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Binary nucleation. I. Theory applied to water-ethanol vapors * 
Gerald Wilemskit 

Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520 
(Received 27 December 1974) 

A quantitative study of nucleation in vapor mixtures of ethanol and water near 273·C is presented. 
First, Reiss' theory of binary nucleation is reexamined. The theory is modified slightly in order to 
yield the proper limit for homogeneous nucleation in a one-component system. Moreover, a corrected 
expression for the equilibrium concentration of mixed clusters is derived. Calculations of the critical 
vapor activities needed to produce a visible condensate are presented and compared with the results 
of Flood's cloud chamber experiments. The agreement is only fair, but qualitative accord is found. 

I. INTRODUCTION 

Over 20 years ago, Reiss i published a theory of nu
cleation in two-component systems (binary or hetero
molecular nucleation) which has served as the basis for 
the theoretical prediction of steady state nucleation rates 
in binary vapor mixtures. 2

-
5 Although this theory has 

greatly enhanced our understanding of nucleation in bi
nary systems, it has received little, if any, quantitative 
comparison with experiment. Before making compari
sons, however, two aspects of the theory are in need of 
further clarification. 

It will be seen that under certain limiting conditions, 
which can be important in evaluating experimental data, 
Reiss' theory gives qualitatively unsatisfactory predic
tions. One defect can sometimes be eliminated, as wiUbe 
shown, by modifying slightly the definition ofthe nuclea
tion rate in a two-component system. Correction of the 
other defect involves reconsidering the thermodynamics 
of mixed cluster formation in a fashion analogous to that 
of Dunning6 and Blander and Katz 7 for pure clusters. 

II. OUTLINE OF REISS' THEORY 

The vapor consists of a mixture of the condensable 
species 1 and 2 out of which clusters of composition 
(nI' n2 ) are formed. Here nj is the number of molecules 
of Species i in the cluster. Reiss considered a two di
mensional lattice in which n1 served as abscissa and ~ 
as ordinate. Points on the lattice thus represent differ'
ent cluster compositions. Clusters are assumed to grow 
and decay by the gain and loss of Single molecules of 
either species. A nucleation current vector I can be 
defined whose components I 1(nI , ~) and I2(nb n2) are the 
net rates at which clusters of composition (nl> ~) be
come clusters of composition (n i + 1, n2) and (n1, ~ + 1), 
respectively. When the nj are treated as continuous 
variables, the I. are given as 

(2.1) 

Here, f(n I , n2 , t) is the concentration of clusters of com
position (n1,n2) present at time t; c(n1' ~) is the equi
librium concentration of these clusters; fl is their sur
face area; and fll is the impingement frequency/area of 
Species i on the cluster surface and is usually taken as 

fll =PI/(27rm1kT)I/2, (2.2) 

where PI is the pressure of Species i is the vapor, mj is 
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the molecular mass, k is Boltzmann's constant, and T 
is the temperature. For c, Reiss gave the following ex
pression: 

(2.3) 

where c. is the monomer concentration of Species i in 
the vapor, and w(nI, ~) is supposed to be the reversible 
work of formation of the cluster (n1, ~). For vapor
liquid nucleation, w has been given1,2 as 

w(n I, n2) = n16.J..LI(x)+~6. J..L2(X)+ fl(nl> ~)u(x), 

with 

x=n2/(n1 +~). 

(2.4) 

(2.5) 

The mole fraction of Species 2 is denoted by x. In Eq. 
(2.4), 6.J..L1 is the chemical potential difference for a 
molecule of Species i in a solution of composition x and 
in the vapor at a pressure PI' If the gases can be con
sidered ideal and small pV terms are neglected, 

(2.6) 

where P~(x) is the equilibrium vapor pressure of Species 
i at T over an infinite plane surface of solution of bulk 
composition x. Finally, u(x) is the surface tension and 
is a function of composition as well as temperature. 

The requirement that for some composition (n!, n~) 
the chemical potentials of molecules in the cluster equal 
those in the vapor leads to the Gibbs-Thomson equations 
for binary drops: 

0=( aw) =6. + 2uv1 _ 3xv du 
an J..LI r r dx' 

1 "2 
(2.7a) 

o=(aw) =6. +2uv2 +3(1-X)V du 
a~"1 J..L2 r r dx ' 

(2.7b) 

where 

v= (1- x)vI +XV2 . (2.8) 

The quantity v I is the partial molecular volume of Species 
i in solution, and v is the average molecular volume of 
the solution. Both quantities are composition dependent. 

The values n! and ~ define the critical compOSition 
for which an unstable equilibrium exists for the droplet 
in the vapor. They also locate a saddle point on the free 
energy surface w(nI, n2).1,2 It is next assumed that the 
principal nucleation currents proceed through the "pass" 
in the free energy surface located about the saddle point. 
The principal objective of the theory is to calculate the 
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3764 Gerald Wilemski: Binary nucleation. I 

steady state nucleation current through this pass. This 
may be done in an approximate manner which is slightly 
more general than that of Reiss. 

