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A Continually Online Trained Neurocontroller for 
the Series Branch Control of the UPFC 

R. P. Kalyani, Student Member, IEEE, G. K. Venayagamoorthy, Senior Member, IEEE, 

Abstract - The crucial factor affecting the modern power 
systems today is load flow control. The Unified Power Flow 
Controller (UPFC) provides an effective means for controlling 
the power flow and improving the transient stability in a power 
network. The UPFC has fast complex dynamics and its 
conventional control is based on a linearized model 01 the power 
system. This paper presents the design of a nenrocontroller that 
controls the power flow and regulates voltage along a 
transmission line. The continually online nenrocontroller is used 
for controlling the series inverter of UPFC. Simulation results 
carried out in the PSCADlEMTDC environment are presented 
to show the successful control of UPFC and the power system. 

Keywords: Indirect adaptive control, Neuroidentifier, 
Nenrocontroller, Power system, Unified Power Flow Controller 
(UPFC) 

1. ,INTRODUCTION 

W i t h  the ever increasing complexities in power systems 
across the globe and the growing need to provide stable, 
secure, controlled, economic, and high-quality electric power 
-especially in today’s deregulated environment 2 it is 
envisaged that Flexible AC Transmission System (FACTS) 
controllers are going to play a critical role in power systems 
[I]. FACTS enhance the stability of the power system both 
with its fast control characteristics and with its continuous 
compensating capability. The two main objectives of FACTS 
technology are to control power flow and increase the 
transmission capacity over an existing transmission corridor 

Gyugyi proposed the Unified Power Flow Controller 
(UPFC) that is a new generation of FACTS devices in 1991 
[3]. It is a device, which can control simultaneously all three 
parameters of power transmission line (impedance, voltage 
magnitude and its phase angle). This device combines 
together the features of two other FACTS devices: the Static 
Synchronous Compensator (STATCOM) and the Static 
Synchronous Series Compensator (SSSC). Practically, these 
two devices are two Voltage Source Inverters (VSls), one 
connected in shunt with the transmission line through a shunt 
transformer and other in series with the transmission line 
through a series transformer. These VSIs are connected back 
to back by a common DC link, which is typical a storage 
capacitor. 

Neural networks are suitable for multi variable applications 
as they can easily identify the interactions between the 
system’s inputs and outputs. Their ability to leam and store 
information about system nonlinearities allows neural 

P I .  

networks to be used for modeling and designing intelligent 
controllers for power systems [4, 51. Thus, offering 
alternatives for conventional linear and nonlinear control. A 
radial basis function neural network controller for UPFC 
based on direct adaptive control has been reported to improve 
the transient stability performance of a power system [6]. It is 
known that indirect adaptive control is able to control a 
nonlinear system with fast changing dynamics, like the power 
system better, since the dynamics are continually identified 
by a model. 

This paper presents the design of a neurocontroller to 
control the series branch of UPFC in a single machine infinite 
bus (SMIB) power system setup. The design of the 
continually online trained (COT) neurocontroller is based on 
the indirect adaptive control scheme to replace the existing 
conventional PI controllers in the series branch of a UPFC. It 
comprises of two neural networks, one called the 
neuroidentifer, to identify the complex nonlinear dynamics 
of the UPFC and the power system, and the other, for the 
control. Advantages of neurocontrollers over the 
conventional controllers are that they are able to adapt to 
changes in the system operating conditions automatically 
unlike the conventional controllers whose performances 
degrade for such changes [4, 51. 

11. SINGLE MACHINE INFINITE BUS SYSTEM WITH UPFC 
For identifying and controlling the dynamics of a UPFC 

and the power system, a single machine infinite-bus (SMIB) 
power system is setup as shown in Fig. 1 in PSCADiEMTDC 
environment. This power system comprises of a synchronous 
generator with exciter-automatic voltage regulator (AVR) and 
turbine-govemor combinations connected to an infinite bus 
through two sections of transmission lines and the UPFC is 
placed between the two sections of the transmission lines as 
shown in Fig. 1. The SMIB with the UPFC is called the plant 
in the rest of the paper. The UPFC functions as an ideal ac-to- 
ac power inverter in which the real power can freely flow in 
either direction between the ac terminals of the two inverters, 
and each inverter can independently generate (or absorb) 
reactive power at its own ac output terminal. 

