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A Continually Online Trained Neurocontroller for
‘the Series Branch Control of the UPFC

R. P. Kalyani, Student Member, IEEE, G. K. Venayagamoorthy, Serior Member, IEEE,

Abstract -~ The crucial factor affecting the modern power
systems today is load flow control. The Unified Power Flow
Controller (UPFC) provides an effective means for controlling
the power flow and improving the transient stability in a power
network. The UPFC has fast complex dynamics and its
copventional control is based on a linearized model of the power
system. This paper presents the design of a neurocontroller that
controls the power flow and regulates voltage along a
transmission line. The continually online neurocontroller is used
for controlling the series inverter of UPFC. Simulation results
carried out in the PSCAD/EMTDC environment are presented
to show the successful control of UPFC and the power system.

Keywords:  Indirect adaptive  control, Neurgidentifier,
Neurocontroller, Power system, Unified Power Flow Controller
(UPFC)

L. INTRODUCTION

With the ever increasing complexities in power systems
across the globe and the growing need to provide stable,
secure, controlled, economic, and high-quality electric power
—especially in today’s deregulated environment - it is
envisaged that Flexible AC Transmission System {FACTS)
controllers are going to play a critical role in power systems
[1]. FACTS enhance the stability of the power system both
with its fast control characteristics and with its continuous
compensating capability. The two main objectives of FACTS
technology are to control power flow and increase the
transmission capacity over an existing transmission corridor
[2].

Gyugyi proposed the Unified Power Flow Controller
(UPFC) that is a new generation of FACTS devices in 1991
[3]. It is a device, which can control simultaneously all three
parameters of power transmission line (impedance, voltage
magnitude and its phase angle}. This device combines
together the features of two other FACTS devices: the Static
Synchronous Compensator (STATCOM) and the Static
Synchrenous Series Compensator {SSSC). Practically, these
two devices are two Voltage Source Inverters (VSIs), one
connected in shunt with the transmission line through a shunt
transformer and other in series with the transmission line
through a series transformer. These VSIs are connected back
to back by a common DC link, which is typical a storage
capacitor.

Neural networks are suitable for multi variable applications
as they can easily identify the interactions between the
system’s inputs and outputs. Their ability to learn and store
information about system nonlinearities allows neural

0-7803-7898-9/03/$17.00 ©2003 IEEE

networks to be used for modeling and designing intelligent
controllers for power systems (4, 5], Thus, offering
alternatives for conventional linear and nonlinear control. A
radial basis function neural network coniroller for UPFC
based on direct adaptive control has been reported to improve
the transient stability performance of a power system [6]. It is
known that indirect adaptive coutrol is able to control a
nonlinear system with fast changing dynamics, like the power
system better, since the dynamics are continually identified
by a model. :

This paper presents the design of a newrocontroller 1o
control the series branch of UPFC in a single machine infinite
bus {SMIB) power system setup. The design of the
continually online trained (COT) neurocontroller is based on
the indirect adaptive control scheme to replace the existing
conventional PI controllers in the series branch of 4 UPFC. It
comprises of two neural networks, one called the
neuroidentifier, to identify the complex nonlinear dynamics
of the UPFC and the power system, and the other, for the
control. Advantapes of neurocontrollers over the
conventional controllers are that they are able to adapt to
changes in the system operating conditions automatically
unlike the conventional controllers whose performances
degrade for such changes [4, 5).

1. SINGLE MACHINE INFINITE BUS SYSTEM WITH UPFC

For identifying and controlling the dynamics of a UPFC
and the power system, a single machine infinite-bus (SMIB)
power system is setup as shown in Fig. 1 in PSCAD/EMTDC
environment. This power system comprises of a synchronous
generator with exciter-automatic voltage regulator (AVR) and
turbine-governor combinations connected to an infinite bus
through two sections of transmission lines and the UPFC is
placed between the two sections of the transmission lines as
shown in Fig. 1. The SMIB with the UPFC is called the plgns
in the rest of the paper. The UPFC functions as an ideal ac-to-
ac power inverter in which the real power can freely flow in
either direction between the ac terminals of the two inverters,
and each inverter can independently generate (or absorb)
Teactive power at its own ac output terminal.

The series inverter provides the main function of the UPFC
by injecting a voltage with magnitude V, which is
controllable and a phase angle « in series with the line via an
insertion transformer. This injected voltage acts essentially as
a synchronous ac voltage source. The transmission line
current flows through this voltage source resulting in a
reactive and active power exchange between itself
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Fig.1 Single maching infinite bus system with the UPFC (the “plant’),

and the ac system. The inverler generates the reactive power
exchanged at the ac terminal internally. The active power
exchanged at the ac terminal is converted into dc power,
which appears at the DC link as a positive or negative real
power.