In the steady state there will exist "streamlines" on 
which the magnitude of the nucleation current vector I is 
constant. These streamlines can be used to charac
terize a set of curvilinear coordinates ~1 and ~z, in which 
~z designates particular streamlines and ~1 designates 
distance along a streamline. It should be safe to assume 
that the new coordinates are orthogonal, at least in some 
neighborhood of the principal nucleation current. Under 
this assumption the components of I in the two coordinate 
systems are related by the following equations: 

gl = hl(a~tlanl)Il + hl(a~Z/anz)Iz, i = 1, 2. (2.9) 

The hi are scale factorsB for the new coordinates. It is 
next assumed, as Reiss did, that the principal nucleation 
currents arise near the origin (the monomer states) and 
that the component of I along the streamline, 91, is es
sentially equal to the magnitude of I, i. e., that the com
ponent orthogonal to the streamline, dz, is negligible all 
along the path. This should be a good approximation for 
paths in the vicinity of the saddle point. Expressed 
mathematically, the assumption that 

gz =0 

implies 

111=l(~Z)' 

(2.10) 

(2. 11) 

Now, after expressing 11 and Iz in terms of the new coor
dinates, Eqs. (2.9)-(2.11) can be reduced to 

I(~z)/ [CD(~l' ~z)] = - a(f/C)/a~1' (2.12) 

where 

Reiss defines the over-all nucleation rate as 

which effectively sums all of the nonvanishing currents 
flowing through the pass. In the neighborhood of the 
saddle point, it is likely that the curvilinear coordinate 
system behaves like a Cartesian system. In this case, 
the following transformation will enable the saddle point 
integration to be performed: 

~1=~t +u1 ' 

~z = U:!, 

(2. 16a) 

(2. 16b) 

where ~~ = 0 by definition, and u1 and Uz arise from the 
rotation 

(2. 17a) 

(2. 17b) 

The angle </> is the angle made by the axis of the pass 
with the n1 axis of the original coordinate system, and 
it is further defined in Appendix B. The transformation 
into u1 and Uz permits the evaluation of D(~l> ~2) to be 
made at the saddle point, Equations (2.14) and (2.15) 
may also now be evaluated in the manner of Reiss. using 
the method of steepest descent, All of the results are, 
of course, identical to his, and they appear as 

Z 
I(~z)=D*(P/21TkT)1/2c(n'';, n;)e-q<z/(ZkT) , (2.18) 

and 

JB =D*(p/q)1/2c (nt, n;), 

where 

D* = f31~tJ* /(f31 sin2 </> + f32 cos2</», 

p = - (azw/azq)* , 

q = (a2w/a~)* . 

III. THE EOUILIBRIUM DISTRIBUTION 

(2. 19) 

(2.20) 

(2. 21a) 

(2. 21b) 

Under appropriate conditions, in vapors with com
ponents possessing an unfavorable free energy of mix
ing, only homogeneous nucleation of one component, say 
Species 1, should result. Yet, as pOinted out by Katz, 9 

because of Eqs. (2.3) and (2.19) the nucleation rate of 
pure clusters of Species 1 would still depend linearly on 
the total pressure of the vapor mixture. 

The implication of this observation is that the pressure 
of the inert carrier gas should have an appreciable effect 
on the rate of homogeneous nucleation of the remaining 
condensable vapor. Such an effect is indeed found ex
perimentally, 10 and it is usually attributed to the effects 
of nonisothermal nucleation. 11 However, the present 
theory, as formulated, does not include any of these ef
fects, and it should reduce under the described conditions 
to the isothermal homogeneous nucleation of a vapor in 
an inert carrier gas. It is well known that the theory 
for this latter process does not include any Significant 
dependence on the carrier gas pressure. This incon
sistency may be eliminated by properly defining the free 
energy of a mixed cluster. Following the discussions of 
Dunning 6 and Blander and Katz, 7 a self-consistent ex
pression for the equilibrium cluster concentration may 
be obtained. 

For the existence of equilibrium between clusters of 
composition (n1, nz) and the two monomeric species, the 
usual relationship among the chemical potential of the 
different species must be satisfied: 

(3.1) 

where Ml is the chemical potential of Species i in the 
vapor, and M(nl , nz) is the chemical potential of clusters 
of composition (n1' nz). Provided that interactions be
tween different clusters are small, the vapor may be 
considered as an ideal gas mixture. Then the chemical 
potentials have the form 
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Gerald Wilemski: Binary nucleation. I 3765 

(3.2) 

and 

(3.3) 

The standard states have been taken as one per unit vol
ume. Equations (3.1)-(3.3) give 

e(nt> nz) = (ct)"1(ez)"Z 

xexp{-[iJ.°(n1, nz)-nliJ.~-nziJ.g)]jkT}. (3.4) 

When the vapor is in equilibrium with solution of bulk 
composition x, the concentration of Species i in the vapor 
is cj. Then 

iJ.~(x)=iJ.~+kTlnei, (3.5) 

where iJ.~(x) is the chemical potential of Species i in the 
solution. Equations (3.4) and (3.5) give 

