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Using Neural Networks to Estimate Wind Turbine
Power Generation

Shuhui Li, Member, IEEE, Donald C. Wunsch, Senior Member, IEEE, Edgar A. O’Hair, and
Michael G. Giesselmann, Senior Member, IEEE

Abstract—This paper uses data collected at Central and South
West Services Fort Davis wind farm to develop a neural network
based prediction of power produced by each turbine. The power
generated by electric wind turbines changes rapidly because of
the continuous fluctuation of wind speed and direction. It is im-
portant for the power industry to have the capability to perform
this prediction for diagnostic purposes—lower-than-expected wind
power may be an early indicator of a need for maintenance. In
this paper, characteristics of wind power generation are first eval-
uated in order to establish the relative importance for the neural
network. A four input neural network is developed and its perfor-
mance is shown to be superior to the single parameter traditional
model approach.

Index Terms—Estimation, neural network, wind power
generation.

I. INTRODUCTION

A DVANCES in wind turbine technology [1] and rich wind
resources in many areas improve prospects for the wind

power industry [2], which motivates the analysis of wind power
generation and wind turbine performance. However, because
turbines are distributed over a wide area in a wind farm, the
power generated by each is usually different due to variations in
wind direction and speed. In fact, measured wind data is seldom
identical to that seen at the generator for a variety of reasons, in-
cluding the expense of obtaining and maintaining that data, and
topographical constraints.

It is important to be able to estimate wind power generation
as a diagnostic tool. However, this estimation must be made
even in the absence of ideal wind data, because topographical
conditions often make gathering ideal data impractical. (Ideally,
wind should be measured at a distance roughly two to six tur-
bine diameters, upwind of the generator, and at hub height of
the turbine [3].) This may require an impractical height for the
anemometer tower. Furthermore, features such as mountains can
cause the wind profile to deviate significantly from ideal cases.
Fig. 1 implies that both these issues will be constraints for our
example. Many, if not most, wind farms will be subject to similar
limitations to wind speed measurement. Therefore, the estima-
tion must be based on wind speed and direction measurements,
and not merely an extrapolation of past readings, in order to have
diagnostic value.
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The estimation of power generation for diagnostic purposes
is currently accomplished by comparing generated power to the
manufacturers ratings for a given wind speed. Fig. 2 shows the
manufacturers rating with measured power generation plotted
over it. The deviation from rated power production is not suffi-
cient to use for diagnostic purposes except in extreme circum-
stances, because the manufacturers rating does not anticipate
the lack of ideal conditions described above. Nevertheless, this
method is the current state of practice.

This paper uses unpublished data from Central and South
West’s Fort Davis wind farm. The data come from two mete-
orological towers, which give wind velocities and directions at
5 second and 10 minute averages. The power produced by each
turbine is also available for the same periods. Although some
turbines near the meteorological towers generate power from
wind similar to that predicted by the manufacturers rating, for
most others the estimated power based on the recorded wind is
usually different from the actual power generated. While sev-
eral published accounts exist using short-term wind farm data
[6], [16], [17], we are not aware of work using such long-term
results as presented here.

Below we discuss characteristics of wind power generation
and the construction and training of neural networks to estimate
the power.

II. A NALYSIS OF WIND POWER GENERATION FORACTUAL

MEASUREDDATA

At the Fort Davis wind farm, there are 12 towers for turbines
numbered no. 1 to no. 12 and 2 towers for meteorological mea-
suring equipments (Fig. 1). The twelve turbines at Fort Davis are
located in one long North South line on slightly offset ridge lines
and two meteorological towers are located on East and West.
Data received from the wind farm can be divided into two parts.
The first contains data from two meteorological towers, such as
wind velocities and directions. The second contains detailed in-
formation about wind turbine power generation such as average
power outputs, voltages and currents.

A. Influence of Wind Turbine Power Generation by Wind
Velocity

The turbine will follow the power generation curve of Fig. 2
if the following conditions are met:

1) The wind speed at the height of the turbine’s hub is as
indicated on the horizontal axes.

2) The wind speed is uniform horizontally across the face of
the turbine.

0885–8969/01$10.00 © 2001 IEEE
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Fig. 1. Central and South West renewable project small wind farm, Fort Davis, Texas (The two meteorological towers indicated with “Q” symbol are the sites
for measurement of wind speed and direction. Each dotted circle is the location of a wind turbine).

Fig. 2. Wind power generation vs. wind speed (turbine no. 5). (The big power
difference under the same wind speed implies the influence of turbine power by
other factors.)

3) The vertical wind speed profile is the same as that expe-
rienced during the calibration of the turbine.

