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Binary nucleation kinetics. I. Self-consistent size distribution
Gerald Wilemskia) and Barbara E. Wyslouzilb)
Lawrence Livermore National Laboratory, Livermore, California 94551-9900;
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280;
and Physical Sciences Inc., Andover, Massachusetts 01810-1077

~Received 4 October 1994; accepted 30 March 1995!

Using the principle of detailed balance, we derive a new self-consistency requirement, termed the
kinetic product rule, relating the evaporation coefficients and equilibrium cluster distribution for a
binary system. We use this result to demonstrate and resolve an inconsistency for an idealized
Kelvin model of nucleation in a simple binary mixture. We next examine several common forms for
the equilibrium distribution of binary clusters based on the capillarity approximation and ideal vapor
behavior. We point out fundamental deficiencies for each expression. We also show that each
distribution yields evaporation coefficients that formally satisfy the new kinetic product rule but are
physically unsatisfactory because they depend on the monomer vapor concentrations. We then
propose a new form of the binary distribution function that is free of the deficiencies of the previous
functions except for its reliance on the capillarity approximation. This new self-consistent classical
~SCC! size distribution for binary clusters has the following properties: It satisfies the law of mass
action; it reduces to an SCC unary distribution for clusters of a single component; and it produces
physically acceptable evaporation rate coefficients that also satisfy the new kinetic product rule.
Since it is possible to construct other examples of similarly well-behaved distributions, our result is
not unique in this respect, but it does give reasonable predictions. As an illustrative example, we
calculate binary nucleation rates and vapor activities for the ethanol–hexanol system at 260 K using
the new SCC distribution and compare them to experimental results. The theoretical rates are
uniformly higher than the experimental values over the entire vapor composition range. Although
the predicted activities are lower, we find good agreement between the measured and theoretical
slope of the critical vapor activity curve at a constant nucleation rate of 107 cm23 s22. © 1995
American Institute of Physics.

I. INTRODUCTION

Recent work on the subject of binary and multicompo-
nent nucleation has covered a wide range of topics:
numerical1–3 and analytical4–6 solutions for steady state and
transient rates, self-consistent distribution functions,7 density
functional techniques for determining binary cluster free en-
ergies of formation,8 models for the cluster composition,9,10

accurate measurements of binary nucleation rates covering
many orders of magnitude,11–13rigorous means for determin-
ing critical cluster compositions from measured rates,12–14

and binary condensation measurements in supersonic nozzle
expansions.15 With the availability of high quality experi-
mental results covering a wide range of conditions, it is fi-
nally possible to critically assess the accuracy of competing
theoretical rate expressions. However, in contrast to most
theories of unary nucleation, all theoretical binary rate equa-
tions involve significant mathematical approximations in
their development. Thus, in order to judge each theoretical
rate expression fairly, it is important to understand how the
predicted rates are affected by these approximations. At
present this can be done only by comparing the predictions
of the different rate expressions with exact numerical solu-
tions of the population balance equations governing binary
nucleation kinetics.

In our efforts to numerically solve these equations,16 we
found it necessary to resolve several inconsistencies involv-

ing the kinetic and equilibrium aspects of the theory. Both
aspects are related by the need to evaluate the evaporation
rate coefficients using the principle of detailed balance and
the equilibrium cluster size distribution. The difficulties in-
volving the binary equilibrium distribution are related to is-
sues of self-consistency for distributions in unary
systems17,18 but are more complex. First, an acceptable bi-
nary equilibrium distribution should obey the law of mass
action. Beyond satisfying this obvious and fundamental re-
quirement, a binary distribution should also display appropri-
ate limiting behavior as one component vanishes. From a
purely formal standpoint, this is not an issue, since general
statistical mechanical formulas for binary cluster concentra-
tions produce formally consistent results for these limits.
Formal results, however, are not very useful for doing calcu-
lations. Calculations always involve a model for determining
the cluster free energy, so the issue reduces to what limiting
behavior should apply to the model. For models treating mo-
lecular interactions based either directly or indirectly on sta-
tistical mechanics,8 the proper limiting behavior is guaran-
teed to emerge by doing the calculations correctly.
Unfortunately, these models are currently impossible to ap-
ply to most substances of interest, and the only recourse is to
more phenomenological approaches, usually based on the
capillarity approximation.

What physical considerations can help define the limit-
ing behavior of these models? Based on the asymptotic be-
havior of very large clusters, it seems reasonable to expect
continuous behavior as one component is eliminated. In this
case, the binary distribution should pass smoothly into a
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unary distribution of the same general form. For very small
clusters this argument has no physical justification. Imposing
this type of limiting behavior on the binary distribution for
small cluster sizes is equivalent to making a postulate for
mathematical convenience. It is directly analogous to insist-
ing that a unary distribution vary smoothly for the smallest
clusters sizes. Lacking a more fundamental alternative, how-
ever, it is this procedure that will be followed here.

In constructing a self-consistent binary distribution func-
tion, our primary goal is to avoid introducing any unphysical
behavior into the reverse~or evaporation! rate coefficients
required by the kinetics equations. Since these are deter-
mined using the binary distribution function and the prin-
ciple of detailed balance, the distribution function must sat-
isfy the minimum standards just set forth. For the theory to
be kinetically consistent, two other conditions must be satis-
fied: The evaporation rate coefficients should be uniquely
determined for each cluster composition, and they should not
exhibit unphysical dependence on the monomer vapor con-
centrations or total pressure. At present, no binary distribu-
tion function based on the capillarity approximation meets
all of the above requirements.

In this paper, we propose a new form of the binary equi-
librium cluster size distribution that obeys the mass action
law, reduces to appropriate forms for the unary distributions,
and yields a unique and physically well-behaved evaporation
rate coefficient for each cluster composition. Our new func-
tion is developed for the vapor-to-liquid transition in an ideal
vapor, but the result can be readily generalized to other
physical systems. Our new distribution is also based on the
classical capillarity approximation because this model still
provides the most practical means to make routine rate pre-
dictions. Our distribution is anad hocconstruction, but, as
discussed in Appendix A, it has a form that is acceptable
from the standpoint of statistical mechanics. Our other main
result, which we call the kinetic product rule, is more general
and does not depend on either ideal vapor behavior or the
classical capillarity approximation, although it is limited to
kinetic mechanisms in which clusters change only by the
addition and removal of monomers.