( 
p )nl( P2 )"2 

c(n1, nz) = ~ M(x) 

x exp{- [,:.t°(n!> nz) - n1,:.t1- nz,:.t~]/kT}. (3.6) 

The quantity ,:.t°(n1, nz) - n1,:.t1- nz,:.t~ can be interpreted as 
the change in free energy upon taking the appropriate 
n1 + nz molecules from a vapor in equilibrium with bulk 
solution of composition x and converting them into a 
cluster of composition (n l , nz) in the standard state of 
one per unit volume. By generalizing the statistical 
mechanical droplet theory6 to include mixed drops, 
,:.t°(n!> nz) can be related to the cluster partition function 
Q(n1, nz). Thus, 

,:.t°(n1, nz)=-kTln[Q(n1, nz)/V], (3.7) 

and 

(3.8) 

Here, H is the Hamiltonian function for the n1 +nz mole
cule cluster, and the integration is carried out with 
respect to all coordinates and momenta accessible to 
molecules in the cluster. Although, at present, Eq. 
(3.8) cannot in general be rigorously evaluated, it can 
be expressed formally as6,12 

Q(n
1
, nz) = QQtrQrot e-(nll'i+n24)/"Te~S/kT • (3.9) 

... p 

Here, Qtr and Qrot are the translational and rotational 
partition fWlctions for the cluster, as is the surface free 
energy of the cluster, and Qrop is a correction partition 
function which, in principle, takes into account any in
adequacies and inconsistencies in the assumed form of 
Eq. (3.9). Examples of these are (1) the fact that, if 
Q .... P = 1, Eq. (9) receives contributions from six too many 
degrees of freedom, and (2) the likely possibility that the 
rotational degrees of freedom are not separable. Another 
major task for Qrep is to relate the configurational parti
tion function of the cluster to the free energy of n1 + nz 
molecules in solution. Several phenomenological pre
scriptions for Qrop exist for the analogous problem in 
homogeneous nucleation, 13 and these may be adapted for 
use here. Equations (3.6) and (3.9) give 

(3.10) 

and, for example, with Dunning's prescription, 14 Eq. 
(3.10) becomes 

( ) 4 -w/kT en1, nz =~e , n v, 
(3.11) 

where n = n1 +nz, and v, is the average free volume per 
molecule in the solution. Obviously, in order to recover 
Eq. (2.3), it is necessary to put 

QtrQrot =c +c 
VQrep 1 2, 

but in view of the nature of Qrop it seems unjustifiable to 
introduce such a dependence on c 1 + cz, and it certainly 
violates the mass action law for chemical equilibria. 

IV. HOMOGENEOUS NUCLEATION LIMIT 

On the basis of physical considerations, it should be 
expected that a theory of nucleation in two-component 
systems should predict homogeneous nucleation of one 
component when either the equilibrium vapor pressure 
of one component becomes excessively large, i. e., there 
is a very unfavorable free energy of mixing, or the con
centration of one species in the vapor becomes exceed
ingly small. For the former limiting condition, the 
improper behavior of the equilibrium distribution nec
essitated the additional thermodynamic considerations 
presented in the preceding section. It will now be seen 
that under both of these limiting conditions, Eq. (2.19) 
fails to yield homogeneous nucleation of One component. 

USing w(n 1, nz) as defined in Eq. (2.4) along with Eqs. 
(2.5)-(2.8) the following general results are deduced in 
Appendix A: 

(1) AsP1-OorP1(x)-oo(xH), n!-Oandx*-1. The 
critical cluster composition becomes pure in Species 2. 

(2) Asp2-0orp~(x)-oo(x*O), n!-Oandx*-O. The 
critical cluster composition becomes pure in Species 1. 

On physical grounds, these results can not be expected to 
change when different chOices for ware made (implying 
different choices for Qrep), In Appendix B, the limiting 
behavior of Eq. (2.19) is examined in detail. It may be 
shown that, in general, as x* - 0 or 1, 

(
27rkT)1I2 

JB "" -- J/, q 
(4.1) 

where J/ is the appropriate expression for homogeneous 
nucleation of component i. For case (1) above, Eq. (4.1) 
goes as 

JB "" (1- x*)l12(21Tni)112Ja, 

and for case (2) as 

JB "" (x* ) 112 (21Tni )l12J1 . 

(4.2) 

(4.3) 

These expressions clearly approach zero under the above 
limiting conditions. Thus, although the correct limiting 
behavior is found for the thermodynamic aspects of the 
theory, taking into account the proper form for the equi
librium distribution, the kinetic prefactor is seen to be 
inconsistent with physical expectations. 

The baSis of the difficulty can be traced to Reiss' def
inition of the nucleation rate, Eq. (2.15), because until 
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3766 Gerald Wilemski: Binary nucleation. I 

its final stage of development the binary kinetics scheme 
does reduce correctly to homogeneous nucleation under 
the appropriate conditions. Implicit in the definition of 
the rate is the assumption that the pass is broad enough 
so that a large number of currents make a significant 
contribution to the over-all nucleation rate. If the steady 
state problem were solved without treating the nj 
as continuous, the overall rate would be the discrete sum of 
those currents which lead to the formation of clusters 
whose composition is such as to allow growth into larger 
fragments of the new phase. Most of these currents 
would undoubtedly be bunched about the saddle point com
position. 

