func-
tion. The correlation function itself is to be calculated from
the system parameters in the absence of the external field,
just as in linear-response theory. We will also derive related
results, specifically, expressions for the diffusion constant
and for thermal transport coefficients. We introduce in Sec.
II the Langevin equation for the particle as our starting point
and indicate how Eq.~1! may be obtained. Our derivation
follows closely along the lines of previous Brownian motion
analyses by Risken@5# and is similar to a study of a discrete
master equation by Derrida@6#. Our emphasis in the present
paper is on the form of the result~1! and on exploiting that
form as discussed above. In Sec. III we show a number of
consequences of the mobility result for various realizations
of the correlationc(y) corresponding to stochastic as well as
deterministic systems. In Sec. IV we extend our formalism to
include thermal transport coefficients and comment on an
interesting generalization of the Wiedemann-Franz law in the
nonlinear regime. In Sec. V we analyze the diffusion con-
stant, present a generalization of the Einstein relation con-
necting the diffusion constant to mobility, and examine the
diffusion constant for the examples considered in Sec. III. In
Sec. VI we present concluding remarks, including a discus-
sion of applications such as to charge transport in molecu-
larly doped polymers@7,8# and microwave interactions with
ceramics@9,10#.

II. DERIVATION OF THE NONLINEAR RESPONSE
FORMULA FOR THE MOBILITY

Our starting point is the Langevin equation governing the
Brownian motion of the charged particle under the simulta-
neous action of the applied electric field, the force due to a
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spatially varying potential in the system, and the temporally
random forceR(t), which represents the bath at temperature
T,

m
d2x

dt2
1mg

dx

dt
1

dU

dx
5qE1R~ t !. ~4!

Hereg is the damping constant and the random forceR(t) is
a Gaussian, stationary,d-correlated stochastic process with
zero mean:

^R~ t !&50, ^R~ t !R~ t8!&5Gd~ t2t8!. ~5!

The strength of the correlationG and the damping constantg
are related via the fluctuation-dissipation theorem

G52mgkT. ~6!

If the motion is highly damped to the extent that we can
neglect the inertial termmd2x/dt2, we obtain

dx

dt
1

1

mg

dU

dx
2

qE

mg
5j~ t !, ~7!

with

^j~ t !&50, ^j~ t !j~ t8!&5
2kT

mg
d~ t2t8!. ~8!

The corresponding Fokker-Planck equation for the prob-
ability distribution P(x,t) of the position of the particle,
more commonly called the Smoluchowski equation, reads

]P

]t
5

]

]x F S 1

mg D S dU

dx
2qED P1S kT

mg D ]P

]x G . ~9!

The average velocity of the particle, given as^v(t)&
5*dx(dx/dt)P(x,t), is obtained from Eq.~7!:

^v~ t !&52
1

mg E dx P~x,t !
dU~x!

dx
1

qE

mg
. ~10!

In the stationary situation,P(x,t) loses its time dependence
and the Smoluchowski equation~9! reduces to

05
d

dx F S dU

dx
2qED P1kT

dP

dxG . ~11!

For calculational convenience, we will initially consider a
finite system of lengthL with periodic boundary conditions,
reserving the limitL→` for systems where it is appropriate.
The linear equation~11! can then be solved by evaluating the
constants of integration from the normalization condition and
the periodicity ofP(x):

E
0

L

P~x!dx51, P~x1L !5P~x!. ~12!

Substitution of the solution to Eq.~11! into Eq. ~10! gives,
for the velocity of the particle,

^v&5~12e2qEL/kT!
kT/mg

E
0

L

dy expS 2
qEy

kT DC~L,y!

,

~13!

where the finite-space correlation functionC(L,y) is given
by

C~L,y!5
1

L E
0

L

dx expS 2
U~x!2U~x1y!

kT D . ~14!

The mobility is thus given by

m5
^v&
E

5~12e2qEL/kT!

3
q/mg

S qE

kTD E
0

L

dy expS 2
qEy

kT DC~L,y!

. ~15!

Equating L with the ~macroscopic! length of the sample
through which the particle moves, we can take formally the
limit that L becomes infinitely large and obtain our expres-
sion ~1!, wherec(y) in Eq. ~2! is given by limL→`C(L,y)
and m`5q/mg is the well-known Drude expression ob-
tained in the absence of a potentialU. In the presence of
disorder, i.e., when the system potentialU is random, the
limiting procedure involvingL→` is obviously the same as
the ensemble average@see the right-hand sides of Eqs.~2!
and ~3!#.