The basic function of shunt inverter is to generate or absorb

the real power demanded by series inverter at the common lwc lAEP 0
DC link. The power demand by the series inverter at the DC AE \I Eod Ex
link is converted back to ac by the shunt inverter and fed to ~ Vderef Vdeerr | PI |74 ki = v
the transmission line bus via a shunt-connected transformer. e
In addition to this the shunt inverter can also generate or a :cc:)-s”—‘u_“Ear !
absorb controllable reactive power if desired and thereby ' T 2
provides independent shunt reactive compensation for the v PI |— Epg Fea
line [3]. Vire! e AE

pd0

The three main control parameters of UPFC are voltage
magnitude, voltage angle and shunt reactive current. Control
of real and reactive power can be achieved by injecting series
voltage with an appropriaie magnitude and angle. The
transient stability mode! for the shunt and series branch of a
UPFC in the dg reference frame are given in [7]. The
conventional shunt and series branch control of the UPFC is
briefly described below.

A. Shunt Branch Control

Control of the shunt active and reactive current is achieved
by varying the shunt inverter voitage aclive and reactive

components £,, and E,, accordingly. The reactive power flow
and shunt input voltage can be regulated by active vollage
componeni £,; and the DC-link capacitor voltage ¥, support
can be achieved by regulating E,,. Figure 2 shows a block
diagram of conventional shunt PI controllers.

o T

Shunt Inverter
PWM

‘il
] o

Fig. 2 Shunt branch contro! of the UPFC,

The outputs of the control system are the modulation index

k; and phase shift ¢;. The parameters of shunt PI controllers
are determined for a given operating condition where the
system is linearized, thus the performance of linear controller
degrades for changes in the operating conditions. The
relevant control equations are given in [7].
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B. Series Branch Control

Figure 3 shows the block diagram of the conventional Pl
controllers for series branch of the UPFC. The control of
series converter can be achieved using PQ decoupled control.
The outputs of the control system are the modulation index &
and phase shift a;. Neglecting inverter losses, the injected
active and reactive powers as well as oufput active and
reactive powers are given by the equations.

By —Egcosd+Ey s5ind)

5 (D
VyEgeosd+inky sind—VoFy +Ed2 +Eq,2
= < 2)
,
Va“sind+VhE, .
out = —X 3
_23E cos 6+ WoE,sin S+ Egt + E° @

out — X

V,=ES + E}
E, =V,sin(6,)
E, =V, cos(8,)

inf

where

Equation (3) shows that £,, is mainly affected by £, whereas
(4) shows that @, is affected by both E  andE,. In

ot

incremental form, the line active and reactive power can be
expressed in terms of AE, and AE, as given by (6a) and

(6b).

4
8P =, (6a)

! .
80, = ~(AE,VeosBHAE,VSind +AF, E, +AE,E,) (6b)

But we can assume that coss 15 close to unity and sings is
close to 0 since the phase angle between two buses on a
transmission line is less than 30°, which leads to (7).

AQ

1
Our=}(VAEd+EdoAEd+Eq0AEq) (N
The conventional P1 control for the series branch of UPFC
(with the switches S1 and S2 at position 1) is as shown in
Fig. 3. The PI contfrollers are replaced by the neurocontroller
with switches S1 and $2 at position 3. The design procedure

of the neurocontroller is explained in section I1I.
5 -
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Fig. 3 Scrics inverter control showing conventional PI controllers, training
signals for the ncuroidentifier (SENI) and ncurocontroller (SENC).

1. DESIGN OF NEUROCONTROLLER

The neurocontroller architecture consists of two separate
neural networks, one for the identifier and other for the
neurocontroller. The neuroidentifier is used to provide a
dynamic model at all times, and the neurocontroller is used to
replace the conventional PI controllers (Fig. 3). The training
of the neuroidentifier and neurocontroller takes place in two
phases, namely a so called pre-control phase and 2 post-
control phase,

A. Pre-Contral Phase

During this training period the neurocontroller and
neuroidentifier accept measurements from UPFC but do not
control the series branch of UPFC.

1} Neuraidentifier  Pre-control Training. The
identification/modeling of the plant in Fig. 1 is carried out
using a neuroidentifier (NI), to identify the series inverter
dynamics (Fig. 4). This Series neuroidentifier (SENI) is
trained online to dynamically identify the system parameters
which are the inputs to PI controller and the neurocontroller
at the next time step and which eventually determines the
UPFC controller outputs. The neuroidentifier is required for
the following reasons: (a) To obtain errors for training the
neurocontroller by comparing the output of the desired
response predictor [4] to that of the neuroidentifier at time
t+1 (Fig. 5). (b) To obtain the derivative of these error signals
with respect to the neurocontroller’'s outputs by
backpropating the errors in (a) through the neuroidentifier
instead of using calculus of varations (Fig. 5). In the pre-
training phase, pseudorandom binary signals (PRBSs) are
applied to excite all possible dynamics of the plant [4, 51 and
the switches S| and S2 in Fig. 3 are set to position 2. The
SENI is a three layer feed forward neural network with
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thirteen inputs, a single hidden layer with fourteen neurens.
and two cutputs which identifies the dynamics of the plant.