Since the problem is much more tractable in the con
tinuous approximation, the sum is taken to be given ap
proximately as the integral of the current over the pass
width with the limits of integration of ±oo used for con
venience. For conditions under which it is invalid to 
convert the sum into an integral, Eq. (2.15) will prove 
inadequate. Such conditions arise for the limiting cases 
that were discussed. 

What happens is simply that, in the limit, the free 
energy surface becomes singular for all cluster com
positions except those on the path of homogeneous nu
cleation for the appropriate species. This behavior is 
manifested in the divergence of q [Eq. (2.21b)], the 
curvature of w in the direction perpendicular to the pass 
axis. The function I(~2) vanishes unless ~2 = 0 (homo
geneous nucleation), and its integral likewise vanishes. 
From the discrete point of view, what happens is that, 
in the limit, the addition of only one mOlecule of the in
appropriate species to the previously pure cluster results 
in a tremendous increase in the free energy of formation. 
Thus, the free energy surface exhibits a large stepwise 
discontinuity. It is finite and well behaved on the path of 
homogeneous nucleation, but not elsewhere. The sum 
that defines the rate now collapses to a single term, that 
expected for homogeneous nucleation. The divergence of 
q is now seen to be a consequence of the continuous ap
proximation. 

In order to preserve the convenience of the continuous 
apprOXimation without incurring the demonstrated conse
quences of its failure, what is needed is a Simple tech
nique for interpolating between the regions where only 
homogeneous nucleation is significant and those where 
Eq. (2.15) is an acceptable definition of the rate. The 
following ad hoc proposal, though inelegant, ought to be 
satisfactory. The rate is defined as 

(4.4) 

where I(~2) is still given by Eq. (2.11) or (2.13) and I) 
Al are related to the width of the pass in a manner to be 
prescribed shortly. This equation can be interpreted as 
the average nucleation current per unit length (of pass
width) flowing through the pass multiplied by the function 
v(Al) which counts the total number of currents contribut
ing to the over-aU rate. 

For a broad pass, Al may be taken large enough so 
that agreement of Eq. (4.4) with Eq. (2.15) may be ob
tained by letting veAl) "" 206.1. Geometric conSiderations 

show this to be a suitable approximation. As the pass 
narrows, this agreement is not permitted. Instead, the 
following behavior pertains. 

First, since there will always be at least one current 
contributing to the rate (provided one of the components 
is supersaturated), the function v must never be less 
than unity even as 06.1- O. In practice, I) will reach this 
limiting value long before Al approaches zero and will 
then remain constant. Now Eq. (4.4) may be formally 
rewritten as 

JB=I)(AI) I:d~2I(~2){H(~2+Al}2~~(~2-Al)}, (4.5) 

where H(x) is the Heaviside step function and is equal to 
one when x is positive and is zero otherwise. Recalling 
that the Dirac delta function 5(x) is the derivative of H(x), 
Eq. (4.5) yields, as A1- 0, 

JB = 1: d~2 I( ~2)5( ~2) (4.6) 

or 

JB =1(0). (4.7) 

Consideration of Eqs. (4.4) and (2.18) shows that this 
result is well defined provided AI- 0 faster than ql/2 

- 00, and it is preCisely the desired result, since the 
other terms in the prefactor go over smoothly to the 
homogeneous nucleation limit. 

The function I) poses no computational problems, but 
in order to use Eq. (4.4) a prescription for A1 must be 
supplied. As the saddle point approaches either the n1 

or nz axis, a convenient choice for D.l is the length of a 
line perpendicular to the axis of the pass originating at 
the saddle point and ending at whichever axis is being 
approached. As the n1 axis is approached, some trigono
metric considerations give 

Al =n!/coscp . 

Similarly, as the nz axis is approached, 

Al =ni!sincp . 

(4.8) 

(4.9) 

Consideration of the limiting behavior of q from Ap
pendix B leads immediately to the conclusion that 
Al(q)1/2- 0 as either axis is approached. These choices 
for Al are thus consistent with the required limiting pro
cedure. 

With Eq. (2.14), Eq. (4.4) can be rewritten as 

JB = J(ni, nt) v~:;) erf[AI(q /2kT)1!2] , 

where 

and 

erf(x) = (2/..f1i) LX e-.J dv • 

(4.10) 

(4.11) 

(4. 12a) 

(4. 12b) 

(4.13) 
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FIG. 1. Surface tension of the ethanol-water system at 273 oK. 

Equation (4.10) has the form of Reiss' result multiplied 
by a correction factor which becomes important only 
when the pass is narrow. 