4) The air density is the same as that during the calibration.
These conditions are seldom met at a wind farm for each tur-

bine, especially in the mountains when the wind speed used
is from a met tower that is some distance from the turbine. A
second factor is that typically the wind speed is an averaged
value over a long enough period that the individual valves may
vary significantly. The 10-minute average values used here typ-
ically come from 50 or more instantaneously recorded values.
There is also the possibility of miss representing the power gen-
erated when using an averaged wind speed since the power is
proportional to the cube of the wind speed.

Looking at Fig. 1, it can be seen that while the east met tower
is near turbine no. 5 the west tower is over 500 feet away and
100 feet higher. It is probable that average wind speed recorded
for the east tower will more accurately represent the actual hub

height wind speed of turbine no. 5 for winds from the east than
the west tower does for winds from the west direction. The dots
in Fig. 2 represent the 10 minute generated power of no. 5 at the
same time period of the averaged wind speed, where the wind
value is either from the east or west tower depending upon the
direction.

From the above there are two general reasons for the wide
range in values seen in Fig. 2 for the power generated at any se-
lected velocity, these are: the speed from the met tower does not
represent the actual average wind speed at the hub height expe-
rienced by a turbine, and the actual wind did not meet the four
criteria listed. A comment relating to the density is that these
turbines were made and calibrated in southern California and
the manufacturer corrected the performance curve to account
for the 6100-foot elevation at the Ft. Davis site. The power is
directly proportional to the air density, thus as the density varies
during the day the power produce will also vary slightly.

In Fig. 2, at 500 KW the output curve is level and is at its
maximum value. The current generated is proportional to the
generator shaft torque. The shaft is connected through a gear
train to the hub of the turbine. The output power is limited by
controlling the torque produced by the turbine blades. This is
accomplished by using ailerons at the tip of the blades to reduce
the blade lift. This is necessary during high winds in order to
protect the equipment.

B. Influence of Wind Turbine Power Generation by Wind
Direction

The direction of wind also influences power generation. How-
ever, compared with wind velocity, wind direction has less influ-
ence on power output because each turbine is built to face into
the wind when operating. Generally, at the same wind speed,
there is no great difference in the power generation for different
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Fig. 3. Influence of wind power generation by wind direction (11 mph<
wind speed< 12 mph, turbine no. 5). (Strong wind usually comes from certain
direction but low wind can come from much wider direction.)

Fig. 4. Influence of wind power generation by wind direction (25 mph<
wind speed< 26 mph, turbine no. 5). (Strong wind usually comes from certain
direction but low wind can come from much wider direction.)

Fig. 5. Comparison of wind power generation by different turbines (4/1/96).
(Topographic condition makes the power generated by different turbine to be
very different even under the same weather circumstance.)

wind directions. But, for lower power generation, the variation
in wind direction is greater (Fig. 3) than for higher power gen-
eration, where wind comes mainly from the east or the west
(Fig. 4).

C. Wind Power Generation by Different Turbines

Even though the Fort Davis wind farm has only twelve tur-
bines, at any one instance or for 10 minute averaged values, there
can be large differences between the recorded output power for
the turbines. This can be seen in Fig. 5, where the 10 minute

Fig. 6. Multi-layer neural network for turbine power generation estimation.

power output for three turbines are shown. The period of data
shown covers almost 24 hours. All of these observations moti-
vate us to design a suitable neural network for each turbine to
predict its performance.

III. N EURAL NETWORK FORWIND POWER GENERATION

ESTIMATION

A. A Suitable Neural Network for Wind Power Generation
Estimation

Several motivations exist for using a separate neural network
for each turbine. First, this scheme can greatly reduce the size
and complexity of the neural network. (Training time scales with
the number of weights, not nodes in a network. Thus, twelve
small networks train better than one big one.) Second, the op-
eration of a wind farm usually requires some of the wind tur-
bines to be off-line. The scheme of a neural network for each
turbine will not be influenced by the cases that some turbines
are off-line. Third, this approach scales better for large wind
farms.

The input–output mapping desired for this problem lends it-
self to the multilayer perceptron of Fig. 6. The relatively com-
pact design, 4-8-1, plus bias nodes at the input and hidden layers,
was chosen based on a combination of trial-and-error and ex-
tensive prior experience. It ensures relatively fast training with
good representational accuracy. Preprocessing and activation
function selection are other design parameters, the choice of
which are described in Sections III-B and III-C below.

B. Patterns and Data Processing

The neural networks (NN) developed for each turbine will all
use the same input: ten minute averages of wind velocity and
direction from the two meteorological towers.

This input data, termed input patterns, is represented as,
, , and in Fig. 6. The network outputs are the power

generated by each turbine. Thus, each of the twelve NN devel-
oped use the same four input patterns but are individually trained
in the training processes for each turbine by the corresponding
power generated by that turbine for the given input patterns.