The paper proceeds as follows. In Sec. II, we test several
binary distribution functions for adherence to the mass action
law and for proper reduction to unary distributions. Using
detailed balancing in Sec. III, we develop a general self-
consistency requirement, our kinetic product rule, that is a
necessary, but not sufficient, condition for ensuring the ac-
ceptability of any set of evaporation rate coefficients. We
then apply this requirement to an idealized Kelvin model
introduced by Temkin and Shevelev19 and to the classical
capillarity model to expose inconsistencies that render these
approaches unsatisfactory. Next we propose a modified bi-
nary distribution function that overcomes these inconsisten-
cies. Finally, in Sec. IV, we illustrate the quantitative effect
of the new function on predicted nucleation behavior by
comparing theoretical rates and activities with experimental
values for the ethanol–hexanol system.12

II. MASS ACTION AND LIMITING CONSISTENCY

The law of mass action requires thatN( i , j ), the equilib-
rium concentration of clusters containingi monomers of type
A and j monomers of typeB, be expressible in the form

N~ i , j !5NA
i NB

j K~ i , j !, ~1!

whereNn is the number density of monomers of speciesn
~5A or B! in the vapor, and the equilibrium ‘‘constant’’K is,
in general, a function ofi , j , and temperature, but it does not
depend onNA , NB , or pressure when the vapor is regarded
as ideal. The term ‘‘limiting consistency’’ was recently intro-
duced in discussing the limiting behavior of unary
distributions.17 A unary distribution function satisfies limit-
ing consistency if it equals the monomer concentration when
it is evaluated for a single monomer unit. Although there are
no fundamental theoretical reasons for requiring this type of
limiting consistency, when appropriately implemented it can
improve the predicted temperature dependence of the nucle-
ation rate. Here, we shall refer to this requirement as type I
limiting consistency, since binary distributions of the sort we
are considering should also satisfy a second kind of limiting
consistency, which we will call type II. Type II limiting con-
sistency requires that a binary distribution reduce to an ap-
propriate unary distribution function when eitheri50 or j50,
but this can be done without satisfying type I limiting con-
sistency. For example, a binary distribution could reduce to a
unary distribution of either the Frenkel20 or Courtney21 form,
neither of which satisfies type I limiting consistency.17

From the pioneering work of Reiss22 and as discussed in
Appendix A, we know that any binary distribution function
based on the capillarity approximation can be written in the
form

N~ i , j !5N0S NA

NA
`~xA! D

i S NB

NB
`~xB! D

j

expS 2Vs~ i , j !

kBT
D , ~2!

whereNn
`(xn) is the equilibrium number density of mono-

mers of speciesn in a saturated vapor over a bulk solution
whose composition will be denoted by either of the mole
fractionsxA or xB ,

xB512xA5 j /~ i1 j !, ~3!

for the average cluster composition. One should keep in
mind that the actual composition used to determine the val-
ues ofNA

`(xA) andNB
`(xB) may differ from the average clus-

ter composition because of surface enrichment.8,13,23,24

Moreover, we haveVs( i , j ) 5 s( i , j )s( i , j ), wheres( i , j )
ands( i , j ) are, respectively, the surface tension and surface
area of the cluster,kB is the Boltzmann constant,T is the
absolute temperature, andN0 is a ‘‘normalization’’ factor. If
N0 were solely a function ofi , j , and T, Eq. ~2! would
clearly satisfy the law of mass action for ideal vapors. How-
ever, the most commonly used form forN0, developed by
Reiss,22 is

N05NA1NB , ~4!

which violates the mass action law, as was pointed out some
time ago.25 A related difficulty with Eq.~4! is its implication
that the concentrations of pureA clusters,N( i ,0), will de-
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pend linearly on the concentration ofB monomers and vice
versa, as was first noted by Katz.26 Thus, the most commonly
used form of the binary distribution function does not satisfy
either type of limiting consistency.

Kulmala, Laaksonen, and Gershick7 recently made the
first attempt to impose both types of limiting consistency on
the binary distribution, and their proposed distribution func-
tion ~written in our notation! is

N~ i , j !5@~12d0,i !NA1~12d0,j !NB#

3S NA

NA
`~xA! D

i2xAS NB

NB
`~xB! D

j2xB

3expS Vs~ i , j !

kBT
@12~ i1 j !22/3# D . ~5!

For either pure component, this function does, in fact, reduce
to the self-consistent classical~SCC! form27,28

Nn~g!5Nn
`~Nn /Nn

`!gexp@2Qn~g2/321!#, ~6!

whereQn5snsn~1!/~kBT! andsn andNn
` are, respectively, the

surface tension and equilibrium monomer vapor concentra-
tion of a pure liquid of typen. Nevertheless, Eq.~5! must be
considered unacceptable because it violates the law of mass
action for binary clusters. Because this distribution function
cannot be written in the form of Eq.~1!, it is impossible, in
principle, to derive it from fundamentally sound statistical
mechanics. This point is reinforced by the results in Appen-
dix A.

Suppose we now evaluate Eq.~2! for each pure cluster
distribution. We then find

N~ i ,0!5N0~ i ,0!~NA /NA
`! i expS 2VA

s ~ i ,0!

kBT
D , ~7!

N~0,j !5N0~0,j !~NB /NB
`! j expS 2VB

s ~0,j !

kBT
D , ~8!

where we have explicitly displayed the dependence ofN0 on
i and j but left the T dependence implicit. We have also
assumed that the surface tension is independent of size for
pure clusters, i.e.,

VA
s ~ i ,0!5s~ i ,0!s~ i ,0!5kBTQAi

2/3, ~9!

VB
s ~0, j !5kBTQB j 2/3. ~10!

If we now demand that Eqs.~7! and ~8! satisfy type I
limiting consistency by equaling the SCC form of Eq.~6!,
we then conclude that

N0~ i ,0!5NA
` exp~QA!, ~11!

N0~0, j !5NB
` exp~QB!. ~12!