III. CONSEQUENCES OF THE MOBILITY FORMULA

Several general conclusions follow immediately from Eq.
~1! with the help of Tauberian theorems. At high electric
fields, the mobility saturates to the valuem` since
lime→`e*0

`dy e2eyc(y)5 limy→0c(y)51. This is clear di-
rectly from Eq.~3!. The field additionqEx to the potential
dominates, in this extreme, over the effects of the random
potential U(x) and thus leads to the Drude result with no
U(x). Graphically, the tilt produced in the potential by the
field overwhelms the relatively small corrugations that the
random potential contributes. At low fields, the linear-
response limit of the mobility is obtained asm` /c(`) since
lime→0e*0

`dy e2eyc(y)5 limy→`c(y)5c(`). Typically,
the correlation functionc(y) rises from the value 1 to a
saturation value higher than 1 asy increases. We now con-
sider a simple deterministic example of the potentialU(x) as
well as several stochastic examples involving dichotomous
noise and examine, in their context, consequences of our
mobility formula ~1!.

A. Deterministic example: Sinusoidal potential

If the potential in which the particle moves is sinusoidal
with periodl , i.e.,U(x)5D cos(2px/l), the evaluation of the
correlation function~14! is straightforward wheneverL is a
multiple of l . We expand the exponentials in terms of modi-
fied Bessel functions and write
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C~L,y!5(
m,n

~21!mI mS D

kTD I nS D

kTD
3~1/l !E

0

l

dx cos
2pmx

l
cos

2pn~x1y!

l
, ~16!

where them,n summation is from2` to `. We expand the
trigonometric product, employ standard summation formulas
involving cylindrical functions, and obtain the correlation
function

C~L,y!5I 0S 2D

kT
sin

py

l D5C~ l ,y!. ~17!

This correlation function is plotted in Fig. 1 as a function of
the dimensionless parametery/ l for several periods of the
potential. In Fig. 2 the corresponding mobility expression

m5~12e2qEl/kT!
kT/mgE

E
0

l

dy exp~2qEy/kT!I 0S 2D

kT
sin

py

l D
~18!

is plotted as a function of the dimensionless field strength
qEl/kT. In both figures we have set the amplitude of the
potential such thatD52kT.

B. Stochastic example: Single dichotomous potential

Let us assume that the potentialU(x) takes only two val-
ues separated by 2D, making discontinuous jumps at random
points along the one-dimensional space. WithU0 a constant,
we have

U~x!5U01h~x!, h~x!5D~21!n~x,0!, ~19!

where the randomness of the functionh(x) has been ex-
pressed in terms of the random functionn(x2 ,x1), which
counts the number of jumps the potential makes between the
valuesU01D andU02D in the interval betweenx5x1 and
x5x2 . We assume that the points of jump are distributed
randomly and uniformly. It follows that

n~x2 ,x1!5ux22x1u/ l , ~20!

where the ‘‘correlation length’’l is the mean distance be-
tween jumps. Furthermore,h(x)50 and the probability dis-
tribution of n(x,0) is Poissonian. Explicitly, denotingn(x,0)
by n,

p~n!5exp~2n̄!n̄n/n!. ~21!

The above-stated properties ofn(x2 ,x1) allow a straightfor-
ward calculation of the spatial correlation function for the
dichotomous potential@11#:

K~x1 ,x2!5h~x1!h~x2!5D2exp~22ux12x2u/ l !. ~22!

Equation ~22! describes the correlation function of the
potentialU(x). Our interest lies in the correlation function
of the exponentialof the potential. The two-state nature of
the potential facilitates the calculation since@h(x)#2n5D2n

and @h(x)#2n115D2nh(x). We notice that

expS 2
U~x!

kT D5e2U0 /kT(
n

`

~21!n
1

n! S 1

kTD n

@h~x!#n

5e2U0 /kTH cosh~D/kT!2
h~x!

D
sinh~D/kT!J .

~23!

It is now straightforward to write the system correlation
function

c~y!5expS 2
U~x!

kT DexpS U~x1y!

kT D
5cosh2~D/kT!2e22y/ lsinh2~D/kT! ~24!

and the final expression for the mobility

FIG. 1. Correlation functionc(y) as a function of the dimen-
sionless position variabley/ l for ~a! the sinusoidal potential,~b! the
dichotomous potential, and~c! the Ornstein-Uhlenbeck potential.
For each curve, the amplitude of the potential is adjusted so that
D52kT. See the text for definitions ofD and l for each potential.

FIG. 2. Mobility, normalized to the infinite-field value, as a
function of the dimensionless field strengthqEl/kT for ~a! the sinu-
soidal potential,~b! the dichotomous potential, and~c! the Ornstein-
Uhlenbeck potential. For each curve, the amplitude of the potential
is adjusted so thatD52kT, as in Fig. 1. See the text for definitions
of D and l for each potential.
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m5
m`

cosh2~D/kT!2S 11
2kT

qEl D
21

sinh2~D/kT!

. ~25!

