

Missouri University of Science and Technology [Scholars' Mine](https://scholarsmine.mst.edu/)

[Electrical and Computer Engineering Faculty](https://scholarsmine.mst.edu/ele_comeng_facwork)

Electrical and Computer Engineering

01 May 2000

A Common-Mode Current Measurement Technique for EMI Performance Evaluation of PCB Structures

Xiaoning Ye

David M. Hockanson

James L. Drewniak Missouri University of Science and Technology, drewniak@mst.edu

Follow this and additional works at: [https://scholarsmine.mst.edu/ele_comeng_facwork](https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1340&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the Electrical and Computer Engineering Commons

Recommended Citation

X. Ye et al., "A Common-Mode Current Measurement Technique for EMI Performance Evaluation of PCB Structures," Proceedings of the 2nd Asia-Pacific Conference on Environmental Electromagnetics (2000, Shanghai, China), pp. 389-394, Institute of Electrical and Electronics Engineers (IEEE), May 2000. The definitive version is available at <https://doi.org/10.1109/CEEM.2000.853972>

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A Common-mode Current Measurement Technique for EM1 Performance Evaluation of PCB Structures

Xiaoning Ye, David. M. Hockanson*, and James L. Drewniak Electromagnetic Compatibility Laboratory Department of Electrical and Computer Engineering University of Missouri - Rolla, Rolla, MO 65409, USA * Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303

Abstract

An experimental technique that measures the common-mode current on a cable attached to a DUT for assessing EM1 performance is introduced herein. The technique was applied to evaluate the EM1 performance of a module-on-backplane configuration with different connectors and different connector pin-outs.

I. Introduction

A typical PCB structure produces two types of radiated emissions - differentialmode and common-mode emissions [I]. It has been shown that common-mode currents are typically the predominant source of radiation from a PCB [2]. Therefore, measuring the common-mode current (if applicable) can be helpful in evaluating the EM1 performance of a PCB design.

An experimental technique that measures the common-mode current on a semi-rigid coaxial cable attached to the DUT for assessing the EM1 performance is introduced in this paper. The experimental method is then applied to a module-on-backplane configuration to evaluate the EM1 performance of different connectors and different connector pin-outs.

For the multi-PCB configuration, the signal return of the inter-board connection has appreciable impedance, and a potential difference between connecting PCB planes may develop. The planes are typically of

appreciable electrical extent, and can function as EM1 antennas at several hundred megahertz or higher, resulting in an EM1 problem. This has been demonstrated previously [3], **[4],** The potential difference induced at the inter-board connection acts as **an** "effective" noise source. The commonmode current on the cable attached to the PCBs is indicative of the EMI, as shown in [Figure 1.](#page-2-0)

11. Experimental method

The setup of the experimental method is shown in [Figure](#page-2-0) *2.* It is basically a two-port **IS211** measurement using an HP8753D network analyzer. A 60 *cm* x 60 *cm* aluminum plate is used to separate the DUT and the measuring instruments to enhance the repeatability and dynamic range of the measurement, and eliminate artifacts associated with the dressing of cables to the measuring instrument. Two SMA bulkhead through connectors are mounted on the aluminum plate to provide the signal paths through the plate. A semi-rigid coaxial cable is attached to the DUT. The cable also provides the feeding path from Port 1 of the network analyzer to the DUT. A Fischer 2000 clamp-on current probe is placed around the semi-rigid coaxial cable and connected to Port *2.* The induced common-mode current on the outer-shield of the attached semi-rigid cable is then picked up by the current probe, and fed into Port *2* of the network analyzer. The measured $|S_{21}|$ is related to the common-

Figure 1. Schematic showing the mechanism of common-mode current being induced on the attached coaxial cable.

Figure 2. Schematic representation of the experimental setup for the common-mode current measurement.

mode current induced on the attached coaxial cable, which is indicative of the EMI. **A** specific calibration procedure is conducted to determine the relationship between $|S_{21}|$ and the magnitude of the induced common-mode current on the attached cable as:

$$
\left|S_{21}^{\text{measured}}\right| = \left|\frac{I_{\text{CM}} \cdot 50\Omega}{V_s}\right|
$$

The transfer impedance of the current probe is removed in the calibration procedure. Since the common-mode current can be readily calculated with numerical modeling, this equation makes possible an absolute comparison between the measured data and the modeled results. Other advantages of this experimental setup includes its low-cost; straightforward and easy implementation; repeatability; and it can be used for evaluation of prototype and production PCBs.

A simple test configuration as shown in Figure 3 was built to investigate the dynamic and frequency range of this measurement technique. Two conductors with a radius *of* **24** mils were used as the feeding ancl receiving monopole antennas. Both. monopoles were 15 cm long, and separated by 5 cm. The induced current on the receiving monopole was measured. The measured result is shown in Figure 4, together with the FDTD modeled result. Discrepancies become prominent as frequency increases beyond 1.5 **GHz.** The discrepancies result possibly from **the**

limitation of the calibration procedure, and parasitics of the current-probe (which was not included in the modeling).

Figure 3. Schematic of the coupled monopole antennas measurement

Figure 4. Modeled and measured results of the coupled monopoles.

