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Abstract-In this paper, the problem of blind separation of a 

convolutive mixture of audio signals is considered.  A fast and 

efficient frequency-domain Blind Source Separation (BSS) 

method using Independent Component Analysis (ICA) is 

investigated.  The main difficulties of this approach lie in the so 

called permutation and amplitude problems.  In order to solve 

the permutation ambiguity, the final value of the ICA derived 

separation matrix of one frequency bin, is used to initialize the 

ICA iterations in the next frequency bin.  The amplitude 

problem is addressed by utilizing the elements in the inverse of 

the separation matrix.  Experimental results demonstrate that 

successful separation is achieved and compared with 

conventional frequency-domain BSS methods, it is less 

computationally complex and has faster convergence. 

I.   INTRODUCTION

Blind Source Separation (BSS) is a statistical approach 

for determining a number of independent random or 

deterministic signals when only their linear mixtures are 

available for observation.  With the understanding that both 

source signals and mixing procedure are unknown, the 

process is termed “blind” and this blindness enables the 

technique to be used in a wide variety of situations.  These 

include speech recognition systems, telecommunications, 

and medical signal processing.  

Within BSS research there are two important issues that 

are generally considered: instantaneous BSS and 

convolutive BSS.  The distinction between them is based 

primarily on the nature of the signal mixing process.  

Instantaneous BSS separates signals that are mixed without 

introducing time delays.  It is where the development of 

BSS as a research field began.  Convolutive BSS is an 

extension of instantaneous BSS which can achieve 

separation when time delays are involved.  Recently 

convolutive BSS is drawing much of researchers’ attention, 

because in many real-world applications such as 

communication and acoustics, the signals are mixed in a 

convolutive manner. 

The major approaches to separate the convolutive 

mixtures can be divided into time-domain and frequency-

domain methods.  The time-domain method suffers from the 

high computational complexity.  In order to overcome the 

shortcoming of the time-domain methods, people are 

moving to the frequency domain, where the problem of 

convolutive mixing simplifies to instantaneous mixing 

allowing standard instantaneous ICA algorithms to be 

employed.  Frequency-domain BSS takes much less 

computation time than time-domain BSS.  However, it 

encounters problems, namely permutation and amplitude 

ambiguity.  

During the last few years several frequency-domain 

methods have been reported to address the permutation and 

amplitude indeterminacy [1, 2, 3, 4, and 5].  Among these 

methods people are utilizing geometric information or 

spectrum characteristics to solve the permutation problem 

and using methods like directivity patterns or reference 

sensors to address the scaling problem.  Although most of 

them cost much less computation time than time-domain 

methods, they are still time consuming for real-time 

processing.  In this paper, we propose a frequency-domain 

separating system which runs faster than those methods 

without lowering the efficiency.  

II.   BSS IN THE FREQUENCY DOMAIN

A.   Mixing and Separation Model 

In this section, we introduce the basic model of the 

convolutive mixtures.  It is believed that a linear mixture of 

source signals weighted by filters is a sufficient model to 

describe the mixture.  Assume M source signals are 

recorded by N sensors in a reverberant environment.  In this 

model, the observed signals x1(t), …, xN(t) are obtained as 

the sum of convolutions of the source signals s1(t), …, sM(t)

and the room impulse response: 

x ( ) a ( )s ( )i ij jj
t  (1) 

The aij( ) denotes the impulse response from source j to the 

location of sensor i.  The background noise is not 

considered because it is sufficient to evaluate this model in a 

noise free situation.  

The objective of BSS is to design a causal, stable 

separation filter bji( ) to obtain the estimation of original 

source signals, which is denoted by y1(t), …, yM(t):
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y ( ) b ( )x ( )j ji ii
t t  (2) 

Fig. 1. Diagram of frequency-domain BSS 

The flow of frequency-domain BSS is shown in Fig. 1.  

Using short-time Fourier transform (STFT), the time-

domain observed signals are transformed into frequency-

domain signals:  

 (3) 
1 /

0
X ( , ) x ( )w( )

K j k K

i ik
t t k k e

where w(k) denotes a window function.  Then the BSS 

model is converted into the frequency domain: 

( , ) ( ) ( , )t tX A S  (4) 

where A is the mixing matrix in the frequency bin .

and  are time-frequency 

representations of the observed signals and the source 

signals respectively.  And the estimated signals are turned 

into:  

1X , , X
T

NX 1S , ,S
T

MS

t( , ) ( ) ( , )tY B X  (5) 

where B is the separation matrix in the frequency bin  and 

.  At the last step, the time-domain signals 

are reconstructed using the inverse STFT:  

1Y , , Y
T

MY

1 /

0

1
y ( ) Y ( , )

K j k K

j jk
t t e

K
 (6) 

B.   Independent Component Analysis 

In each frequency bin, the instantaneously mixed 

frequency-domain signals are separated.  Independent 

Component Analysis (ICA) is the most widely used 

approach to attack this problem.  ICA exploits the statistical 

independence between the original source signals in order to 

separate them from the observed mixtures, attempting to 

make the signals as independent as possible.  When the 

source signals are non-Gaussian and mutually independent, 

good separation is achieved. 

There have been lots of existing ICA methods such as 

InfoMax [6], JADE [7] and FastICA [8].  In the proposed 

method, the well-known FastICA algorithm by Hyvärinen is 

implemented.  According to the complex data value in the 

frequency domain, the algorithm is complex-valued and is 

formulated as follows [9]. 

2*

2 2 2

B (B ) ( B )

( B ) B '( B ) B

B B B

n n n

n n n

n nn

E h

E h h

X X X

X X X n  (7) 

where Bn is a demixing weight vector, which forms the n-th

row of the demixing matrix B. h(·) is a nonlinear function 

and h'(·) denotes its differential.  