The series inverter provides the main function of the UPFC 
by injecting a voltage with magnitude V,, which is 
controllable and a phase angle a in series with the line via an 
insertion transformer. This injected voltage acts essentially as 
a synchronous ac voltage source. The transmission line 
current flows through this voltage source resulting in a 
reactive and active power exchange between itself 
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and the ac system. The inverter generates the reactive power 
exchanged at the ac lerminal intemally. The active power 
exchanged at the ac terminal is converted into dc power, 
which appears at the DC link as a positive or negative real 
power. 

The basic function of shunt inverter is lo generate or absorb 
the real power demanded by series inverter at the common 
DC link. The power demand by the series inverter at the DC 
link is converted back to ac by the shunt inverter and fed to 
the transmission line bus via a shunt-connected transformer. 
In addition to this the shunt inverter can also generate or 
absorb controllable reactive power if desired and thereby 
provides independent shunt reactive compensation for the 
line [3]. 

The three main control parameters of UPFC are voltage 
magnitude, voltage angle and shunt reactive current. Control 
of real and reactive power can be achieved by injecting series 
voliage with an appropriate magnitude and angle. The 
transient stability model for the shunt and series branch of a 
UPFC in the dq reference frame are given in [7]. The 
conventional shunt and series branch control of the UPFC is 
briefly described below. 

A .  Shvnt Brunch Control 
Control of the shunt active and reactive current is achieved 

by varying the shunt inverter voltage active and reactive 

components Epd and Epq accordingly. The reactive power flow 
and shunt input voltage can he regulated by active voltage 
component Epd and the DC-link capacitor voltage Vdc support 
can be achieved by regulating Epq. Figure 2 shows a block 
diagram of conventional shunt PI controllers. 

Shunt lnverler 1 PWM .I 
Fig. 2 Shunt branch control ofthc UPFC 

The outputs of the control system are the modulation index 
k ,  and phase shift a,. The parameters of shunt PI controllers 
are determined for a given operating condition where the 
system is linearized, thus the performance of linear controller 
degrades for changes in the operating conditions. The 
relevant control equations are given in [7]. 
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B. Series Branch Control 
Figure 3 shows the block diagram of the conventional PI 

controllers for series branch of the UPFC. The control of 
series converter can be achieved using PQ decoupled control. 
The outputs of the control system are the modulation index k2 

and phase shift a2. Neglecting inverter losses, the injected 
active and reactive powers as well as output active and 
reactive powers are given by the equations 

V2(E9-Eqcos6+EdsinG) 

x 4 =  

where 

Equation (3) shows that e",, is mainly affected by EV whereas 
(4) shows that Q,,,,, is affected by both € q  andE,. In 

incremental form, the line active and reactive power can be 
expressed in terms of AEq and AE,, as given by (6a) and 

(6b). 
V AP =-Ab 

out x 9 

(6b) 
I 

out x bQ = -@Ed Vcos &Sq Vsid+S&,,, +aq EgJ 

But we can assume that cos s is close to unity and sin s is 
close to 0 since the phase angle between two buses on a 
transmission line is less than 30", which leads to (7). 

(7) 

The conventional PI control for the series branch of UPFC 
(with the switches SI and S2 at position I )  is as shown in 
Fig. 3. The PI controllers are replaced by the neurocontroller 
with switches SI and S 2  at position 3. The design procedure 

of the neurocontroller is explained in section 111. 

Fig. 3 Scrics invertcr control showing convcntional PI cont~ollcrs. training 
signals for lhc ncuroidcnliticr (SENI) and ncurocontrollcr (SENC). 

111. DESIGN OF NEUROCONTROLLER 
The neurocontroller architecture consists of two separate 

neural networks, one for the identifier and other for the 
neurocontroller, The neuroidentifier is used to provide a 
dynamic model at all times, and the neurocontroller is used to 
replace the conventional PI controllers (Fig. 3). The training 
of the neuroidentifier and neurocontroller takes place in two 
phases, namely a so called pre-control phase and a post- 
control phase. 

A .  Pre-Control Phase 
During this training period the neurocontroller and 

neuroidentifier accept measurements from UPFC but do not 
control the series branch ofUPFC. 