V. RESULTS FOR THE ETHANOL-WATER SYSTEM 

Published experimental data on homogeneous nucleation 
in binary vapors can apparently be found only in the pio
neering work of Flood15; however, Kaser16 has mentioned 
that these experiments may involve nucleation on ions. 
Additionally, some qualitative results have been re
ported, 17 and some unpublished work exists. 18 All of 
these experiments deal with the ethanol-water system, 
and for that reason so do the present calculations which 
were made using the rate expressions given by Eqs. 
(2.19) and (4.10). It should be noted that no provision 
was made for including statistical mechanical effects in 
the calculations; in other words, only Eq. (2.3) was 
used for the equilibrium distribution. 

In order to perform the calculations, the surface ten
sion, density, and equilibrium vapor pressure of water 
and ethanol are needed as functions of solution composi
tion and temperature. Values of the surface tension19 

at 14 different compositions were fitted to either first or 
second order polynomials as functions of T(OK) with an 
accuracy of usually much better than 0.5%. These 0' vs 
T curves were then used to generate "data" points at any 
specified temperature as a function of mole fraction, x. 
Fitting In(O') vs a third order polynomial in the variable 
4x/(1 + 3x) gave a reproducibility of better than O. 5%. In 
Fig. 1, the surface tension of the ethanol-water mixture 
at 273 OK is presented. Quadratic curves of the density 
p vs T were obtained from data20 at 21 different mass 
fractions with an accuracy usually better than 0.01%. 
These curves were used to generate density values at 
specified temperatures which could be fitted to a second 
order polynomial as a function of the mass fraction with 
an accuracy of about 0.1%. The partial and average mo
lecular volumes were computed as functions of composi
tion using these fitted density curves. 

Vapor pressure data21 at 293 and 313 OK (following 
Flood) were fitted to straight lines. These curves were 
used in a fashion Similar to that above with the following 

exceptions. Below 280 OK, the vapor pressure of pure 
ethanol was calculated using the equation of Wegener, 
Clumpner, and Wu. 17 The vapor pressure of water was 
always computed using the equation of Keenan and 
Keyes. 22 For the temperature range used in these calcu
lations, these values agreed well with data compiled in 
the Handbook of Chemistry and Physics. 23 For mole 
fractions of ethanol less than 0.089 and greater than 
0.95, Raoult's law was used to generate data points for, 
respectively, the water and ethanol equilibrium vapor 
pressure curves. These points were used as input to the 
fitting program in the place of the (ostensibly inaccurate) 
points extrapolated from the values in the International 
Critical Tables. 21 

It was found that the vapor pressure data at 273 and 
280 ° K could be fitted with an error of usually less than 
2% to a third or fourth order polynomial in a variable z, 
where z = x(O. 8(x - O. 75)2 + 0.95] for water and z = x[2. 5 
x (x - O. 8)2 + 0.9] for ethanol. This accuracy is accept
able because a 1 0 K change in temperature at 273 0 K pro
duces roughly a 9% change in the vapor pressures. How
ever, since these fitted curves did not possess zero in
tercepts (partial vapor pressure must vanish when a 
component is absent), Henry's law was invoked for the 
low concentration species whenever Raoult's law was 
applicable for the other component. The appearance of 
these vapor pressure curves, shown in Fig. 2, is qual
itatively correct, but in the absence of experimental 
data there is no quantitative way to judge accuracy. 

To illustrate the effects of real solution behavior, cal
culations were also performed for an ideal ethanol-water 
system. Here, surface tension and density were identi
cal with the real system, but vapor pressures were given 
Simply by Raoult's law over the entire composition range. 

12...---.-------r-----,----..,---, 

10 
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FIG. 2. Equilibrium vapor pressure curves for the ethanol
water system at 273 OK. 
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TABLE 1. Experimental critical activities calculated from Flood'slS data. Components 1 and 2 
are water and ethanol, respectively. The equilibrium vapor pressure of pure substance i is de
noted p~; a, is the activity of component i. The initial and final temperatures carry the subscripts 
i andf. The solution composition is given in terms of the mole fraction of ethanol, y. The p1 are 
the partial vapor pressures of a solution of composition y, and E is Flood's volume expansion ratio. 

pf(y) p~(y) p~ p~ 
y E T,(OK) (Torr) (Torr) Tf(OK) (Torr) (Torr) al a2 

0.039 1.155 291 14.72 5.36 272.8 4.47 
0.115 1.115 289 12.11 11.30 275.6 5.47 
0.353 1.101 292 13.27 23.66 280.4 7.64 
0.671 1.114 289.8 7.20 28.13 277. 6.04 
0.779 1.119 288 5.38 26.47 274.9 5.20 
0.903 1.142 289 2.64 31.14 273.8 4.81 

In addition to calculating the nucleation rate as a func
tion of the partial pressures of the components, critical 
activity curves for the onset of condensation were also 
computed. Assuming ideal gas behavior, the activity is 
the ratiO of the partial pressure of the vapor to its equi
librium vapor pressure over pure liquid. Critical activ
ities are those values for which the rate of binary nu
cleation is just equal to some prespecified value. 

