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Abstract

In this paper, a coupled transmission line model for narrow
slot structures in DC power planes is proposed. This ap-
proach combined with SPICE-based cavity models and a
segmeniation method provides an easy and fast wayv to
model refatively complex structures of power planes with
narrow slots often used for isolation purposes. This ap-
proach will be used to achieve isolation using gapping. The
cavity model formulations for rectangular and isosceles
right triangular segments are reviewed in Sec 1. In Sec Ii1.
the rationale of modeling the narrow slot as a three-
conductor transmission lines are described. In Sec IV, the
modeling results are shown and compared with the output
of a full wave simulation tool, HFSS, and experimenial
megsurements.

Keywords

SPICE, circuit, cavity model, coupled microstrip, transmis-
sion line, HyperLynx :

I. INTRODUCTION
DC power bus noise due to digital fogic switching and layer
transitions of digital integrated circuits (ICs) is a crucial
topic in power integrity [1]. The isolation technique using
power plane segmentation and power islands is an effective
method for alleviating power bus noise. Another approach
is to use decoupling capacitors to solve these problems [2].
Goed isolation can be obtained over a wide frequency band
due to the large series impedance provided by the gap be-
tween the power islands [3]. Some full wave simulation
approaches such as CEMPIE and hybrid FEM/MOM were
implemented to anticipate the power bus noise from gapped
power plane structures up fo gigahertz frequencies [4], [5].
A fast algorithm based on the cavity resonator model was
also applied to investigate the gapped power plane case [6].

The noise voltage induced in the power bus pair is corre-
lated to the self-impedance or transfer-impedance of the
power bus. Thus, predicting the self-impedance or transfer-
impedance of the power plane pair is a key step to antici-
pate the characteristics of the power bus. The cavity model
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method proposed in [6] used lumped elements such as R, £
and C to represent the coupling model across the isolating
gap. This paper will present a three-conductor transmission
line model to represent the coupling mode over the isolat-
ing gaps. Combined with the circuit represeniation of the
cavity resonators for rectangular and triangular segments
[7]. this approach can predict both the time and frequency
domain information for arbitrarily shaped power planes
with isolation gaps and slits.

In Section 2 of this paper, the circuit cavity models for rec-
tangular and isosceles right triangular patches are de-
scribed. The rationale of applying the transmission line
model to represent the coupling model over the slots is ex-
plained using HyperLynx in Section 3. Using this approach,
a structure with a narrow slot is modeled and compared
with a full wave simulation tool and with experimental
measurements. This approach will provide signal integrity
engineers a fast and easy method to anticipate the charac-
teristics of power plane geometries with a power isolation
structure.

li. THE CIRCUIT MODELS FOR RECTANGULAR
AND TRIANGULAR POWER PLANE SEGMENTS
The lumped circuit model shown in Figure 1 applies to both
rectangular and isosceles right triangular patches given
appropriate choices for the circuit parameters. In both cases
the transfer impedance between two ports is in the form of
(1). Circuit parameters are given in (2) and (3) for rectan-
gular and isosceles right triangular patches. In these equa-
tions, # and b are the dimensions shown in Figure 2, and o
is the distance from the power plane to the ground plane,
while @ is the angular frequency and m and » are mode

indices.
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Slot

For power planes containing a narrow slot, as shown in
Figure 3(a), the segmentation method [9] is implemented to
divide the power planes into several rectangular segments
For each segment the cavity model solution (Figure 1) can Patch 1 Patch 3
provide a local impedance matrix. The segmentation
method is then implemented to assemble all the local ma-
trices into a global matrix. Integrating the coupled trans-

mission line representation for the slot with the global ma- Patch 2
trix yields the overall matrix containing the impedance

elements of the structure (e.g. the self and transfer imped-

ances). In the following section, the rationale of applying

the transmission line model will be explained. (@

Transmission Line Model for Siot

= By

crn 7 Patch 1 Patch 3
|

Gmn

Interface Interface
Patch 2

, - . , (b)
-Figure 1. The circuit model for rectangular and isosceles tri- Figure 3. Circuit model for power planes with a narrow slot:

angular power planes.
(a) Two-layer power planes,

{b) Transmission line model for slot line, and the seg-
mentation configuration.
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lit. TRANSMISSION LINE MODEL FOR SLOT
STRUCTURE IN POWER PLANES

HyperLynx was used to examine the rationale of this ap-
proach. Figure 4 and Figure 5 show the differential and
common mode fields for a pair of two-layer planes with a
narrow gap. Figure 6 and Figure 7 shows the same fields
for a three-conductor transmission line. From these two
cases it is reasonable and feasible to treat the edge or fringe
effects of the narrow slot in power planes as a coupled
three-conductor transmission line model. Applying the
segmentation method to connect the transmission line nei-
work and the cavity model network together should yield
the overall properties of this type of structure.