111. EM1 performance study of moduleon-backplane connectors.

The common-mode measurement technique was then applied on a module-onbackplane configuration to investigate the effect on EM1 of the inter-board connections. Module-on-backplane configurations are commonly used in high-speed digital designs to conserve real estate. A typical module-onbackplane structure can have an appreciable electrical size, and, when provided with suitable excitation, can function as an EM1 antenna in the frequency range of several hundred MHz into the GHz range. An appreciable signal return impedance at the connector can then facilitate excitation of the structure as an EM1 antenna [4], [5], [6]. Therefore, the inter-board connector may be of significant importance for the EM1 performance of the multi-board configuration.

A specific test fixture was built for this study, with the schematic shown in Figure 5. The test fixture includes a 30 cm \times 20 cm mother-board, a 12×10 cm daughter-board, an inter-board connector, and a 20 cm long 0.085" semi-rigid cable attached to the ground plane of the mother-board. The signal is fed through the attached cable and penetrates through the ground plane of the mother-board, and is then directed through the connector and terminated at the daughterboard. No traces are present on either board. The outer shield of the semi-rigid cable is soldered to the ground plane of the motherboard along the entire contacting length.

Two types of commercially available connectors were studied. Only one signal pin of either connector is used to provide the signal path, while the signal-return geometry differs. [Figure 6](#page-4-0) illustrates some possible connector signal and signal-return patterns in PCB designs. For Cases Al-A5, Bl-B3, and C1-C3, the connector under test is an openpin-field connector. The signal pin has different adjacent signal-return geometries, as detailed in the figure. For Case Dl-D2, the connector is a stripline-type product connector, where each column of connector signal pins (except one column at the edge) is

Figure *5.* Schematic of the test fixture built for the comrnon-mode current measurement on a module-on-backplane configuration.

Figure **6.** Possible connector signal and signal-return designations.

J,

sandwiched by two ground blades. The ground blade has 3 short contacts, which *are* used for the electrical connection between the blade and the PCB ground plane or power plane. Cases **D1** and **D2** have different signal pin designations.

A series of experiments was then conducted using the experimental technique shown in [Figure](#page-2-0) **2.** The common-mode current on the attached semi-rigid cable for each case is shown in Figure 7. The results indicate that the **EM1** performance of the connector is very dependent on the signalreturn geometry. **A** few conclusions may be drawn from the comparisons. First, the **EM1** performance can be enhanced by improving the field containment at the inter-board connection, including using multiple signalreturn pins (see the improvement from Case **A1** to Case **A5),** closer signal and signalreturn spacing (comparing Case **C1** with Case **Al),** or a stripline-type connection (comparing Case D2 with Case **A5).** *Also,* the signal pin designation is critical for **EM1** performance, i.e., routing the signal through the inner connector pin-rows is beneficial for **EM1** mitigation (comparing Case **D1** with **D2).** FDTD modeling has also been done on several of these geometries, with good agreement to the measurements.

VI. Summary and Conclusions

A common-mode current measurement technique is introduced in this study and applied to evaluate the EM1 performance of two types of module-on-backplane connectors. It is found that the EM1 performance of the connector is very dependent on the signal-return geometry. The EM1 performance can be enhanced by improving the field containment at the interboard connection, including using multiple signal-return pins, closer signal and signalreturn spacing, or a stripline-type connection. It is also found that the signal pin designation is critical for EM1 performance. Routing the signal through the inner connector pin-rows is beneficial for EM1 mitigation,.

REFERENCES

- [l] *C.* R. Paul, *Introduction to Electromagnetic Compatibility.* New York: Wiley, 1992.
- [2] *C.* R. Paul, **"A** comparison of the contributions of common-mode and differential-mode currents in radiated **emissions,"** *IEEE Trans. Electromagn.*

Corpat. Vol. 31, pp. 189-193, May, 1989.

- [3] D. M. Hockanson, J. L. Drewniak, T.H. Hubing, T.P. Van Doren, F. Sha, and M. J. Wilhelm, "Investigation of fundamental EM1 source mechanisms driving common-mode radiation frorn printed circuit boards with attached cables." *IEEE Trans. Electromagn. Comput.,* vol. 38, no. **4,** pp. 557-565, Nov., 1996.
- **[4]** D. **M.** Hockanson, **X.** Ye, J. L. Drewniak, T. H. Hubing, T. P. Van Doren, and R. E. DuBroff, "FDTD and experimental investigation of EM1 from stacked-card PCB configurations," accepted by *IEEE Trans. Electromagn. Compat.*
- [5] **X.** Ye, J. Nadolny, J. L. Drewniak, T.H. Hubing, T.P. Vandoren, D.E.DuBroff, **"EM1** associated with inter-board connection for module-on-backplane and stacked-card configurations", *IEEE Int. Symp. Electromagn. Comp.,* pp797-802, Aug., 1999.
- [6] Kevin Li, M. Ali Tassoudji, Soon Y. Poh, Michael Tsuk, Robert T. Shin, Jin **Au** Electromagnetic Radiation frorn Modules-on-backplane configuration," *IEEE Trans. Electromagn. Comp.,* vol. 37, no. 3, pp326-332, Aug., 1995. Kong, "FDTD analysis of