We see that the mobility equalsm` /cosh2(D/kT) for low
fields~linear response!, rises algebraically from this value for
moderate fields, and saturates tom` for high fields. A plot of
the correlation function for the dichotomous potential ap-
pears in Fig. 1 as a function of the dimensionless distancey/ l
for D52kT. The mobility corresponding to this appears in
Fig. 2 as a function of the dimensionless field parameter
qEl/kT.

C. Stochastic example: Sum of dichotomous potentials

Generalization of the above case to a potential with many
differing D’s and l ’s can be carried out as follows. The total
potential is now a finite sum ofN independent dichotomous
potentials

U~x!5h1~x!1h2~x!1•••1hN~x!, ~26!

where theh i(x) obey

^h i~x!&50, ^h i~x1!h j~x2!&5d i j D i
2expS 22

ux12x2u
l i

D .

~27!

We can use, as previously, the fact that for a single system

h i
2n~x!5D i

2n , h i
2n11~x!5D i

2nh i~x! ~28!

and obtain

e2U~x!/kT5e2U0 /kT)
i 51

N

expS 2
h i~x!

kT D
5e2U0 /kT)

i 51

N S coshd i2
h i~x!

d i
sinhd i D , ~29!

with d i5D i /kT. Furthermore,

e2U~x!/kTeU~x1y!/kT

5)
i 51

N H cosh2d i2h i~x!h i~x1y!
1

d i
2sinh2 d i

1
1

d i
sinhd icoshd i„h i~x1y!2h i~x!…J . ~30!

Since theh i are independent with zero mean, we obtain the
correlation function as given by

c~y!5^e2U~x!/kTeU~x1y!/kT&

5)
i 51

N F11~12e22y/ l i !sinh2S D i

kTD G . ~31!

The field dependence of the mobility is given as

m5m`F)
j 51

N

cosh2S D j

kTD G21S 11 (
k51

N

~21!k

3 (
i 1, i 2,•••, i k

)
n51

k

tanh2S D i n

kT
D

11~2kT/qE! (
n51

k

1/l i n

D 21

. ~32!

It is clear that Eq.~32! reduces to Eq.~25! for N51. If we
consider the sum of many dichotomous potentials all with
the sameD i ~each equal toD/AN! and the samel i ~each
equal to l !, we get, in the limit N→`, an Ornstein-
Uhlenbeck process. The expression for the correlation func-
tion c(y) for finite N is

c~y!5Fcosh2S D

kTAN
D 2e22y/ lsinh2S D

kTAN
D GN

. ~33!

In the limit N→` we obtain the result for the Ornstein-
Uhlenbeck potential

c~y!5exp@~D/kT!2~12e22y/ l !#. ~34!

This form ~34! for the correlation function may also be ob-
tained directly from the fact that the Ornstein-Uhlenbeck
process is Gaussian.

Performing the Laplace transform of Eq.~34!, we obtain
the mobility expression

m5m`

2kT/qEl

~D/kT!2~qEl/kT!e~D/kT!2
g„qEl/2kT,~D/kT!2

…

,

~35!

whereg(a,x) is the incomplete gamma function@not to be
confused with the damping constantg in Eq. ~4!#

g~a,x!5E
0

x

e2tta21dt. ~36!

Equation~35! can also be expressed simply in terms of1F1 ,
the confluent hypergeometric function@14#:

m5
m`

1F1„1,11~qEl/2kT!,~D/kT!2
…

.

A plot of the correlation function for the Ornstein-
Uhlenbeck potential appears in Fig. 1 as a function of the
dimensionless distancey/ l for D52kT. The mobility corre-
sponding to this appears in Fig. 2 as a function of the dimen-
sionless field parameterqEl/kT. Intermediate results corre-
sponding to a continuous manifold of possible correlation
lengthsl lead to interesting consequences, which will be re-
ported elsewhere@12#.
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IV. EXTENSION OF THE FORMALISM FOR THERMAL
RESPONSE

It is straightforward to extend this formalism of nonlinear
response to treat thermal stimuli. Let us consider the case of
a constant applied thermal gradientT8, the response under
investigation being the thermal current. Equation~9! is now

]P

]t
5

]

]x F S 1

mg D S dU

dx D P1
k

mg
~T01xT8!

]P

]x G , ~37!

whereT0 is the temperature at one end of the sample. We
rewrite this as

]P

]t
5

]

]x F S 1

mg D S dU

dx
1kT8D PG1S kT

mg D ]2P

]x2 , ~38!

T being the temperatureT01xT8, and compare it to the
alternative form

]P

]t
5

]

]x F S 1

mg D S dU

dx
2qED PG1S kT

mg D ]2P

]x2 ~39!

of Eq. ~9!. We see that Eq.~38! differs from Eq.~39! only in
the substitution of the electric forceqE by the ‘‘thermal
force’’ 2kT8. If we consider the sample length to be taken
small enough to ensure that the variation ofT is negligible,
we can immediately write an expression for the thermal mo-
bility m th defined as the ratio of the velocity of the carrier
carrying the thermal current to the temperature gradientT8:

m th~t!5
k/gm

t*0
`dy e2tyc~y!