The similarity of Eqs.~11! and ~12! to the self-consistent
correction factor found for the unary case is a deliberate
consequence of using Eq.~6!. Although the SCC distribution
has no more fundamental justification than any other,17,18 it
yields a better temperature dependence for the nucleation
rate than do other forms of classical nucleation theory except
for the Kelvin model.17,29 By incorporating the form of the
unary SCC correction into the binary distribution, we hope to

achieve a similar improvement in the predicted temperature
dependence of the binary rate. Equations~11! and~12! serve
to outline the form of the general result we seek, but to finish
our reasoning we need to consider the binary kinetics equa-
tions and address an inconsistency in their formulation. We
tackle this in Sec. III.

III. BINARY KINETICS, DETAILED BALANCE, AND
SELF-CONSISTENCY

A. General considerations

The binary kinetics equations are generalizations of the
one-component equations and were first proposed by Reiss22

for the case in which growth and decay involves only mono-
mer addition or evaporation. The net rates at which binary
clusters of composition~i , j ! become clusters of composition
( i11, j ) or (i , j11), respectively, are

JA~ i , j !5GA~ i , j !NAf ~ i , j !2EA~ i11, j ! f ~ i11, j !, ~13!

JB~ i , j !5GB~ i , j !NBf ~ i , j !2EB~ i , j11! f ~ i , j11!, ~14!

wheref is a nonequilibrium cluster concentration, andGn~i , j !
and En( i , j ) are, respectively, the forward and reverse rate
coefficients for the growth and decay of a cluster of compo-
sition (i , j ) via the addition or evaporation of a monomer of
speciesn. In this paper, a specific form forGn( i , j ) is not
needed, so we defer this choice to our following paper.16We
only need to remember thatGn( i , j ) is determined by colli-
sional cross-sections and mean molecular velocities, so it
does not depend on eitherNn or Nn

` . Likewise, for ideal
vapor mixtures, the evaporation coefficients will not depend
on NA , NB , or the total pressure.

Now apply detailed balancing to Eqs.~13! and ~14! to
obtain the following relations between successive values of
N( i , j ):

GA~ i , j !NAN~ i , j !5EA~ i11, j !N~ i11, j !, ~15!

GB~ i , j !NBN~ i , j !5EB~ i , j11!N~ i , j11!. ~16!

These equations may be iterated to obtain the following ex-
pressions relating the binary equilibrium distribution func-
tion to the two unary distributions:

N~ i , j !5NA
i N~0, j !)

k51

i
GA~k21, j !

EA~k, j !
, ~17!

N~ i , j !5NB
j N~ i ,0!)

k51

j
GB~ i ,k21!

EB~ i ,k!
. ~18!

They may also be used to express the unary distributions in
similar fashion:

N~ i ,0!5NA
i )
l51

i
GA~ l21,0!

EA~ l ,0!
, ~19!

N~0, j !5NB
j )
l51

j
GB~0, l21!

EB~0, l !
, ~20!

provided the following quantities are all understood to equal
unity ~in their appropriate units!: N(0,0), GA(0,0),
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GB(0,0), EA(1,0), andEB~0,1!. Replacing the unary distri-
butions in Eqs.~17! and~18! with the latter two expressions,
we find

N~ i , j !5NA
i NB

j )
k51

i
GA~k21, j !

EA~k, j ! )
l51

j
GB~0, l21!

EB~0, l !
~21!

and

N~ i , j !5NB
j NA

i )
k51

j
GB~ i ,k21!

EB~ i ,k! )
l51

i
GA~ l21,0!

EA~ l ,0!
. ~22!

To avoid confusion, throughout this paper any product with
an upper index of 0 should be interpreted as equal to unity.

Since the products of kinetic coefficients are indepen-
dent ofNA andNB , these two equations verify that the usual
binary rate equations are formally consistent with the law of
mass action. However, these results have more than just for-
mal significance since they provide a stringent test of the
internal consistency of the theory when specific expressions
are substituted for the kinetic coefficients. By equating Eqs.
~21! and~22!, we can frame this test in the form of a product
rule,

)
k51

i
GA~k21, j !

EA~k, j ! )
l51

j
GB~0, l21!

EB~0, l !

5)
l51

i
GA~ l21,0!

EA~ l ,0! )
k51

j
GB~ i ,k21!

EB~ i ,k!
, ~23!

that must be satisfied by the kinetic coefficients. Alterna-
tively, but perhaps easier to appreciate, the test can be posed
in terms of the equivalent pairs of equations, Eqs.~17! and
~18! or Eqs.~21! and ~22!. For a given set of kinetic coeffi-
cients, self-consistency demands that each of the paired
equations must yield identical results forN( i , j ).

From the standpoint of equilibrium thermodynamics this
requirement is obvious: lnN( i , j ) is proportional to the free
energy of cluster formation, and the free energy is a thermo-
dynamic state function independent of the path. The paths
used in formulating Eqs.~17!–~23! are not unique, but they
are convenient for evaluating the consistency of the kinetic
coefficients used in the theory. This connection with equilib-
rium thermodynamics can be formally strengthened by real-
izing that Eqs.~15! and ~16! also provide kinetic definitions
of equilibrium constants for the exchange ofA andB mono-
mers, respectively, between clusters of adjacent composi-
tions. We briefly discuss this point in Appendix B.

We will close this section by considering the special case
of the mixed dimer. For the mixed dimer, Eqs.~21! and~22!
@or Eqs.~15! and~16!# simplify to the following expressions:

N~1,1!5NANB

GA~0,1!

EA~1,1!
, ~24!

N~1,1!5NBNA

GB~1,0!

EB~1,1!
. ~25!