AEd7 prbsaAEq_prbs :
—>| PLANT -
B D
Forrll),
Cerplt}
TDL
L
Backprop F
o
' Bpla),
¢ Beries Derrlt)
+] Neyroidentifier
B S
g

Fig. 4 Pre-conteol training of SEN] for plant identification.

There are four different types of inputs, the first two inputs
to the neuroidentifier are the differences between the
following signals: the measured real power and its reference
value - P,,, and, the measured reactive power and its
reference value (g The other two inputs are the training
signals generated. using pseudorandom random signals
{(PRBS) - AEg prps and AEg prps. These PRBS signals are
only fed to the series inverter and SENI during the pre-
training phase with the aid of switches 81 and 82 (Fig. 3). All
the four types of inputs are time delayed (TDL) by one
sample period and together with their eight previously
delayed values form the twelve inputs to the SENI, The
outputs ‘of the SENI are estimated difference one time step

ahead in the real pawer - &,y and the reactive power - Q ¢

The -gignals at B to the plant and are the PRBS training
signals (switches S1 & S2 at position 2). These PRBS signals
along with the delayed values of the plant cutputs are fed to
the SENI at C. The outputs of SENI at E are compared to
outputs of the plant at D and error signals at F are used to
update -the weights of the SENI using the backpropagation
algorithm,

2) Neurocontroller Pre-control Training: During the pre-
training of the SENC, the weights of the SENI are fixed. The
SENC.is a three layer feed forward neural network with six
inputs,.a single hidden layer with fourteen neurons and two
outputs. Figure 5 depicts the SENC development architecture
and, the respective inputs and outputs for the pretraining
phase. The PRBS signals are again added to the input of the
series branch and SENI as in Fig. 5. The outputs of the plant
are fed into the desired response predictor, which predicts
P.ft+1) and Q,.(t+1) at K. The output of SEN! at E is
subtracted from the output of the desired response predictor
{4] at K to produce the error signal at H which is back
propagated through the SENT (o obtain A () . The difference

between Au(?) and the outputs of neurocontroller generates

the error signal at L. which is used to update the weights of
the SENC using backpropagation. Pre-training is terminated
when the weights of the SENI and SENC have converged
over a period of time. The next phase of traiping (post-
control) for the SENI and SENC are carried out while the
SENC is allowed to control the piant.

AE, e OE Desired
b prbe  prb. SIS
—B——-——> PLANT D. Response
“ Predictor
P {1+1),
A Sen'c(s" ")f Au({) an(H' 1)
Neurocotitroller
; AE,
AE, .
i Perr(t+1)=‘§
Q,f+D;
| c |
Series
TDL Neuroidentifier H
LN ; ]
i o) o

Fig. 5 Pre-control training of SENC.

B. Post- Control Phase:

During this phase, online training of the SENC and SENI
continues while SENC is controlling the series branch of the
UPFC. The post-control phase training steps for SENI (Fig.
6) and SENC (Fig. 7) are described below. The PRBS signals
used in the pre-training phase are now set to zero and outputs
for the SENC are substituted.

1) Neuroidentifier Post-contvol Training (Fig. 6).

1. The plant output signals at D are sampled and time
delayed by one, twe and three sample periods.

2. The sampled signals from step | are input at A to the
SENC which then calculates the signals AE; and AE,
which are used to train the SENI as well as to control the
plant.

3. These control signals are time delayed by one, two and
three sample periods, and, together with the signals from
step 1 are input to the SENJI at C.

4. The outputs at D {P..{¢) and O,.(1)) and the outputs of

SENIat E f’w(r) and Qm(t) are subtracted to produce

error signals at F which are back propagated to update
weights of SENL

2) Neurocontraller Post-control Training (Fig. 7):
5. .In the post-control training of SENC, the output of the

SENT at E P (s+Dand Q,,(t+}), and the desired

response at K (P..{f+1) and Q,..ft+1)) are subtracted to
produce a second error signal at H. The error signat at H
is back propagated through the SENI and the derivatives
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are obtained at J with changing the weights of the

neuroidentifier fixed.

Bult)

Series
Neurccontroller

.............

c
{ Serics
Newroidentifier

s

Fig. 6 Post-control training of SENI.

Desired
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B
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1 &,
o,
Back prop:‘:- 4 P(,,(H-l),
: e Q,,(Hl)i:
! Series

Neuroidentifier

[ L J i

------- €oramsemmraacens SO S
Aih)

Fig. 7 Post training of SENC.