In order to compare Flood's results with these calcu
lations, the experimental critical activities must be cal
culated from his results. This requires knowledge of 
the equilibrium vapor pressures of the solutions at his 
starting temperatures. Since there is no need to be able 
to calculate p8(X) for any composition, polynomial fits 
were not tried. Instead, it was much simpler to use 
linear interpolation between the appropriate pair of data 
points calculated at the desired temperature. Then, 
using Flood's second unnumbered equation on p. 289 and 
his reported values for E, T1, Tz, and solution composi
tion, the critical activities may be calculated. These 
are listed in Table I and are also presented in Fig. 3, 
where the calculated curves are shown. For the JB 

:: 1 (cc-sect1 curve at 273 OK, quantities characterizing 
the saddle point are listed in Table n. Quantitative 
agreement is fair to poor, with the largest discrepancies 
ariSing for larger values of water vapor activity. There 
is a clear need for further experiments and theory to 
resolve this issue. 

The real solution effects apparent in Figs. 3 and 4 are 
easy to explain. For given activities, the effective su
persaturations achieved in the real system are usually 
Significantly lower than those of the ideal system because 
of the positive deviation from ideality of the vapor pres
sure curves. The lower supersaturations necessitate 
either lower rates or higher activities to achieve a given 
rate. 

For the activity ranges studied, use of the modified 
Reiss theory did not change the calculated activity 
curves. However, in Fig. 4 it may be seen that rates 
calculated with these different equations show a clear 
divergence as the activity of water vapor is reduced. 
While the conditions under which this divergence occurs 
may border on the extreme for this example, it still 
seems desirable to have a rate equation which properly 
yields homogeneous nucleation when the phYSical condi
tions so dictate. Such behavior will be useful, for exam-

11.7 2.67 0.37 
14.4 1.89 0.67 
20.1 1. 51 1.03 
15.9 1. 02 1.52 
13.6 0.88 1.66 
12.60 0.45 2.05 

pIe, when evaluating data for experiments involving trace 
amounts of condensibles or when trying to include sta
tistical mechanical corrections to the rate equation in a 
manner consistent for both binary and homogeneous nu
cleation. It Unfortunately appears that such a rate ex
pression cannot be obtained unless the full time depen
dence of the nucleation process is included. The basis 
for this remark will be discussed below and in Sec. VI. 

Numerical studies of the limiting behavior of the rate 
equations for vanishing amounts of ethanol vapor uncov
ered the following behavior. Even for an ethanol activity 
as ridiculously low as 10-10 and a water activity of 9, the 
24 molecule cluster still contained 1. 7% ethanol. The 
explanation of this drastic behavior is simple. The sur
face tension of pure water is so high (see Fig. 1) that the 
tendency to resist the formation of pure water clusters 
is very great. Numerically, x was found to decrease as 

..J 1.6 
0 
Z 
<{ 1.4 :z: 
I-
ILl 

LL 
0 

>- 1.0 

I-
:> 0.8 
i= 
0 
<{ 0.6 

0.4 0 

0.2 

0 0.5 1.0 1.5 2.0 2.5 

ACTIVITY OF WATER VAPOR 

FIG. 3. Critical activity curves for the onset of condensation 
in the ethanol-water system for a nucleation rate of 1 (cc - secr l 

at 273 oK, Curve I, and at 280 oK, Curve 2. Flood's experi
mental results are marked by o. Also shown is the onset curve 
at 273 OK [J B = 1 (cc-secrl ), Curve 3, for the ideal ethanol-water 
system discussed in Sec. V. 
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TABLE II. Quantities characterizing the saddle point for J B = 1 
(cc-secrl at 273 oK. Components 1 and 2 are water and ethanol, 
respectively. The frequency factor K is defined as K 
=JBexp(w*/kT); p~ is the equilibrium vapor pressure of pure 
component i; pr=4. 54 Torr, P~=l1. 8 Torr. 

K(cc - sec)" 

p,lpl P2/P~ x 5, (x) 5,(x) r*(A) nt +n! u'*/kT (x 10") 

0.1 2.21 0.965 1. 52 2.26 14.96 151. 9 60.82 2.60 
0.5 1.97 0.8:10 1.51 2.25 14.8:1 164.9 61.37 4.48 
0.6 1.92 0.793 1. 51 2.25 14.79 168,4 61. 45 4.89 
O~ 75 1.8:1 0.736 1. 51 2.25 14.71 174.6 61.60 5.65 
0.85 1.77 0.692 1. 51 2.25 14.64 179.5 61.71 G.29 
1.0 1.69 0.615 1. 51 2.24 14.52 188.6 61. 86 7.35 
1.2 1.56 0.478 1. 5~ 2.22 14.22 204.6 61. 76 6.64 
1.4 1.24 O. :112 1.62 2.05 13.61 219.0 60.73 2.37 
1,6 0.72 0.203 1. 80 1. 50 12.89 216.2 59.63 0.787 
1.8 0.35 0.148 2.01 n.911 12.30 203.6 58.94 0.396 
2.0 0.15 0.116 2.21 0.487 11.81 189.7 58.53 0.263 
2.25 0.049 0.0896 2.46 0.192 11.31 173.5 58.23 0.194 

the ethanol activity decreased; but because of the magni
tude of u and du/dx, the region displaying the limiting 
behavior discussed in the Appendices was never reached. 
Under these Circumstances, both rate equations behaved 
as Eq. (6.1), and the predicted rate ultimately dropped 
well below that of homogeneous nucleation of water, which 
now became, by far, the largest contribution to the over
all nucleation rate of the system. 