To properly assess these expressions, we must appreciate that
there is only a single kinetic path for the formation of a
mixed dimer. Thus the two, apparently different, rate equa-
tions, Eq.~13! with i50, j51 and Eq.~14! with i51, j50,

are degenerate, andEA~1,1!5EB~1,1! andGA(0,1)5GB(1,0)
for obvious physical reasons: When a mixed dimer breaks
up, it loses both anA and aB; similarly, the collision fre-
quency of anA with aB is the same as that of aB with anA.
~We realize that dimer formation is actually a three body
process, but this aspect is typically neglected in treating
nucleation kinetics.! With these considerations, we see that
Eqs.~24! and~25! are formally identical, but we haven’t yet
specified whatE~1,1! is, nor have we established which mod-
els for N( i , j ) lead to consistent values forEA and EB

through Eqs.~15! and ~16!.
We will initially address this issue by reanalyzing an

idealized Kelvin model forEA and EB first introduced by
Temkin and Shevelev,19 whose results were later employed
by Kožı́šek and Demo2 in numerically solving the binary
kinetics equations. The simplicity of this model permits us to
answer directly the questions we are asking without concern
for the complications that arise in treating more realistic
cases.

B. Idealized Kelvin model

Temkin and Shevelev19 originally applied the Kelvin
model to an idealized binary system with the following prop-
erties: constant surface tension, constant and equal partial
molar volumes of the two components, and ideal solution
behavior for the equilibrium partial pressures of the mix-
tures. Use of the Kelvin equation to evaluate the evaporation
rate coefficients leads to the following two general expres-
sions:

EA~ i , j !5GA~ i21, j !NA
`~xA!expS 2s~ i , j !vA

rkBT
D , ~26!

EB~ i , j !5GB~ i , j21!NB
`~xB!expS 2s~ i , j !vB

rkBT
D , ~27!

where vA and vB are the respective partial molecular vol-
umes of speciesA andB, andr is the droplet radius. With the
restrictions of the Temkin–Shevelev model, these equations
simplify to

EA~ i , j !5GA~ i21, j !xANA
` exp@k~ i1 j !21/3#, ~28!

EB~ i , j !5GB~ i , j21!xBNB
` exp@k~ i1 j !21/3#, ~29!

wherek52Q/3, and no subscripts are needed. If we use these
two expressions to evaluate Eqs.~17! and ~18!, and use the
following unary distribution function17 for the Kelvin model,

Nn~g!5Nn
`S Nn

Nn
`D g expF2kS (

j51

g

j21/321D G , ~30!

to consistently evaluateN( i ,0) andN(0, j ), we obtain the
following results forN( i , j ):

N~ i , j !5NA
`S NA

NA
`D iS NB

NB
`D j ~ i1 j !!

i ! j !

3expF2kS (
l51

i1 j

l21/321D G ~31!

from Eqs.~17! and ~28!, and
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N~ i , j !5NB
`S NA

NA
`D iS NB

NB
`D j ~ i1 j !!

i ! j !

3expF2kS (
l51

i1 j

l21/321D G ~32!

from Eqs.~18! and ~29!.
BecauseNA

` and NB
` are generally different, we have

found two conflicting expressions forN( i , j ), and this discor-
dance must reflect some fundamental inadequacy in the con-
struction of the evaporation coefficients. Temkin and Shev-
elev do not indicate in their paper that they were aware of the
difficulty that we have just exposed. In fact, their result for
N( i , j ) differs from either Eq.~31! or ~32! and amounts to
replacing the leading factor of eitherNA

` @in Eq. ~31!# or NB
`

@in Eq. ~32!# with (NA1NB)exp~2k!, which violates the law
of mass action and both types of limiting consistency. How-
ever, it does possess some of the symmetry that a fully sat-
isfactory distribution function must have. We also note that
the more general analysis of the nucleation rate by Temkin
and Shevelev is not invalidated by this deficiency; only their
results that depend specifically on the prefactor are affected.

There is one trivial way to reconcile the correct, but
inconsistent, solutions for the Temkin–Shevelev model. This
possibility is based on the argument that the mixture proper-
ties assumed by Temkin and Shevelev are so restrictive that
they also imply thatNA

`5NB
`, thus making Eqs.~31! and~32!

identical. However, this expedient clearly fails in every other
case, and a more general solution is needed. At the outset it
seems fair to point out that we do not have a rigorous deri-
vation of our final result. We can supply only a heuristic
argument to generate it, but our final result is at least consis-
tent with the general functional form obtained from statisti-
cal mechanics in Appendix A. To illustrate our thinking we
first consider the equilibrium concentration of mixed dimers.

From detailed balance for the equilibrium of monomers
and mixed dimers we know that

GABNANB5E~1,1!N~1,1!, ~33!

whereGAB5GA(0,1)5GB(1,0). Even with this latter equal-
ity, we see that Eqs.~28! and ~29! yield different results for
E~1,1!. In order to write a satisfactory expression forE~1,1!,
it is helpful to recognize that the inequality ofEA~1,1! and
EB~1,1! for this model stems from approximating a mixed
dimer as a 50–50 bulk solution. This practically guarantees
that the evaporation coefficients will differ since the equilib-
rium number densities~or vapor pressures! for a 50–50 mix-
ture are almost never equal, even for ideal solutions. Now to
correct this deficiency we write an equation that is analogous
to Eqs.~28! and ~29!,

E~1,1!5GABNAB
` exp~k/21/3!, ~34!

but whereNAB
` represents an effective monomer number den-

sity that accounts in some symmetric way for the influence
of bothA andB on the mixed dimer breakup rate. A simple
and acceptable expression forNAB

` results from taking the
harmonic mean of the product of the individual equilibrium
number densities of an ideal 50–50 mixture,

NAB
` 5@NA

`~1/2!NB
`~1/2!#1/25 1

2~NA
`NB

`!1/2. ~35!

From Eqs.~33! and ~34!, we then find the following result
for N~1,1!:

N~1,1!52~NA
`NB

`!1/2
NA

NA
`

NB

NB
` exp~2k/21/3!, ~36!

which does not appear to violate any physical or chemical
principles. Although, the prefactor~NA

`NB
`!1/2 works fine for

the mixed dimer, it does not suffice for any other case. How-
ever, the form of this term suggests that a general prefactor
of the type (NA

`)a(NB
`)b, wherea1b51 to preserve proper

dimensionality, would be satisfactory. To ensure that the
unary distributions are properly recovered, the exponentsa
andb must be functions of composition such thata51 and
b50 when j50 and vice versa wheni50. Without further
justification, we therefore propose the following expression
for N( i , j ):

N~ i , j !5~NA
`!xA~NB

`!xBS NA

NA
`D iS NB

NB
`D j ~ i1 j !!

i ! j !