. ~40!

As expected, the expression~40! for the thermal mobility
is nearly identical to the expression~1! for the electrical mo-
bility. The differences are the appearance of the Boltzmann
constantk in place of the carrier chargeq and the replace-
ment ofe5qE/kT by t5T8/T as the Laplace variable in the
transform expressions.

Being valid in the nonlinear domain, our theory allows an
interesting generalization of the well-known Wiedemann-
Franz law valid for electric fields and temperature gradients
of arbitrary magnitude. The Wiedemann-Franz law states
@13# that the ratio of the thermal conductivityk5nkTm th to
the product of the temperatureT and the electrical conduc-
tivity s5nqm is a universal constant~known as the Lorenz
ratio! provided that the electric current and the thermal cur-
rent are carried by the same particles. That law is normally
stated only in the limit of a linear response. Our theory al-
lows us to extend it to the entire nonlinear domain. We see
that it is obeyed not only for small fields and gradients since
(1/T)(limt→0k/ lime→0s) equals a universal constant
(k/q)2, but also at very high fields and gradients since
(1/T)(limt→`k/ lime→`s) also equals (k/q)2. The law, in
the form known in linear-response theory, is, however, not
obeyed at intermediate values of fields and gradients. Gener-
ally, the Lorenz ratio is found to be

k

sT
5S qE

kT8D c̃~T8/T!

c̃~qE/kT!
L0 , ~41!

where by L0 we mean the linear-response Lorenz ratio
(k/q)2. The multiplicative correction factor that our theory
produces for nonlinear response involves the Laplace trans-
form of the correlation functionc(y) at two different values
of the Laplace variable:T8/T andqE/kT. A powerful scal-
ing statement can be made, in addition, for a nonlinear re-
sponse: The thermal mobility for arbitrary values of tempera-
ture gradient plotted as a function ofT8/T and the electrical
mobility for arbitrary values of electric field plotted as a
function of qE/kT are identical to each other except for a
multiplicative factor that is a universal constantk/q.

In the general case in which thermal and electrical stimuli
are simultaneously present, the Fokker-Planck equation takes
the form

]P

]t
5

]

]x F S 1

mg D S dU

dx
2qE1kT8D PG1S kT

mg D ]2P

]x2 .

~42!

The counterpart of Eq.~13! for this case in the limitL→` is
then

^v&5
kT/mg

E
0

`

dy expF2yS qE

kT
2

T8

T D Gc~y!

, ~43!

which results in the well-known general transport relations
connecting electrical and thermal transport~see, e.g., Ref.
@13#!:

j el5q2K0E2
q

T
K1T8, ~44!

j th5qK1E2
1

T
K2T8, ~45!

where theK ’s are given by

K05
n0

mgw c̃~w!
, K15

n0kT

mgw c̃~w!
, K25

n0~kT!2

mgw c̃~w!
.

~46!

Here the Laplace variable isw5qE/kT2T8/T. In Eqs.~44!
and~45! we have fully nonlinear expressions for the electric
and thermal currents. However, simple proportionality rela-
tions exist between the nonlinear transport coefficientsK0 ,
K1 , and K2 . In the so-called Seebeck effect, open current
circuit conditions are maintained (j el50), which means that
w vanishes. TheK ’s then have their linear limiting values
and the thermoelectric power, the ratio of the electric field to
the temperature gradient, is simplyk/q. In the Peltier effect,
the temperature gradient is maintained zero. TheK ’s do not
have their linear limiting values, but the ratio of the thermal
current to the electric current, known as the Peltier coeffi-
cient, iskT/q and thus the Kelvin relation of thermoelectric-
ity @13#, viz., that the Peltier coefficient equals the absolute
temperature times the thermoelectric power, holds in this
nonlinear domain we treat. We have given here a simple
classical analysis that does not introduce factors such asp2/3
that arise from a treatment that includes Fermi-Dirac statis-
tics for the carriers.
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V. DERIVATION OF THE NONLINEAR RESPONSE
FORMULA FOR THE DIFFUSION CONSTANT

In Sec. II the Fokker-Planck equation for the probability
distribution P(x,t) was obtained and used to determine the
velocity and mobility of a particle moving in response to a
driving force of arbitrary magnitude. In this section we are
interested in obtaining an expression for the diffusion con-
stant that is valid under the same conditions. To this end, we
adapt a calculation given by Derrida@6# for a discrete chain
of hopping sites to that of a particle moving in a continuous
random potential.