Figure 7. Differential mode for 2 three-conductor transmis-
sion line structure,

V. SIMULATION AND MEASUREMENT RESULTS
An example of a power plane pair in which one plane con-
tains a slot is shown in Figure 8. Figure 9 shows how the
slotted plane is divided inte two fundamentally different
pieces. One piece is modeled as before [7] through the use
of a segmented cavity model. The other piece is modeled as
a coupled three-conductor transmission line. Continuity of
voltage and current between these two pieces is enforced
by the use of segmentation ports as shown in the figure.
The segmented cavity model, the transmission line model,
and the segmentation ports comnecting these two regions
can all be modeled in HSPICE.

The example shown in Figure 8 can also be modeled using
full wave simulation methods, such as HFSS (High Fre-
quency Structure Simulater by Ansoft). Figure 10 shows a
comparison between three of these simulation methods.
The first curve, labeled cavity with TXL, is an HSPICE
simulation of the input impedance at Port 1 for a combina-
tion of a segmented cavity model and a coupled transmis-
sion line model, as shown in Figure 9. The second curve,
labeled cavity only, results from an HSPICE simulation of
the segmented cavity model without the transmission line
model. The third curve, labeled HFSS, shows the results of
Figure 5. Differential mode for a narrow slot fine case, a full wave simulation. F]gure 11 shows a comparison of
the transfer impedances between ports I and 2.

Unit: cm

TR, TRy,

10.1
7cm

g Port1 g Port2
(25,25) (76,2.5)

X 4--|--—-5-------------— b — == mm e -
Figure 6. Commeoen mode for a three-conductor transmission ¥

line structure.

Figure 8. A narrow gap structure in the power bus.
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Figure 9. Separation of the slotted power planes into a cavity

model combined with a transmission line model.
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Figure 11. Comparison of |Z21| from the cavity-transmission
line model, the cavity only model, and HFSS.

A test board was built to validate this approach. The board
is shown in Figure 12. The width of the slot is 0.1cm. The
measured and simulated self impedances at port 1 are com-
pared in Figure 13. The magnitudes of S21 are compared in
Figure 14 and the phase information for $21 is displayed in
Figure 15.

Figure 12, The experimental test board.
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Figure 13. Simulation resuits compared with experimental
measurements for the test board in Figure 12.

[S21](dB)

Frequency (GHz)

Figure 14. |S21] results by HSPICE and the experiment meas-
urements for the test board in Figure 12.

V. CONCLUSIONS
An innovative approach to estimate the impedance of the
power planes with narrow slot lines is proposed. This ap-
proach combines the cavity model with transmission line
theory. Incorporating the transmission line model into the
cavity model generally improves the agreement with full
wave simulation. This is shown in Figure 10, for example,
where the input impedance peaks and minima, particularly
between 0.2 and 0.8 GHz, track the HFSS results better
when the transmission line model #s included (Cavity with
TXL.). The match between HFSS results and the combined
model is also somewhat better than the match between

0-7803-8443-1/04/$20.00 © IEEE.
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HFSS and the cavity only model in Figure 1. As a further
test of this method, a test board was built thereby allowing
the predictions of this approach to be compared with ex-
petimentally measured results. Again the magnitude of the
input impedance and the magnitude and phase of the S21
parameter generally seem to match well with experimental
measurements with the largest discrepancies occurring at
the frequencies where S21 has a sharp minimum—around
1.4 GHz and around 1.8 GHz. Ultimately, it is intended to
use this appreach for estimating power bus neise in the
presence of isolation structures in high-speed digital design.

) B

S N

Figure 15. Comparison of phase of $21 for the test board in
Figure 12,
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