3expF2kS (
l51

i1 j

l21/321D G . ~37!

This expression reproduces the results of Eqs.~34! and
~36! and reduces properly to Eq.~30! for the unary distribu-
tion when eitheri50 or j50. It will not, of course, reproduce
exactly the expressions forEA andEB in Eqs.~28! and~29!,
but this is desirable since those expressions were responsible
for the inconsistent results in Eqs.~31! and ~32!. The new
self-consistent expressions are

EA~ i , j !5GA~ i21, j !xANA
`SNB

`

NA
`D xB /~ i1 j21!

3exp@k~ i1 j !21/3# ~38!

and

EB~ i , j !5GB~ i , j21!xBNB
`SNA

`

NB
`D xA /~ i1 j21!

3exp@k~ i1 j !21/3#. ~39!

These expressions differ from those of Temkin and
Shevelev only by the factors exponentiated withxB andxA ,
but these factors are decisive in providing self-consistency to
this model. For small, nonzero values ofi and j, the new
expressions will differ considerably from the old, but their
functional dependence on thermodynamic variables is now
presumably sounder, at least qualitatively. For large values of
i andj, the new expressions will differ very slightly from the
old, but the accumulated product of these small differences is
now enough to ensure that the product rules, Eqs.~17!–~23!,
are satisfied.

C. General equilibrium distribution

Now we consider how to generalize these results to less
restrictive mixture models. We present our discussion in
terms of Eq.~2!, the distribution function based on the usual
form of the capillarity approximation, since it already con-
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tains all of the elements needed to treat realistic solution
models. We proceed by temporarily assuming that the nor-
malization factorN0 is independent ofi and j and by pursu-
ing an apparently circular argument that follows closely the
steps used in analyzing the idealized Kelvin model.

Thus, we first use Eqs.~2!, ~15!, and~16! for all i and j
to obtain the following expressions for the evaporation coef-
ficients:

EA
0~ i , j !5GA~ i21, j !NA

`~xA!SNA
`~xA!

NA
`~xA8 !

D i21SNB
`~xB!

NB
`~xB8 !

D j
3expS Vs~ i , j !2Vs~ i21, j !

kBT
D , ~40!

EB
0~ i , j !5GB~ i , j21!NB

`~xB!SNA
`~xA!

NA
`~xA9 !

D i SNB
`~xB!

NB
`~xB9 !

D j21

3expS Vs~ i , j !2Vs~ i , j21!

kBT
D , ~41!

wherex8 andx9 refer to compositions evaluated with one less
A andB monomer, respectively, than the unprimed values.
We use the superscript zero onEA andEB to indicate that
these results were derived using a constantN0. Note that
using the Reiss form forN0, Eq. ~4!, gives identical results.

Although these expressions appear physically reason-
able, they do not satisfy the kinetic product rule, Eq.~23!.
This basic inconsistency results from two deficiencies of
Eqs. ~40! and ~41!: They fail to give the correct values~for
this model! for the two pure dimer evaporation coefficients
and they do not produce a unique result for the mixed dimer
evaporation coefficient, even whenGA(0,1)5GB(1,0)
5GAB . The reason for these difficulties becomes apparent
when we directly examine the detailed balance equations,
Eqs.~15! and~16!, for the compositions in question. In these
cases, the expressions forEA(1,1), EB(1,1), EA(2,0), and
EB~0,2! involve the monomer densities,NA or NB , disguised
as the factorsN~1,0! or N~0,1!, respectively. The use of Eq.
~2! with constantN0 for these two monomer concentrations is
physically incorrect and leads to the difficulties just noted.

Suppose we now evaluate the evaporation coefficients
more carefully using a slightly more general model in which
we allow N0 for each unary distribution to differ from the
value used for the binary distribution. Note that this means
we are temporarily sacrificing type II limiting consistency.
Then Eqs.~40! and~41! still hold for most values ofi and j,
but several modifications must be noted. First, fori51 and
j .1 we find

EA8 ~1, j !5
N0,B

N0
EA
0~1, j !, ~42!

and for j51 andi.1 we also have

EB8 ~ i ,1!5
N0, A

N0
EB
0~ i ,1!. ~43!

Here the new values are denoted by primes,EA
0 andEB

0

are still given by Eqs.~40! and~41!, andN0, A andN0, B are
unary normalizing factors such as, but not necessarily, those
in Eqs.~11! and ~12!. For the special dimeric cases we find

E8~1,1!5
1

N0
GABNA

`~ 1
2 !NB

`~ 1
2 !expS Vs~1,1!

kBT
D , ~44!

EA8 ~2,0!5
1

N0,A
GA~1,0!~NA

`!2 expS Vs~2,0!

kBT
D , ~45!

EB8 ~0,2!5
1

N0,B
GB~0,1!~NB

`!2 expS Vs~0,2!

kBT
D . ~46!

When these expressions are used to replace the corre-
sponding faultyE0 values, the kinetic product rule is satis-
fied. This means that the amended set of evaporation coeffi-
cients could be used as a basis for a self-consistent kinetics
scheme. Type II limiting consistency can be recovered, if
desired, simply by lettingN05N0, A5N0, B, but not if the
Reiss value forN0, Eq. ~4!, is used. This value is unaccept-
able for use in these coefficients not only for the reasons
given in Sec. II, but also because it forces some of the evapo-
ration coefficients given by Eqs.~42!–~46! to depend onNA

andNB . This is physically incorrect. Thus, the price for us-
ing Eqs.~2! and ~4! and achieving consistency with the ki-
netic product rule is a set of evaporation coefficients that is
partially unphysical. Although the evaporation coefficients
derived from the Kulmala, Laaksonen, and Gershick
distribution7 formally satisfy the kinetic product rule they
also pay the price of being unphysical by depending onNA

andNB .
It is also important to appreciate that a numerical solu-

tion of the full set of binary kinetics equations using Eqs.
~40! and ~41! at every composition will lead to steady state
rates that differ significantly from those predicted using the
standard Reiss formula for the nucleation rate. Moreover,
this disparity has nothing to do with the saddle point ap-
proximation used to derive the formula of Reiss.16 The rea-
son is that, besides giving a nonunique value forE~1,1!, Eqs.
~40! and ~41! also give the SCC values for the pure dimer
evaporation rates, but these are not the correct values to use
with the Reiss theory, as seen from Eqs.~45! and ~46!. In
their vapor-to-liquid modeling, Kozˇı́šek and Demo2 used
Eqs. ~40! and ~41!, but there is no indication that they cor-
rected for the problems just noted. Thus, they cannot fairly
compare their numerical results with the analytical results
using the Reiss distribution, and their conclusions based on
such comparisons need to be reevaluated.