Thus we now consider our system potentialU(x), origi-
nally defined on a section of lengthL, to be periodically
repeated throughout all space. The result of this construction
is an infinite sample with a periodic system potentialU(x)
5U(x1L), but a constant driving forceqE of arbitrary
magnitude. The probability densityP(x,t) for the system is
now normalized over the entire real line, but still obeys the
Fokker-Planck equation~9!, which we can write compactly
in the form]P/]t5LxP, thereby implicitly defining the dif-
ferential operatorLx .

For this system it is then possible to express the particle’s
velocity

d

dt
^x~ t !&5

d

dt E2`

`

xP~x,t !dx ~47!

5
d

dt E0

L

(
k52`

`

~x1kL!P~x1kL,t !dx5E
0

L ]s

]t
dx

~48!

in terms of a spatially periodic function

s~x,t !5 (
k52`

`

~x1kL!P~x1kL,t ! ~49!

of periodL. Note that at long times, Eq.~47! must approach
the steady-state drift velocitŷv&, implying that

s~x,t !→r0~x!^v&t1t~x!, ~50!

wherer0(x) andt(x) are time-independent but spatially pe-
riodic functions, with the integral ofr0 over one period be-
ing equal to unity. By writing an equation similar to Eq.~47!
for ^x2(t)&, using the Fokker-Planck equation~9!, integrat-
ing it by parts, and performing a manipulation similar to that
in Eq. ~48!, it is straightforward to relates(x,t) to the time
rate of change of the second moment as well. We find that

d

dt
^x2~ t !&5

2

bmg
2

2

bmg E
0

L

b~U82qE!s~x,t !dx,

~51!

where the prime denotes differentiation with respect tox.
Combining Eqs.~47!–~51!, the diffusion constantD is

then simply expressible in terms of the periodic function
t(x) introduced in Eq.~50!:

D5 lim
t→`

1

2

d

dt
@^x2~ t !&2^x~ t !&2# ~52!

5
1

bmg F12E
0

L

b~U82qE!t dx2bmg^v&E
0

L

t dxG .
~53!

To determine the functiont(x), we first take the time de-
rivative of Eq.~49!, and use Eq.~9! to obtain

ds

dt
5Lxs2

1

bmg Fb~U82qE!r~x,t !12
]r~x,t !

]x G ,
~54!

wherer(x,t)5(k52`
` P(x1kL,t) is another spatially peri-

odic function whose integral over one period is equal to
unity and whose equation of motion is easily shown to be the
same Fokker-Planck equation asP(x,t). In fact, for equiva-
lent initial conditions, the periodic functionr(x,t) and the
periodic probability densityP(x,t) of Sec. II must be iden-
tical insofar as they obey the same normalization and the
same equations of motion. Thus, at long times,r(x,t) ap-
proaches a stationary limit which just turns out to be the
functionr0(x) introduced in Eq.~50!. To see this, substitute
Eq. ~50! into Eq.~54! and equate powers oft, obtaining two
independent relations. The first relation confirms thatr0
obeys the same stationarity condition]r0 /]t5Lxr050 as
the function r(x,t) at long times. This latter equation is
equivalent to the steady-state continuity equation for the con-
stant current density

j 5
^v&
L

52
1

bmg Fb~U82qE!r0~x,t !1
]r0~x,t !

]x G .
~55!

The second relation stemming from the aforementioned pro-
cedure yields the differential equation

Lxt5
1

bmg
@b~U82qE!r012r08#1^v&r0[c8 ~56!

obeyed by the functiont(x). In Eq. ~56! we have expressed
the right-hand side as the derivative of a new periodic func-
tion c(x). Using Eq.~55! to integrate Eq.~56! and invoking
the periodicity ofc andr0 , we find that

c~x!5
r0~x!

bmg
1

^v&
L E

0

L

dy yr0~x1y!1l, ~57!

wherel is independent ofx. With c(x) determined, Eq.~56!
gives an inhomogeneous equation fort(x), the periodic so-
lution to which is

t~x!5
2bmg

12e2bqEL E
0

L

e2bqEyc~x1y!e2b@U~x!2U~x1y!#dy.

~58!
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Moreover, from Eq. ~56! we find that b(U82qE)t
5bmgc2t8, which allows Eq.~53! to be written as

D5
1

bmg F12bmgE
0

L

c~x!dx2bmg^v&E
0

L

t~x!dxG .
~59!

Using Eq.~58!, the last integral of Eq.~59! can be rewritten
in the form

E
0

L

tdx52
bmg

12e2bqEL E
0

L

dxE
0

L

dy e2bqEyc~x1y!

3e2b@U~x!2U~x1y!#

52
bmg

12e2bqEL E
0

L

dx m~x!c~x!. ~60!