C.   Permutation and Amplitude Ambiguity 

Even though the ICA algorithm for instantaneous 

mixtures precisely estimates the demixing matrix at each 

frequency bin, it still has indeterminacy of permutation and 

scaling, because ICA does not take into account the order 

and gain in which the original sources are recovered.  Each 

ICA solution satisfies:

( ) ( ) ( ) ( ) ( )B G A P D  (8) 

where G represents the whitening matrix used in ICA 

process P is a permutation matrix and D is a diagonal 

matrix, of which the elements denote the scaling factors. 

If the permutation matrix P is not consistent across all 

frequencies then contributions from different sources will be 

combined into a single channel when converting the signal 

back to the time domain.  The scaling ambiguity at each 

frequency bin results in a filtering effect on the sources in 

the time domain.  In order to perfectly recover the sources 

in the time domain, those above indeterminacy problems 

must be essentially solved before making an inverse STFT 

from the frequency domain to the time domain. 

III.   PROPOSED METHOD

A.   Solving Permutation 

In order to overcome the permutation problem, a fact 

needs to be noticed. When the sensor signals are converted 

into the frequency domain, their spectrums change gradually 

along the frequency axis, which means if the frequency bins 

are narrow enough, the spectrums between neighboring bins 

are highly correlated.  Therefore, we can expect that the 

separation matrices obtained by FastICA in adjacent 

frequency bins will not have great changes in their 

coefficients, as well as their permutation orders.   

Due to this fact, we can employ the final solution of the 

separation matrix in the previous frequency bin as the initial 

value of the FastICA iteration in the current frequency bin.  

If the resolution in the frequency domain is high enough, 

the separation matrices in consecutive frequency bins will 

tend to converge in the same permutation order, which 

means the step of solving permutation can be avoided.  

Fig. 2 shows the flow of the iteration to compute the 

separation matrices.  The iteration can be performed in two 

equally efficient ways: 1. Start from the lowest frequency; 

2. Start from the highest.  Method 2 runs slightly faster than 

method 1, as it converges faster in the lowest frequency 

bins.
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Fig. 2. Iteration flow across all frequency bins 

B.   Rescaling 

For simplicity, we assume the number of sources and the 

number of sensors are equal, which means N = M, in the 

following discussions.  Assume at the frequency bin , the 

separation matrix B is successfully calculated, and C is its 

inverse (or pseudo inverse).  Matrix C can be denoted by:  
1

11 1

1

( ) ( )

( ) ( )

( ) ( )

M

M MM

c c

c c

C B

 (9) 

Let the rescaling matrix R be the diagonal elements of C:

( ) ( )diagR C  (10) 

Then (5) changes into:

( , ) ( ) ( ) ( , )t tY R B X  (11) 

With (11), good amplitude rescaling can be achieved.  

IV.   EXPERIMENTAL RESULTS

In this section we present the results of experiments 

carried out to test the performance of the proposed method.  

The experiments were conducted using the Image Model 

[10] and performed on a Dell laptop with a Pentium M CPU 

at 1.7GHz.  A typical reverberant room was simulated, as 

shown in Fig. 3. 

Fig. 3. Experiment room setup 

A 2-input and 2-output noise free case was considered.  And 

the experiment parameters and conditions are shown in the 

following table.

TABLE I 

PARAMETERS AND CONDITIONS 

Room dimension L: 5m, W: 4m, H: 3m 

Reverberation time (T60  ) 100ms/150ms/200ms/300ms 

Number of sensors 2

Distance between sensors 2cm 

Direction of Arrivals (DOA) 50° and 120°

Distance of sources 0.8m

Source signals 2 male speeches of 4s 

Sample rate 8000Hz

Frame length of STFT 1024

Number of frequency bins 513

Nonlinear function in ICA G2(u) = log(0.1+u)

Fig. 4 shows the separation results when room 

reverberation time is 150ms and the performance was 

compared with the method by Kurita [2], as shown in Fig. 5.  
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Fig. 4. Separation results when T60  150ms: (a) Source signals; (b) Mixed 

signals recorded by Sensor #1 and #2 respectively; (c) Separated signals 
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Fig. 5. The performance evaluations of the Kurita’s method and proposed 

method 

From Fig. 5, we can see that the proposed method 

achieves the same level on the average SINR improvement 

as Kurita’s method.  The average SINR is improved by 

14.3dB when T60  150ms.  Saving time is the biggest 

advantage of the proposed method over conventional BSS 

techniques.  In the second case, it reduces the computation 

time in ICA stage from 10 seconds in Kurita’s method to 

around 3.5 seconds. Also, it jumps over the permutation 

solving step and saves more than 2.5 seconds in this stage. 

One shortcoming of this method is that it may not be 

competent for the job separating quickly moving sources, as 

well as most of the existing BSS methods.  Furthermore, 

there are a decrease in the SINR improvement and an 

increase in the computation time, when the T60 gets higher.  

This is a general problem in frequency-domain BSS, which 

is caused by the degradation of convergence, and it is even 

worse in time-domain BSS. 

To sum up, in the BSS for static sources, compared with 

the Kurita’s approach, the proposed method is equally 

efficient but runs much faster.  

V.   CONCLUSION

A new approach for blind separation of convolutive 

mixtures has been presented.  It is based on taking 

advantage of the separation matrix obtained by ICA at each 

frequency bin, where the current separation matrix is used 

to initialize the ICA process in next frequency bin and the 

diagonal elements of it are exploited as the scaling factors.  

In contrast to other frequency-domain BSS algorithms, this 

method does not suffer from permutation indeterminacy 

across frequency bins and achieves faster convergence and 

easier rescaling. 
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