The modified set of evaporation coefficients represented
by Eqs. ~40!–~46! works with any values of the constants
N0, N0,A, andN0,B. If we follow the arguments of Weakliem
and Reiss,18 we see that these constants can be interpreted as
reference cluster concentrations in any arbitrary standard
state. Reimposing type II limiting consistency in this case in
equivalent to using the same standard state for each type of
cluster, which is perfectly acceptable, even desirable. Be-
yond this we have no fundamental guidelines to help us
evaluate these constants. Moreover, even if we somehow se-
lect ‘‘reasonable’’ values for them, we do not expect to find
much, if any, improvement in the predicted temperature de-
pendence of the binary nucleation rate. This is because the
rates will only differ by the factorN0/(NA1NB) from those
of the standard Reiss theory. Thus, we will adopt a different
ad hocapproach and invent an expression forN0 that is an
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analogue of the unary SCC result. We have two motives for
doing this. One is formal: to illustrate some sort of depen-
dence oni andj as demonstrated in Appendix A. The other is
pragmatic: the unary SCC model appears, along with the
Kelvin model, to predict a better temperature dependence for
the nucleation rate than other versions of classical theory
based on the simple capillarity approximation.17,29We hope
and expect that an appropriate binary SCC model will show
a comparable degree of improvement.

We proceed by naively using Eqs.~40! and~41! to evalu-
ate the kinetic product rule, Eq.~23!. Note that this is equiva-
lent to evaluating the intermediate formulas, Eqs.~17! and
~18!, with the unary SCC distribution functions, defined by
Eq. ~6!, because the unary SCC evaporation coefficients are
given precisely by Eqs.~40! and~41!. Moreover, we already
know that the unary SCC distribution function and evapora-
tion coefficients are fully consistent. The result of this pro-
cedure is that the kinetic product rule can only be satisfied if

N0~ i ,0!5N0~0,j !, ~47!

but the latter two normalizing factors were previously de-
fined in Eqs.~11! and ~12!, and they are obviously different
from each other.

This contradiction resembles the situation previously en-
countered for the idealized Kelvin model. By reasoning
analogously to that case, we resolve this difficulty by pro-
posing the following composition dependence forN0:

N0~ i , j !5@N0~ i ,0!#xA@N0~0, j !#
xB. ~48!

Thus, the final form of our proposed equilibrium distribution
follows from Eqs.~2! and ~48!,

N~ i , j !5~NA
`!xA~NB

`!xB exp~xAQA1xBQB!

3S NA

NA
`~xA! D

i S NB

NB
`~xB! D

j

expS 2Vs~ i , j !

kBT
D . ~49!

This form preserves the proper dimensionality ofN( i , j ),
satisfies the law of mass action, and yields proper expres-
sions forN( i , j ) in all appropriate limiting cases. Moreover,
when the evaporation coefficients are evaluated from Eqs.
~15! and ~16!, the following expressions are found:

EA~ i , j !5SNB
`

NA
`D xB /~ i1 j21!

expF xB
i1 j21

~QB2QA!GEA
0~ i , j !,

~50!

EB~ i , j !5SNA
`

NB
`D xA /~ i1 j21!

expF xA
i1 j21

~QA2QB!GEB
0~ i , j !.

~51!

These expressions appear to be physically well behaved, are
fully self-consistent, and are now valid for all values ofi and
j in contrast with Eqs.~40! and ~41!. The factors exponenti-
ated withxA or xB account for these improvements. The first
factor is responsible for ensuring type II limiting consistency
while the second factor, involving theQ factors, provides
type I limiting consistency. As for the Kelvin model, these
factors deviate significantly from unity for small, nonzero
values ofi andj, they approach unity for large values ofi and
j, and they are always essential if the product rules, Eqs.

~17!–~23!, are to be satisfied. For largei andj, either the new
or old evaporation coefficients revert to a close approxima-
tion to the Kelvin forms, Eqs.~26! and ~27!, but in contrast
to Eqs. ~40! and ~41! the new expressions yield a unique
result forE~1,1!:

E~1,1!5GAB

NA
`~ 1

2 !NB
`~ 1

2!

~NA
`NB

`!1/2
expS Vs~1,1!

kBT
2

~QA1QB!

2 D .
~52!

The idealized Kelvin model, which we treated earlier in
Sec. III B, has little practical value, but there is pedagogic
interest in comparing our Kelvin results with those derived
from our general expressions for the same idealized solution
model. Thus, if we specialize Eq.~52! to this case, we obtain
an expression that closely resembles the results we proposed
earlier in Eqs.~34! and~35!. If we similarly evaluateN(1,1)
by specializing Eq.~49!, we find an expression that is closely
related to our earlier result in Eq.~36!. The general formula
for N( i , j ) obtained from Eq.~49! for this idealized solution
model is very similar to our earlier result in Eq.~37!: Nu-
merical factors in the prefactor differ slightly due to differ-
ences between factorials and power laws; numerical differ-
ences in the argument of the exponential term also occur, and
these are identical to those found between the SCC and
Kelvin results in the unary case.17

Finally, by neglecting the monomeric surface free energy
terms, we obtain a binary distribution function that is analo-
gous to the Courtney21 distribution for unary systems:

N~ i , j !5~NA
`!xA~NB

`!xBS NA

NA
`~xA! D

i S NB

NB
`~xB! D

j

3expS 2Vs~ i , j !

kBT
D . ~53!