Here we have introduced the periodic function

m~x!5E
0

L

dy e2bqEye2b@U~x2y!2U~x!#, ~61!

whose integral

E
0

L

m~x!dx5
L

bmg^v&
@12e2bqEL# ~62!

follows from Eqs.~61! and~13!. To obtain Eq.~60! we have
broken the original integral overx up into two parts, one
from 0 to L2y and the other fromL2y to L; changed
variables~to z5x1y in the first,z5x1y2L in the second!;
used periodicity; and recombined the resulting integrals.

With Eqs. ~57!, ~60!, ~61!, and ~62!, Eq. ~59! finally re-
duces to a relatively simple expression of the form

D5D02DD, ~63!

where

D05
^v&

~12e2bqEL!
E

0

L

m~x!r0~x!dx ~64!

and

DD5
^v&L

2
2

bmg^v&2

12e2bqEL

1

L E
0

L

dxE
0

L

dy m~x!r0~x1y!y.

~65!

These expressions require the definition ofm(x) from Eq.
~61! and the stationary probability density

r0~x!5
bmg

12e2bqEL

^v&
L E

0

L

e2b@U~z!2U~z1x!#dz, ~66!

which follows from a straightforward integration of the con-
tinuity equation]r0 /]t5Lxr05] j /]x50, with j 5^v&/L.
Equations~63!–~65! can be used to obtain the diffusion con-
stant for an arbitrary periodic potentialU(x). In the limit of

an infinitely long sample, these expressions simplify and can
be expressed in terms of correlation functions similar to
those that appear in the mobility. To see this, we substitute
Eqs.~66! and~61! into Eqs.~64! and~65! and take the limit
L→`. For D0 , this leads to the relation

D05^v&E
0

`

m~x!r0~x!dx

5bmg^v&2E
0

`

dzE
0

`

dz8e2bqE~z1z8!c~z1z8!, ~67!

where c(y)5 limL→`C(L,y) is the same function that ap-
pears in the mobility@see Eq.~1!#. Since the integrand of Eq.
~67! depends only on the combinationz1z8, we can change
variables on the double integral toy5z1z8 and x5(z
2z8)/2, with y going from 0 to` andx ranging from2y to
1y. After performing thex integration, we obtain

D05bmg^v&2E
0

`

dy e2bqEyyc~y!

52
^v&2

bq

]

]E FbmgE
0

`

dy e2bqEyc~y!G , ~68!

where the term in square brackets can be identified from Eq.
~13! as the correspondingL→` limit of 1/^v&. Thus we find
that, in this limit, we can write

D05
1

bq

]^v&
]E

. ~69!

Equation ~69! constitutes a generalization of the standard
Einstein relationD5^v&/bqE appropriate to linear-response
theory.

Before inserting Eqs.~66! and~61! into Eq.~65! to obtain
a similar expression forDD, it is convenient to first rewrite
that expression using an identity

E
0

L

dzE
0

L

dxE
0

L

dy yr0~x1y!m~z!

5
L

2

L2

bmg^v&
@12e2bqEL# ~70!

that follows from Eq.~62!. A little manipulation allows us to
use this relation to combine the two terms on the right-hand
side of Eq.~65! into the form

DD5
bmg^v&2

12e2bqEL

1

L2 E
0

L

dzE
0

L

dxE
0

L

dy y r0~x1y!

3@m~z!2m~x!#. ~71!

Substituting Eqs.~61! and ~66! into this last expression and
taking L→`, we obtain
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DD5~bmg!2^v&3E
0

`

dwE
0

`

dz e2bqEwe2bqEzG~w,z!,

~72!

where

G~w,z!5 lim
L→`

1

L E
0

L

dy y@c~w!c~z!2c4~z,w,y!#,

~73!

in which c(y) is given by Eq.~2! and the four-point corre-
lation functionc4(z,w,y) is defined through the relation

c4~z,w,y!5 lim
L→`

1

L E
0

L

dxeb@U~x1y1w!2U~x1y!1U~x!2U~x2z!#

5eb@U~y1w!2U~y!1U~0!2U~2z!#. ~74!

Just as the electrical mobility, the thermal mobility, and
the cross-transport coefficientsK can be found respectively
from Eqs. ~15!, ~40!, and ~46! in terms of the correlation
c(y) given in Eq. ~2!, the diffusion constant can now be
calculated explictly through Eqs.~63!, ~69!, and ~72! in
terms of the correlation functionsc(y) andc4(y) in Eq. ~74!.
We now apply these expressions to study the diffusion con-
stant for the deterministic sinusoidal potential and the sto-
chastic models treated in Sec. III. In each of these systems
we can takeL→` but keep the periodl , in the case of the
sinusoidal potential, and the correlation length, in the case of
a stochastic potential, finite. In this limit the contribution to
the diffusion constant arising fromD0 is given by Eq.~69!
and reduces at low fields to the standard Einstein relation. In
what follows we consider deviations from this generalized
Einstein relation as represented by Eqs.~72! and ~73!.