VI. DISCUSSION 

As noted, there are circumstances for which both defi
nitions of the nucleation rate will fail to provide a quali
tatively correct estimate. In any binary system, some 
homogeneous nucleation will be taking place unless the 
components are undersaturated with respect to the vapor 
pressure of the pure liquid. Because the steady state 
rate of mixed cluster formation is normally much higher 
than that of pure cluster formation, neglecting the latter 
rate is usually not serious. In systems for which ther
modynamic properties are appropriate, it may be possi
ble to significantly lower the vapor concentration of one 
of the components without necessitating, on thermody
namic grounds, the formation of pure or nearly pure 
clusters of the more abundant species. That is, the 
pressure is low, but not so low that the limiting behavior 
discussed in the Appendices is reached. 

For instance, suppose PI» Pz. Then Eq. (4.10) be
haves as 

JB '" !tU2*rp (p/q)l12c(n!, r4), (6.1) 

and the steady state rate will be limited by the vapor 
concentration of the less abundant species. Possibly, 
because of the lower free energy of mixed cluster forma
tion, this rate will still be higher than that of homoge
neous nucleation of Species 1. Even so, it is entirely 
possible that the time lag needed for the attainment of 
this rate is much longer than that needed to attain steady 
state nucleation of Species 1 alone. Thus, on kinetic 
grounds, homogeneous nucleation of component 1 would 
be the predominant rate process taking place, but its 
contribution, under these Circumstances, is not included 
in either definition of the rate and must be calculated in
dependently. A more elaborate discussion of the role of 
time lags in binary nucleation will be provided in the fol-

lowing paper. 

Another remark is somewhat speculative. Even if the 
saddle point is not too close to either the nl or n2 axis, 
there may be some peculiar thermodynamic property of 
the system of interest which permits only a single unique 
path for nucleation, 1. e., the pass becomes a very nar
row crevice, but in the interior region, not on the axis. 
Possible causes of such behavior are, for example, a 
deep minimum in the surface tension over a small com
position range or the onset of (partial) immiscibility. In 
such cases, an equation like Eq. (4.10) will be the pre
ferred definition of the rate. 

Other effects may also be important. For example, 
Heist and Reissz4 have considered hydrate formation in 
binary sulfuric acid-water vapor, and Hirschfelder25 has 
extended Reiss' theory to multicomponent systems. 
Finally, Stauffer, Binder, and Wildpaner6 have recently 
considered the effects of surface enrichment in binary 
clusters. 

Note added in proof: New considerations; 27 which ap
peared after this article had been submitted,may provide 
a more satisfactory rate expression in the transition 
regions near the nl and n2 axes than the ad hoc proposal 
made in Sec. IV. 
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APPENDIX A: LIMITING BEHAVIOR OF THE 
GIBBS-THOMSON EQUATIONS 

The equations of concern are Eqs. (2.7). First con
sideration will be given to the case for which PI - 0 or 
M(x) - 00 (x* 1). Restrict consideration to the neighbor
hood of X= 1. It will always be possible to pick pres
sures to meet this restriction. In this region, Henry's 
law may be used for p1(x), 

M(x) = (1 - x)K1 • (AI) 

Define a parameter Kb where KI =P1/K1. Then both 
limits may be investigated simultaneously by consider
ing the limit KI - O. Next rewrite Eq. (2. 7a) as 

kTln[Kti(1-x)]=U1(x), (A2) 

where 

Ut(x) = r -t (20'V t - 3xv :~) . (A3) 

Depending on the sign and magnitude of dO'/dx, Ut(1) can 
be positive, negative, or zero. However, barring se
verely pathological behavior, U1(x) will approach Ut (1) 
monotonically. Two cases arise. 

(1) If U1(x) >0 in this region, then 

Kti(l - x) > 1 (A4) 

in order to satisfy Eq. (A2). As K t - 0, then, neces
sarily x-I to satisfy Eq. (A4). Also note that ..1J..Ll(X) 
has a well defined value for this double limit, namely 

lim..1J..Ll = - U t(l) . (A5) 
"1- 0 
x-I 

(2) If U1 (x) < 0 in this region, then 

Kti(l - x)< 1 (A6) 

to satisfy Eq. (A2). As KI - 0, it is necessary that x- 1, 
in accordance with the inequality of Eq. (A6) if both sides 
of Eq. (A2) are to be well defined. Note that Eq. (A6) 
implies that Species 1 can be undersaturated with respect 
to its vapor pressure over a bulk solution of composition 
x (cf. the bottom entries of Table II). The explanation 
of this unusual behavior may be that the chemical po
tential of Species 1 in the droplet, as compared to that 
in bulk solution, receives an extra contribution from the 
composition dependence of the surface tenSion, which 
can become very significant. Alternatively, this be
havior may just be an artifact arising because surface 
enrichment effects 26 were not considered. 