This distribution will not yield the correct monomer limiting
values, and so it should not be used for the compositions
~1,0! and~0,1!, but it is fully consistent in all other respects.
The evaporation coefficients corresponding to this distribu-
tion can be obtained from Eqs.~50! and ~51! by neglecting
the factors containingQA andQB , provided care is taken to
eliminate additionalQ factors that occur inEA(1,1),
EA(2,0), EB(1,1), andEB~0,2!.

These are just two examples of many possible binary
distribution functions that agree in form with the general
result obtained in Appendix A. As demonstrated by Weak-
liem and Reiss18 for the case of unary distributions, each of
these binary distributions is the product of treating the trans-
lational degrees of freedom of the cluster in an uncontrolled,
and presumably deficient, manner. Until a correct molecular
theory is available to provide better guidance, we will have
to rely on pragmatic considerations to provide some empiri-
cal justification for these treatments.

IV. ILLUSTRATIVE NUMERICAL RESULTS

Changes to the equilibrium distribution will directly af-
fect the numerical values of theoretically predicted nucle-
ation rates in both binary and unary nucleation. To illustrate
the magnitude of this effect we compared various theoretical
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predictions with the recent experimental results of Strey and
Viisanen12 for binary nucleation at 260 K in the ethanol–
hexanol system. Although binary nucleation rate measure-
ments exist for more complex mixtures, for example,
alcohol–water systems,11 we chose the ethanol–hexanol data
for the following reasons:~1! Ethanol and hexanol form ideal
liquid mixtures;~2! the surface tensions of the pure compo-
nents are nearly identical, thus, surface enrichment effects
are negligible;~3! all of the experiments were conducted
using essentially ideal, dilute gas mixtures;~4! the nucleation
rates were measured at constant temperature. Within the
framework of classical nucleation theory, comparisons with
these rate data are straightforward and are not complicated
by the effects of surface enrichment on the structure of the
cluster. Please note, however, that these simplifications are a
matter of convenience, not necessity. Rate calculations with
our SCC binary cluster distribution are not precluded for
nonideal mixtures, since the formalism does not rely on liq-
uid mixture ideality, and the effects of cluster structure could
be handled as in Refs. 9 and 10, for example. Eliminating
these two effects from our illustrative calculations focuses
attention solely on the new factors present in our SCC dis-
tribution function.

Theoretical nucleation rates or activities were calculated
from rate expressions due to Stauffer30 and Reiss.22 Saddle
point compositions and free energies were computed using
the corrected classical theory as described in Refs. 12 and 23
with values of the physical constants from Ref. 12. The tran-
sition to unary nucleation was handled similarly to earlier
work,25 with a modified definition of the rate that is fully
described elsewhere.16 Figures 1~a! and 1~b! compare the
experimental data with nucleation rates predicted using
Stauffer’s rate formula with our SCC distribution, Eq.~49!,
and the Reiss distribution. The rates are plotted versus the
mean valuea of the individual vapor species activities,aE
and aH , wherea5(aE

21aH
2 )1/2, and the separate data sets

correspond to constant values of the activity fraction
y5aH/(aE1aH!. We have plotted only half of the experi-
mental data to avoid confusion. Although the Reiss distribu-
tion gives a better fit to the experimental data fory,0.9, it
severely underpredicts the rates fory→1. Our proposed dis-
tribution, on the other hand, consistently overpredicts the
rates somewhat, but it does a better job asy→1.

Figure 2 presents the same data as an activity plot for the
constant rate ofJ5107 cm23 s21. The activities predicted
using our SCC distribution parallel the experimental points
quite well, although they are somewhat lower. The results
calculated using the Reiss distribution do not follow the
trend of the data as well, although the absolute fit is better at
the higher ethanol activities. We do not expect our SCC dis-
tribution to always improve the agreement between binary
nucleation experiments and theory because it still relies on
the capillarity approximation rather than on a more realistic
cluster model. Nevertheless, for cases where SCC theory
does a better job of predicting the unary rates, this distribu-
tion provides a reasonable binary analogue. Our distribution
should also do a better job of predicting the temperature
dependence of binary nucleation rates in the same way that
the SCC theory does for unary systems.29

V. SUMMARY AND CONCLUSIONS

Using the principle of detailed balance, we derived a
new kinetic self-consistency requirement relating the evapo-
ration coefficients and equilibrium cluster distribution for a
binary system. We first used this result to demonstrate and
resolve an inconsistency in the results for an idealized Kelvin
model of a simple binary mixture. We then examined several
forms of the binary equilibrium distribution based on the
capillarity approximation. We showed that although each dis-
tribution yields sets of evaporation coefficients that are for-
mally consistent with the kinetic product rules, Eqs.~17!–
~23!, all or some of these coefficients are physically

FIG. 1. Nucleation rates at 260 K in the ethanol–hexanol system plotted vs
a mean valuea of the individual species activities,aE and aH , where
a5(aE

21aH
2 )1/2. The open squares are the data of Strey and Viisanen~Ref.

12!. The solid lines are the nucleation rates calculated at the indicated ac-
tivity fractions,y5aH/(aE1aH), using Stauffer’s nucleation rate expression
and ~a! our SCC binary distribution function or~b! the Reiss binary distri-
bution function.
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unacceptable because they are functions of the monomer va-
por concentrations. As examples of acceptable results, we
then proposed several new forms for the binary distribution
function and evaporation coefficients based on the capillarity
approximation that satisfy the degrees of self-consistency in-
vestigated here. Finally, we compared experimental binary
nucleation rates and vapor activities with theoretical values
predicted using our binary SCC distribution in combination
with Stauffer’s rate formula. While we neither expected nor
found perfect agreement, we did note improvement in the
predicted slope of the critical vapor activity curve at constant
nucleation rate, and we anticipate that the predicted tempera-
ture dependence of the rate will also improve.