For the sinusoidal potential of Sec. III A, it is possible to
break the integral in Eq.~73! into intervals of length equal to
the periodl of the potential, change variables in each to a
single fundamental period, and show that, for this case,

G~w,z!5
1

l E
0

l

dy y@C~w!C~z!2C4~z,w,y!#

5
l

2
@C~w!C~z!2I ~z,w!#, ~75!

whereC(y)5I 0(2d sinpy/l) and

I ~z,w!5
2

l 2 E
0

l

y C4~z,w,y!dy

5
2

~2p!2 E
0

2p

ŷ C4~z,w,y!dŷ. ~76!

In this last expression we have introduced the reduced nota-
tion ŷ52py/ l , with similar definitions for the quantitiesx̂,
ŵ, and ẑ, to appear below. Also, in Eq.~76!, C4(y) is the
finite length (L5 l ) version of the correlation function~74!.
With d5D/kT we have

C4~z,w,y!5
1

2p E
0

2p

dx̂ ed cos~ x̂1 ŷ1ŵ!e2d cos~ x̂1 ŷ!ed cos~ x̂!ed cos~ x̂2 ẑ!

5
1

2p E
0

2p

dx̂ e22d sin~ŵ/2!sin~ x̂1 ŷ1ŵ/2!e22d sin~ ẑ/2!sin~ x̂2 ẑ/2!

5
1

2p E
0

2p

dx̂ e22d sin~ŵ/2!cos~ x̂1 ŷ1ŵ/2!e22d sin~ ẑ/2!cos~ x̂2 ẑ/2!

5(
n,m

~21!n2mI n~2d sin ŵ/2!I m~2d sin ẑ/2!
1

2p E
0

2p

dx̂ h~ x̂!, ~77!

where them,n sums are between6` andh( x̂)5exp$i@n(x̂1ŷ1ŵ/2)2m( x̂2 ẑ/2)#%. The last integral

FIG. 3. Diffusion constant, normalized to the infinite-field value,
as a function of the dimensionless field strengthqEl/kT for ~a! the
sinusoidal potential,~b! the dichotomous potential, and~c! the
Ornstein-Uhlenbeck potential. For each curve, the amplitude of the
potential is adjusted so thatD52kT, as in Fig. 1. See the text for
definitions ofD and l for each potential. The two contributionsD0

and DD to the diffusion constant for the sinusoidal potential are
included as dotted lines.
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1

2p E
0

2p

dx̂ h~ x̂!5dm,nein@ ŷ1~ŵ1 ẑ!/2# ~78!

is easily evaluated, giving

C4~z,w,y!5(
n

Cn~ŵ!Cn~ ẑ!ein@ ŷ1~ŵ1 ẑ!/2#, ~79!

whereCn(ŵ)[I n(2d sinŵ/2). With Eq. ~79!, we can perform the integral in Eq.~76! to obtain

I ~z,w!5 (
n52`

`
Cn~ŵ!Cn~ ẑ!

2p2 exp$ in@~ŵ1 ẑ!/2#%E
0

2p

ŷeinŷdŷ ~80!

5C0~ŵ!C0~ ẑ!1
2

p (
n51

`

n21Cn~ŵ!Cn~ ẑ!sin@n~ŵ1 ẑ!/2#, ~81!

where we have expanded the exponential into its real and imaginary parts and noted that the imaginary parts for positive and
negativen.0 cancel. Thus we find that

G~w,z!5
l

2
@C0~w!C0~z!2I ~z,w!#

52
l

p (
n51

`

n21Cn~ŵ!Cn~ ẑ!sin@n~ŵ1 ẑ!/2#. ~82!

This allows us to write

DD5~bmg!2^v&3E
0

`

dwE
0

`

dz e2bqEwe2bqEzG~w,z!

52
~bmg!2^v&3l

p (
n51

`

n21E
0

`

dwE
0

`

dz e2bqEwe2bqEzCn~ŵ!Cn~ ẑ!sin@n~ŵ1 ẑ!/2#. ~83!

Breaking the trigonometric function up, the resulting double
integral factors to give

DD52
2~bmg!2^v&3l 3

p (
n51

`

n21AnBn , ~84!

where

An5
1

l E
0

`

dwe2bqEwCn~ŵ!cos@nŵ/2#

5
1

12e22bqEl

1

p E
0

2p

du e2bqElu/pI nS 2D

kT
sinu D cos~nu!

~85!

and

Bn5
1

l E
0

`

dwe2bqEwCn~ŵ!sin@nŵ/2#

5
1

12e22bqEl

1

p E
0

2p

du e2bqElu/pI nS 2D

kT
sinu D sin~nu!.

~86!

Thus, for the sinusoidal potential the diffusion constant de-
viates from the generalized Einstein relation~69! by a non-
zero amount that may be evaluated as a function of the field
using Eqs.~84!–~86!. In Fig. 3, D0 , uDDu, and D5D0
2DD are plotted as functions of the dimensionless field
strengthqEl/kT for the sinusoidal potential withD52kT.