A restriction on the solutions of Eq. (2.7) comes if 
these equations are solved for r (really r*): 

- 20'v r = -:---..,.-----
(l-x)..1J..Lt+ x..1J..Lz· 

(A7) 

Since r > 0, Eq. (A 7) restricts the amount anyone com
ponent can be undersaturated (relative to the bulk solu
tion) if nucleation is to take place at all. 

Lastly, note as x-I, Eq. (2.7b) becomes 

..1 _ - 20'vg 
IJ.z - r ' (AB) 

the usual GibbS-Thomson equation for a pure droplet. 

Analogous behavior can be deduced from Eq. (2. 7b) as 

P2 - 0 or P~(x) - 00 (x* 0), with the results 

x-O, 

lim..1J..L2 = - U2(0). 
"2- 0 

x-o 

where 

U2(x) = r -I (20'V2 + 3v(1- x) :~), 
and from Eq. (2.7a), 

..1 iJ.I = - 20'v1/r . 

APPENDIX B: LIMITING BEHAVIOR OF THE 
KINETIC PREFACTOR 

(A9) 

(AIO) 

(All) 

When inconvenient, the superscript * will not be used; 
however, all quantities are assumed to be evaluated at 
the saddle point. 

To analyze the limiting behavior of the prefactor of 
Eq. (2.19), i. e., D* (p/q)I/2, the asymptotic behavior of 
r:p, p, and q is needed. 

Equations (2.21) yield 

a2w a2w aZw 
-p=cosZr:p-a 2 +2cosrpsinr:p-a a +sinZr:p~a' (BI) 

n1 n1 nz fl2 

aZw azw aZw 
q = sin2r:p -;;:::Za - 2 cosr:p sinr:p -a a + cos2 r:p ~a' (B2) n1 n1 nz n2 

The angle r:p may be calculated from the relationz 

2(azw/an1ang) 
tan2r:p (a2w/ann _ (aZw78n~) . (B3) 

This equation is also satisfied by rp + rr/2, so appropriate 
care must be taken to insure that the proper branch of 
the function is being calculated. Equations (2.5) and 
(2. B) and the relation 

(B4) 

will prove useful in simplifying the various expressions 
that will be obtained. 

Consider first what happens as x* - 1. Straightforward 
calculation of a2W/an18nZ gives an expression which can 
be Simplified by using Eqs. (B4), (2.5), and (2. B), as
suming that avtiax and aO'/ax are not infinite at X= 1 and 
that O'(x) is only a function of x and not of the total num
ber of molecules in the cluster. The results at x = 1 
(n! = 0) is 

~ _ 8..1J..Ll _~(2VIO' + dO') 
8n18nz - ang r 4rrr dn1 • 

(B5) 

In similar fashion, the remaining derivatives may be 
calculated. Near X= 1, Henry's law 

M(x) = (1 - x)K1 • 

and Raoult's law 

(B6) 

(B7) 

may be employed in oraer to evaluate the derivatives of 
the ..1J..Li' Upon doing so, and using Eq. (A5), the follow-
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ing results are obtained: 

~I =_~+Ul(P, 
ani an2 %=1 na 3n:! 

(B8) 

a2w 1 kT 
""'ii1ii '" 1- x* 1if' (B9) 

a2w \ _ 6. j..l?(x = 1) 
~ - * an? x.l 3n:! 

(B10) 

Equations (B3) and (B8)-(BlO) imply 

tan2¢ '" - 2(1- X*)\l + ~1~) \. (Bll) 

Absolute value signs have been used to insure that ¢ is 
really the angle of orientation of the pass axis. 

From Eq. (Bll), it is easy to deduce that 

sin?¢ '" 1, (B12) 

cos2¢ '" (1- x*)? (1 + r~~) y (B13) 

Then, Eqs. (Bl), (B2), (B8)-(B10), (B12), and (B13) 
imply 

__ 6. J..L2(X = 1) 
p - 3nt ' (B14) 

1 kT 
q'" 1- x* n; , (B15) 

D*(p/q)l/2 '" (1- x* )1/?(21Tn;)1/2[ ~0*( -::~Z; 1) y/2] . 
(B16) 

At the other extreme, x* - 0, the following results 
may readily be obtained: 

a2w \ kT U2(0) 
an1anz x.o = -nr - 3n! ' 

(B17) 

a?wl 6.j..ll(X=O) 
an~ x.o 3nt ' (B18) 

a2w 1 kT 
a~ "'7nf' (B19) 

From these it follows that 

tan2A. '" 2x* \1 + U2(0) \ 
'f' 3kT ' (B20) 

sin
2
¢ '" (X*)2 (1 + ~2!~ r ' (B21) 

cos2¢ = 1. (B22) 

Finally, 

(B23) 

(B24) 

and 
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