I )  Neuroidentifier Pre-control Training: The 
identificatio~modeling of the plant in Fig. 1 is carried out 
using a neuroidentifier (NI), to identify the series inverter 
dynamics (Fig. 4). This Series neuroidentifier (SENI) is 
trained online to dynamically identify the system parameters 
which are the inputs to PI controller and the neurocontroller 
at the next time step and which eventually determines the 
UPFC controller outputs. The neuroidentifier is required for 
the following reasons: (a) To obtain errors for training the 
neurocontroller by comparing the output of the desired 
response predictor [4] to that of the neuroidentifier at time 
t+l (Fig. 5 ) .  (b) To obtain the derivative of these error signals 
with respect to the neurocontroller's outputs by 
backpropating the errors in (a) through the neuroidentifier 
instead of using calculus of variations (Fig. 5 ) .  In the pre- 
training phase, pseudorandom binary signals (PRESS) are 
applied to excite all possible dynamics of the plant [4, 51 and 
the switches SI  and S2 in Fig. 3 are set to position 2. The 
SENI  is a three layer feed forward neural network with 
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thirteen inputs, a single hidden layer with fourteen neurons. 
and two outputs which identifies the dynamics of the plant. 

i 
Fig. 4 Prc-control training of SENl for plant identification 

There are four different types of inputs, the first two inputs 
to the neuroidentifier are the differences between the 
following signals: the measured real power and its reference 
value - P,,,, and, the measured reactive power and its 
reference value Qerr. The other two inputs are the training 
signals generated using pseudorandom random signals 
(PRBS) - dEdgrbs and dEqxrb2. These PRBS signals are 
only fed to the series inverter and SENI during the pre- 
training phase with the aid of switches SI and S2 (Fig. 3). All 
the four types of inputs are time delayed (TDL) by one 
sample period and together with their eight previously 
delayed values form the twelve inputs to the SENI. The 
outputs'of the SENI are estimated difference one time step 
aheadin the real power - P err and the reactive power - Q erT- 

The-signals at B to the plant and are the PRBS training 
signals (switches S1 & S2 at position 2).  These PRBS signals 
along with the delayed values of the plant outputs are fed to 
the SENI at C. The outputs of SENl at E are compared to 
outputs of the plant at D and error signals at F are used to 
update .the weights of the SENI using the backpropagation 
algorithm. 

2) Neurocontroller Pre-control Training: During the pre- 
training of the SENC, the weights of the SENI are fixed. The 
SFNC.is a three layer feed forward neural network with six 
inputs,.a single hidden layer with fourteen neurons and two 
outputs. Figure 5 depicts the SENC development architecture 
and, the respective inputs and outputs for the pretraining 
phase. The PRBS signals are again added to the input of the 
series branch and SENI as in Fig. 5 .  The outputs of the plant 
are fed  into the desired response predictor, which predicts 
P,,(t+l) and Q&+l) at K. The output of SENl at E is 
subtracted from the output of the desired response predictor 
[4 ]  at K to produce the errnr signal at H which is back 
propagated through the SENI to obtain A ; ( t ) .  The difference 

between A i ( t )  and the outputs of neurocontroller generates 
the error signal at L which is used to update the weights of 
the SENC using hackpropagation. Pre-training is terminated 
when the weights of the SENI and SENC have converged 
over a period of time. The next phase of training (post- 
control) for the SENI and SENC are carried out while the 
SENC is allowed to control the plant. 

I 

Fig. 5 Prc-control training of SENC. 

B. Post- Control Phase: 
During this phase, online training of the SENC and SENI 

continues while SENC is controlling the series branch of the 
UPFC. The post-control phase training steps for SENI (Fig. 
6) and SENC (Fig. 7) are described below. The PRBS signals 
used in the pre-training phase are now set to zero and outputs 
for the SENC are substituted. 
l j  Neuroidentifer Post-control Training (Fig. 6): 

The plant output signals at D &e sampled and time 
delayed by one, two and three sample periods. 
The sampled signals from step I are input at A to the 
SENC which then calculates the signals A E d  and AE,, 
which are used to train the SENI as well as to control the 
plant. 
These control signals are time delayed by one, two and 
three sample periods, and, together with the signals from 
step I are input to the SEN1 at C. 
The outputs at D (Per,(t) and Q&) and the outputs of 

SENI at E Fe,,(t) and Q,,( t )  are subtracted to produce 
error signals at F wbich are back propagated to update 
weights of SENI. 

2) Neurocontroller Post-control Training (Fig. 7): 
5 .  .In the post-control training of SENC, the output of the 

SENI at E Perr(t+l)and Q C l r ( l + l ) ,  and the desired 
response at K (P,,,(t+l) and Q.,,(t+I)) are subtracted to 
produce a second error signal at H. The error signal at H 
is back propagated through the SENI and the derivatives 
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are obtained at J with changing the weights of the 
neuroidentifier fixed. 