The velocity of the wind is the most important factor affecting
the power generated. Because of the very wide variation in the
hub height wind velocity across the wind farm, it is possible
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Fig. 7. Compressing function for wind speed.

Fig. 8. Compressing function for wind direction.

for the meteorological towers to record velocity of zero to one
or two miles per hour and yet some of the turbine show a high
power output. The cut in speed of the turbine is 8 mph. To as-
sist in the NN learning process “weighting” the “raw” (which is
measured velocity in mph) pattern is important. This is called
preprocessing. Similar concepts about data preprocessing can
also be found in [18] in which the authors obtained a better
trained neural network than their previous network [19]. The
preprocessing in this paper uses the concept of a compressing
function which is shown in Figs. 7 and 8. This new scale for the
input patterns enable the NN to learn faster (i.e., less learning
iterations) and produce a smaller difference between the pre-
dicted output and the measures output for each turbine.

The changing range of wind velocity is limited within the
range of 0 to 5 and the compressing function used can some-
what reflect the limitation on power output of a wind turbine
when the wind is strong (Fig. 7). On the other hand, the wind
turbine power output is less influenced by wind direction. So,
the changing range of wind direction (0to 360 ) is compressed
into a much more limited range compared with that of wind ve-
locity, and the compressing function selected can increase the
influence of wind direction at certain directions and decrease
the influence at other directions (Fig. 8). In other words, be-
tween the wind velocity and direction, we want to improve the
influence by wind velocity but decrease the influence by wind
direction and we want to amplify the influence of wind direction
at certain ranges of degree. This approach is appropriate because
the twelve turbines at Fort Davis are located in one long North
South line onto slightly offset ridge lines and the predominant

winds are either from the East or West. In our case, the com-
pressing functions were created by trial and error. The functions

and in Figs. 7 and 8 are:

(1)

(2)

The purpose of the compressing functions used in this
paper is to help the NN to learn and perform better. When
selecting a compressing function three points are considered.
First, it should reflect some of the system properties that we
know so that the network does not need to learn it. Second, it
should preserve important differences between patterns. For the
compressing function of wind direction, because the patterns
we have are integers in degree, we can make the compressed
wind direction to be different for different patterns through
selecting the locations of two maximums in Fig. 8. Third, it is
not necessary for a compressing function to be very precise.
The compressing function merely provides an improved data
representation and is the same for all the turbines, and all the
other properties are left for the neural network to learn.

Like the processing for input patterns, the desired output is
not measured wind turbine power output, which could change
from 0 kw to 500 kw, but is a ratio of measured wind turbine
power output to its rated power. This can easily be converted to
the actual power by a postprocessing operation if desired.

C. Activation Function in NN

We note that an asymmetric activation function typically
learns faster [7]. Therefore, a hyperbolic activation function

(3)

is used, with at the output layer and at input
and hidden layers, which is chosen by trail and error. The gain

is set to 1 and at the output layer a coefficient is added to the
function to keep the estimated power positive.

IV. TRAINING WITH BACK PROPAGATION

We trained with the aforementioned design of Fig. 6.
Including more neurons in the hidden layer was also tested
with no significant improvement on NN learning rates or
performance. The input patterns are processed measured data
for wind velocities and directions. The desired outputs are the
processed power outputs for each wind turbine. The available
measured data for Fort Davis used came from March 1996. For
each turbine, 1500 sets of 10 minute average data are selected
in March, which represented the wind turbine performance.

Pattern mode training is used here to train the NNs. In order
to achieve a well performed NN, besides the criteria in [8], both
the training and testing are combined into the software design of
NN training. For each turbine, the training is based only on the
1500 sets of data but the testing will cover all the effective data
in the month. Because of the techniques used in III, the mean
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Fig. 9. Mean squared error of turbine no. 5.

squared error stabilizes quickly but this does not always guar-
antee satisfactory testing results. Randomly generated initial
weights can lead to unsatisfactory NN performance even after
thousands of training epochs but reinitializing the weights and
retraining the NN after several hundred training epochs is effec-
tive if the test result is not good. For most of the turbines, the
training and successful testing can be finished in 30 minutes on
a Pentium 150 MHz computer, but some of them needed several
hours. The training curve in Fig. 9 shows the learning process of
the NN of turbine no. 5 for a successful testing. During training,
the mean squared error decreases gradually and becomes stable.

V. WIND POWER GENERATION ESTIMATION BY TRADITIONAL

AND NN MODELS

In order to understand the NN performance, two models used
on Fort Davis wind farm are discussed and compared here in
estimating wind turbine power generation.