For the stochastic models investigated in Sec. III, by con-
trast, we find thatDD vanishes identically, so that the total
diffusion constantD as a function of the applied field obeys
the generalized Einstein relation~69!. To see this, we first
observe that then-point correlation function for a single di-
chotomous potential has the property that
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Km~x1 ,...,xm22 ,xm21 ,xm!5h~x1!•••h~xm22!h~xm21!h~xm!5Km22~x1 ,...,xm22!K~xm21 ,xm!, ~87!

wheneverx1,•••,xm22,xm21,xm . In particular, all odd
correlation functions vanish and all even ones factorize into
products of two-point correlation functions. Indeed, we have

Km~x1 ,...,xm22 ,xm21 ,xm!

5Dm (
n1 ,...,nm

~21!n11•••1nmp~n1 ,...,nm!, ~88!

where p(n1 ,...,nm) is the joint probability distribution of
havingni jumps between 0 andxi , i 51,...,m. Obviously,

p~n1 ,...,nm!5p~n1 ,...,nm21unm!p~nm!, ~89!

wherep(n1 ,...,nm21unm) is the conditional probability. But
from the independence of the individual jumps, we can write

p~n1 ,...,nm21unm!5p~n1 ,...,nm22!p~nm21unm!,
~90!

p~nm21unm!5p~nm2nm21!. ~91!

Hence

Km~x1 ,...,xm22 ,xm21 ,xm!5Dm22 (
n1 ,...,nm22

~21!n11•••1nm22p~n1 ,...,nm22!D2

3 (
nm21 ,nm

~21!nm211nmp~nm2nm21!p~nm!

5Km22~x1 ,...,xm22!D2 (
n,nm

~21!np~n!p~nm!5Km22~x1 ,...,xm22!K~xm21 ,xm!, ~92!

where we have introduced the simplified notationn5nm
2nm21 and used Eq.~22!.

From the definition~74! and ~23! we have, for a single
dichotomous potential,

c4~z,w,y!5cosh4~D/kT!1e22w/ le22z/ lsinh4~D/kT!

1~e22~y1w!/ l2e22~y1w1z!/ l2e22y/ l

1e22~y1z!/ l !cosh2~D/kT!sinh2~D/kT!

5c~w!c~z!1e22y/ l~e22w/ l2e22~w1z!/ l21

1e22z/ l !cosh2~D/kT!sinh2~D/kT!. ~93!

Consequently,

G~w,z!5~e22w/ l2e22~w1z!/ l21

1e22z/ l !cosh2S D

kTD sinh2S D

kTD lim
L→`

E
0

L

y e22y/ ldy

50. ~94!

It is clear from this result thatG(w,z) also vanishes for
any potential constructed as a sum of independent dichoto-
mous potentials and for the limiting case of the Ornstein-
Uhlenbeck process. The diffusion constant is thus given in
its entirety for these stochastic models by the generalized
Einstein relation~69!. In Fig. 3 the field-dependent diffusion
constant predicted by Eq.~69! for the dichotomous and

Ornstein-Uhlenbeck potentials is plotted as a function of the
dimensionless field strengthqEl/kT for D52kT, as in Figs.
1 and 2.

VI. REMARKS

We have presented a usable nonlinear-response theory
valid for a one-dimensional system of independent classical
carriers moving in a potential and subjected to an externally
imposed driving agency that can be mechanical such as an
electric field or thermal such as a temperature gradient. We
have given expressions for the electrical and thermal mobil-
ity, for cross-transport coefficients that appear in Onsager
relations, and for the diffusion constant, which can be evalu-
ated explicitly for given potentials. We have generalized the
Wiedemann-Franz law and shown that the Einstein relation
connecting the diffusion constant and the mobility may also
be generalized to give a part of the diffusion constant. For
the stochastic examples considered, that part has been shown
to be the entire diffusion constant. We suspect that this will
also be the case for many other random potentials in which
the autocorrelation function decays rapidly with distance, in-
cluding most of those that arise in physical applications@15#.
We have evaluated the various transport coefficients for sev-
eral stated forms of the potential including one deterministic
case~the sinusoidal potential! and several stochastic cases
~dichotomous noise!.

As stated in Sec. I, our response theory shares with the
Kubo formalism@1,2# the feature that transport coefficients
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are obtained directly from the system correlation functions in
the absence of the external fields, but goes beyond that for-
malism in that, while exact, our theory addresses external
fields of arbitrary magnitude. The correlation functions in
our theory are not time correlation functions as in the Kubo
formalism but are spatial. We have found applications of our
theory in the field of molecularly doped polymers@7,8# and

in microwave interactions with ceramics@9,10#, but the for-
malism has general validity.
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