Neurocontroller 

r: 
Fig. 6 Port-control training of SENI. 

models are the IEEE standard models of PSCAD/EMTDC[9]. 
The parameters of PI controllers are obtained using time 
response analysis [IO]. A sampling frequency of 10 kHz is 
used to sample the outputs of the plant. The SENI and SENC 
are trained with a learning rate of 0.06. 

The plots below show the terminal voltage and speed of the 
synchronous generator for three different controllers, namely: 
a) SENC: With the UPFC controlled by a neuroconfroller 

on the series branch and conventional PI controllers on 
shunt branch. 

h) PI: With the UPFC controlled by conventional PI 
controllers on both series and shunt branches. 

c) No UPFC: Without a UPFC in the power system. 
A 300 ms duration three phase short circuit fault is 

applied at the infinite bus. Figure 8 shows the terminal 
voltage response for the three different controllers. Similarly, 
Fig. 9 shows the corresponding speed signals for the three 
controllers. 

Back prop! 

+Fm Predictor i2 
.!J 
3 

B 

40, 1 

i .  
t 
f 
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SENC 

........ NO UPFC . .  . .  : .: 
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j" Fig. 8 Terminal voltagc rcsponsc plors for thc three different controllers for 
i the synchronous gcncrator opcrating at P = 0.4 p.u and Q = 0.1 p . ~ .  . .  NeuroidentiRer 

1.141 , I 

6. The back propagated signal at J is subtracted from the 
output signal of the SENC to produce an error signal at 
L. 
This error signal at L is then used to update the weights 
in the SENC, using the back propagation algorithm. This 
causes the SENC to change its output in a way which 
drives all the error signals to zero. 
New control signals are calculated AEd and AE, using the 
updated weights in step 8 and are then applied at time 
( [ + I )  to the plant at B. 
These steps ( I  to IO)  are repeated for subsequent time 
periods [4]. 

7. 

8. 

9. 

IV. SIMULATION RESULTS 

The system model comprises of a synchronous generator 
(590 MVA, 38 KV L-L) [8] operating at real power, P=0.4 
p . u  and reactive power, Q =0.l p.u, with a transmission line 
impedance of Z = (0.02+ j0.4) p .u .  The governor and turbine 

I 0.98 I 
9 9.5  1 0  10 .5  1 1  11.5 1 2  

Fig. 9 Spccd rcsponsc plots for thc thrce diffcrcnt  controller^ for thc 
synchronous gcnerator opcrating at P = 0.4 p.u and Q = 0.1 p.u. 

No remarkable difference in the SENC is seen from Figs. 8 
and 9 since the PI controllers are tine tuned to give their best 
performance at this operating point (P=0.4 p.u and Q =0.1 
p.u) .  But it is clearly seen that the UPFC plays an important 
role in damping the sustained oscillation caused by a large 

Time (seconds) 
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disturbance (300 ms short circuit). The 300 ms duration is 
typically unusual but it is chosen in this study to clearly 
illustrate role of a UPFC. Figures 10 and I 1  show the plots of 
the terminal voltage and speed waveforms for the 
synchronous generator operating at P-0.6 p.11 and Q=O. 15 
p a  It can be seen from the figures that as the operating point 
changed, a slight difference is noticeable in the SENC and PI 
perfomiances. This is because of the continual online training 
carried out on the SBNC and not re-tuning the PI controllers' 
parameters. With the current setup, the shunt branch of UPFC 
is controlled by conventional PI controllers, thus the full 
potential of SENC is not exploited and therefore, a dramatic 
improvement is not noticeable. 

The neurocontroller has also been tested at other operating 
points and observed to provide better damping compared to 
the PI controllers. 

*3 
OJ 0 

v) 
n i . 0 5  

! .,: ..'.., i 
~ j -' 

,.... > 

V. CONCLUSION 

In this paper, the design of a continually online trained 
neurocontroller to provide adaptive nonlinear control for the 
series branch of UPFC over a wide range of operating 
conditions is proposed. It has shown by this work that it is 
possible for a neural network to identify the complex 
dynamics of a unified power flow controller and in addition, 
the power system in which i t  is connected and another neural 
network to control the UPFC in odaprive nonlinear fashion. 
A superior performance of the neurocontroller is expected as 
a result of the online training of neuroidentifier and the 
neurocontroller which never stops. The conventional PI 
controllers controlling the UPFC shunt branch restricts the 
full potential of the online trained series neurocontroller 
designed in this paper. The next step is to design a 
continually online neurocontroller for the shunt branch of the 
UPFC. This is currently in progress. Future work involves 
extending the control strategy to a real power system with 
multimachines. 
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