1) Traditional Model: Traditional models are usually based
on turbine’s power curves or based on the modeling or simu-
lation of wind turbine generators [5], [9], [10]. The traditional
model used on Fort Davis wind farm is chiefly based on the man-
ufacture’s power curve (Fig. 2) in which turbine poweris only
a function of wind speed , i.e., . Because there are
two meteorological towers on the wind farm, we need to decide
which tower’s measurements should be used in the function. In
this model the possible topographic influence on different tur-
bines is considered in two ways. First, wind speed is selected
based on which direction the wind comes from, i.e., if the wind
comes from east, the measured wind speed from east tower will
be selected; if the wind comes from west, the measured wind
from west tower will be used. Second, a correction coefficient

for each turbine under east or west wind is introduced into
the power curve function, i.e.,

East or West
(4)

where represents turbine ID number andrepresents the direc-
tion wind comes from. Note that each turbine has only a single
parameter based on wind directions. These parameters are fixed
for each turbine once a trial iteration is performed to select the
best output comparison result.

Fig. 10. Neural network model for wind power.

TABLE I
ESTIMATION OF WIND POWER GENERATION IN MARCH

TABLE II
ESTIMATION OF WIND POWER GENERATION IN APRIL

2) Neural Network Model:The trained NN in Section IV
can be used to estimate the wind turbine power generation
directly based on wind velocity and direction information
(Fig. 10). The NNs are trained with 1500 patterns from March
1996 and the comparison in Tables I and II use all of the March
data and then the April data.

Table I gives: the measured power generation , the
estimated power generation by neural network model,
the estimated power generation by traditional model, the
percentage difference between measured and NN estimated

%, and the percentage difference
between measured and traditional model estimated

% for turbines no. 5 to 8 in March 1996. Even
though the traditional method uses coefficients reflecting actual
wind speed relationships among the turbines and reference
anemometers, there is still a large difference between the
measured and estimated wind power. This occurs because it
does not reflect the dynamic performance of a wind turbine
under changing wind conditions and many other factors. The
superior neural network results are due to its ability to learn
such factors.

Table II is the estimation results in April 1996 for Fort Davis
wind farm using the NNs trained by March data. The estimation
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Fig. 11. Wind power generation vs. wind speed (turbine no. 5).

Fig. 12. Estimated and measured power output (turbine no. 5).

using neural network is again good. Tables I and II show that a
well trained NN can succeed if the data set can properly rep-
resent the characteristics of a system. The percent differences
between the estimated and the measured power generation for
all the turbines at Fort Davis are basically around 1% in March
and around 2% in April, which indicates the effectiveness of the
NN’s in the estimation of wind power generation.

Fig. 11 shows the estimated 10 minute wind turbine power
generation by neural network using the measured wind data for
March 1996, which are plotted over the manufacture’s curve as
in Fig. 2. Compared with that, it is seen that the neural network
learned the overall turbine performance for different turbines.
Fig. 12 shows the comparison of measured, traditional model es-
timated, and NN model estimated 10 minute turbine power gen-
eration in the following month (i.e., April 1996) over a selected
period of 200 continuous time steps (10 minutes each step), in
which (where heavy solid line is measured power, dashed line
is NN model estimated, and light solid line is traditional model
estimated). The large difference between the measured power
and the traditional model estimated power can be seen clearly.
But the estimation based NN model performs well. It is nec-
essary to point out that the similar situations as shown in the
figure is very typical for the data we achieved on Fort Davis
wind farm from 1996 to 1997. Studies on the measured wind
data from the two meteorological towers show there are many
cases where the measured wind speeds from the two towers have

large differences and there are also many instances where the
measured wind directions from the two towers are quite dif-
ferent. This reflects some of the complicated wind dynamics in
the mountain area like Fort Davis wind farm. Under the sophis-
ticated wind dynamics, it is very difficult for a single param-
eter traditional model to correctly estimate the power produced.
However, the neural network tries to learn it. Thus we claim that
the neural network technique is to be preferred.

VI. SUMMARY AND CONCLUSIONS

The power generated by a wind turbine is mainly influenced
by wind velocity and direction. Generally, the higher the wind
speed, the higher is the power generated. However, the wind
power production are also influenced by other factors such as
wind direction, air density, vertical wind profile, and variability
in both wind speed and wind direction, making the power gen-
erated by wind fluctuates rapidly.

Wind direction has much less influence on wind turbine
power generation than wind velocity. However, at a certain
geographical environment, high power is usually generated
by wind coming from certain directions. But for low power
generation, wind comes from a much wider range of directions.

As shown, neural networks can be used to estimate wind
power generation efficiently as a diagnostic tool. The com-
pressing function is a valuable preprocessing step. The resulting
neural network can also allow wind power prediction over time.
Experience from the body of research in time series forecasting
is relevant in [13], [14]. For wind energy, a recurrent neural net-
work [15] for the prediction of wind cascaded with the neural
network discussed in this paper could make the prediction of
the expected performance of wind power generation system [6]
in another way, which would benefit power system forecasting
and management.
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