6. The back propagated signal at J is subtracted from the
output signal of the SENC to produce an error signal at
L. '

7. This error signhal at L is then used to update the weights
in the SENC, using the back propagation algonthm. This
causes the SENC to change its output in a way which
drives all the error signals to zero.

8. New control signals are calculated AE, and AE, using the
updated weights in step 8 and are then applied at time
{t+1) to the plant at B.

9. These steps (1 to 10) are repeated for subsequent time
periods [4]. -

IV. SIMULATION RESULTS

The system model comprises of a synchronous generator
(590 MVA, 38 KV L-L) [8] operating at real power, P=0.4
p.u and reactive power, O =0.! p.u, with a transmission line
impedance of Z = (0.02+ j0.4) p.u. The governor and turbine

models are the IEEE standard models of PSCAD/EMTDC[9].
The parameters of PI controllers are obtained using time
response analysis [10]. A sampling frequency of 10 kHz is
used to sample the outputs of the plant. The SENI and SENC
are trained with a learning rate of 0.06,

The plots below show the terminal voltage and speed of the
synchronous generator for three different controllers, namely:
a) SENC: With the UPFC controlled by a neurocontroller

on the series branch and conventional PI controllers on

shunt branch.

b) PI: With the UPFC controlled by conventional PI
conirollers on both series and shunt branches.

c) No UPFC: Without a UPFC in the power system.

A 300 ms duration three phase short circuit fault is
applied at the infinite bus. Figure 8 shows the terminal
voltage response for the three different controllers. Similarly,
Fig. 9 shows the corresponding speed signals for the three

controllers.
50

SENC
1
NO UPFC

1
]

10F .
Py

9.5 10 10.5 11 115 t12

Time (Seconds)

H Fig. 8 Terminal voltage response plots for the three different controllers for

the synchronous generator operating at P=0.4 puand Q=0.1 p.u.

1.14 — —— —
——  SENC
1.12] | vevnvens P1
........ NO UPFC
1.1
31.08
N
1.06
3
£1.04 .
108 - P i
1 \\‘/’ \\ P SR
gb o ., 1 1 1 u—
2] a5 10 10.5 1 11.5 12

Time (seconds)
Fig. 9 Speced response plots for the three different controllers for the
synchronous generator operating at P=0.4 p.uand Q=0.1 pu.

No remarkable difference in the SENC is seen from Figs. 8
and 9 since the PI controllers are fine tuned to give their best
performance at this operating point (P=0.4 p.u and Q =0./
pu). But it is clearly seen that the UPFC plays an important
role in damping the sustained oscillation caused by a large
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disturbance (300 ms short circuit). The 300 ms duration is
typically unusual but it is chosen in this study to clearly
illustrate role of a UPFC. Figures 10 and 11 show the plots of
the terminal voltage and speed waveforms for the
synchronous generator operating at P=0.6 p.u and 0=0.75
p.u. It can be seen from the figures that as the operating point
changed, a slight difference is noticeable in the SENC and P1
performances. This is because of the continual online training
carried out on the SENC and not re-tuning the PI controliers’
parameters. With the current semp, the shunt branch of UPFC
is controlled by conventional P controllers, thus the full
potential of SENC is not exploited and therefore, a dramatic
improvertent is not noticeable.

The neurocontroiler has also been tested at other operating
points and observed to provide beiter damping compared to
the PI controllers.

45

Terminal Voltage (KV)

SENC
....... 1”1
NO UPFC

Vieewu : . . Py - y

51.5 52 52.5 83 535 54
Time (Seconds)

Fig, 10 Terminal voltage response plots for the three different controllers

for the synchronous gencrator operating at P=0.6 puand¢d Q =0.15 p.u,

1.2: — x -

Speed (p.u)

50 50.5 51 51.5 52 52.5 53 53.5 54
Time (seconds)
Fig. 11 Spced wesponse plots for the three different controllers for the
synchronous generator operating at P= 0.6 puand Q=015 pu.

V. CONCLUSION

In this paper, the design of a continually online trained
neurocontroller to provide adaptive nonlinear control for the
series branch of UPFC over a wide range of operating
conditions is proposed. It has shown by this work that it is
possible for a neural network to identify the complex
dynamics of a unified power flow controller and in addition,
the power system in which it is connected and another neyral
network to control the UPFC in adaprive noniinear fashion,
A superior performance of the neurocontreller is expected as
a result of the online training of neuroidentifier and the
neurocontroller which rnever stops. The conventional Pl
controllers controlling the UPFC shunt branch restricts the
full potential of the online trained series neurocontroller
designed in this paper. The next step is to design a
continually online neurocontroller for the shunt branch of the
UPFC. This is curtently in progress. Future work involves
extending the control strategy to a real power system w1th
multimachines.
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