Although the considerations presented here may appear
tedious, they are necessary to make consistent comparisons
between analytical and numerical results when evaluating the
accuracy of analytical rate expressions.16 We must be sure
that the ingredients used in obtaining numerical solutions are
fully compatible with all applicable physical and chemical
principles such as detailed balance, symmetry, mass action,
and limiting behavior. We must be especially careful to
verify that the entire set of evaporation coefficients used in
the numerical solution corresponds precisely to the equilib-
rium distribution on which the analytical results are based, or
any comparisons will be meaningless. These considerations
will automatically be satisfied when more fundamental theo-
retical treatments8,31,32are properly employed to evaluate the
binary distribution function and evaporation coefficients.
However, until these advanced methodologies become rou-
tinely applicable, we have to be content with more intuitive,
phenomenological models relying on macroscopic thermody-
namic concepts. Consequently, we must be vigilant when

using these models because it is easy to overlook or intro-
duce inconsistencies that can markedly affect predicted be-
havior.
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APPENDIX A: STATISTICAL MECHANICAL
DEFINITION OF THE EQUILIBRIUM SIZE
DISTRIBUTION

Here, we present the general form of the cluster size
distribution expected on the basis of statistical mechanics
and show how to relate it to distributions based on the cap-
illarity approximation. The result is not new,25 but we repeat
it using more explicit notation to emphasize its important
features and to make some connections with the recent work
of Weakliem and Reiss18 on unary systems.

As usual, we regard clusters of different composition as
components of an ideal gas. Then the chemical potential of a
cluster of composition (i , j ) can formally be written as

m~ i , j !5kBT ln@L~ i , j !3N~ i , j !/q~ i , j !#, ~A1!

whereL( i , j ) is the thermal de Broglie wavelength of the
cluster, determined by the cluster mass and temperature, and
q( i , j ) is the internal partition function of the cluster. The
entire contribution of the cluster’s translational motion to
m( i , j ) is accounted for by the termkBT ln@L( i , j )3N( i , j )#.
Thus,q( i , j ) involves only degrees of freedom relative to the
center of mass of the cluster.33 The equilibrium condition
between the vapor phase molecules and the clusters is

m~ i , j !5 imA1 jmB , ~A2!

wheremn is the chemical potential of speciesn in the vapor
phase. If the vapor is an ideal gas mixture, so that the chemi-
cal potentials have the formmn5mn

01kBT ln Nn , Eqs. ~A1!
and ~A2! give

N~ i , j !5~NA! i~NB! j
q~ i , j !

L~ i , j !3
expS imA

01 jmB
0

kBT
D , ~A3!

where the standard states have been taken as one per unit
volume.

The essence of the capillarity approximation in this for-
malism is to write

2kBT ln q~ i , j !5 imA
m~ i , j !1 jmB

m~ i , j !

1Vs~ i , j !2kBT ln qrep~ i , j !, ~A4!

wheremn
m( i , j )5mn

01kBT ln Nn
`(xn) is the chemical poten-

tial of speciesn in a mixture of composition (i , j ), and
qrep( i , j ) is the formal replacement partition function that ac-
counts for any misapportionment of translational and internal
free energy among the other terms of Eq.~A4!. After substi-
tuting Eq. ~A4! into Eq. ~A3! and using the definitions for

FIG. 2. Activities of ethanol and hexanol required to produce a nucleation
rate of J5107 cm23 s21 at 260 K. The solid squares are logarithmically
interpolated from the tabulated data of Strey and Viisanen~Ref. 12!. The
bottom line~long dashes! was calculated using the Stauffer rate expression
and our SCC binary cluster distribution. The upper lines use the Reiss binary
cluster distribution and either the Stauffer~solid! or the Reiss~short dashes!
expressions for the nucleation rate.
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mn
m( i , j ), one can write the cluster concentration in a form

that does not depend on any choice of standard state:

N~ i , j !5
qrep~ i , j !

L~ i , j !3 S NA

NA
`~xA! D

i S NB

NB
`~xB! D

j

expS 2Vs~ i , j !

kBT
D .
~A5!

If we compare this result with Eq.~2!, we see thatN0 can be
identified as

N05
qrep~ i , j !

L~ i , j !3
. ~A6!

Because of the nature ofqrep ~Ref. 33! andL, we see
thatN0 can, in general, depend oni , j , T, and other molecu-
lar parameters but not on pressure or actual vapor species
concentrations. If we had simply mimicked the argument
used by Weakliem and Reiss,18 instead of Eq.~A6! we could
have foundN05Nref , whereNref is a gas phase number den-
sity arbitrarily chosen as the standard state for the cluster
chemical potential. The latter result is acceptable, but it does
not give us the general form of the result proposed forN0 in
Sec. III C. It should be clear, however, that we are not claim-
ing to have evaluatedqrep( i , j ); we have merely replaced it.

APPENDIX B: KINETIC DEFINITION OF EQUILIBRIUM
CONSTANTS

Equations~15! and~16! provide kinetic definitions of the
equilibrium constants,KA( i , j ) andKB( i , j ), for the exchange
of A andB monomers, respectively, between clusters of ad-
jacent compositions:

KA~ i , j !5
N~ i , j !

NAN~ i21, j !
5

GA~ i21, j !

EA~ i , j !
, ~B1!

KB~ i , j !5
N~ i , j !

NBN~ i , j21!
5

GB~ i , j21!

EB~ i , j !
. ~B2!

In terms of these equilibrium constants and with the special
valuesKA(1,0)5KB(0,1)51, Eqs.~21! and ~22! can be re-
written as

N~ i , j !5NA
i NB

j )
k51

i

KA~k, j !)
l51

j

KB~0, l ! ~B3!

and

N~ i , j !5NB
j NA

i )
k51

j

KB~ i ,k!)
l51

i

KA~ l ,0!, ~B4!

where products with an upper index equal to zero are again
defined as unity.

Equations~B3! and ~B4! merely reformulate the infor-
mation already expressed in Eqs.~21! and~22!. Both sets of

equations provide several different but equivalent definitions
of K( i , j ). Neither set of equations is likely to be of much
practical use at present.A priori knowledge of the evapora-
tion coefficients is usually lacking, and the usual procedure
is to work withN( i , j ) based on the capillarity approximation
and evaluateEA andEB using Eqs.~15! and ~16!. The stan-
dard state free energy differences needed to evaluateKA and
KB or K( i , j ) are also generally unavailable, although they
can, in principle, be determined from statistical mechanics. If
they were available, one could work ‘‘backwards’’ to deter-
mine the evaporation coefficients directly without ever both-
ering to determineN( i , j ), although this would obviously be
possible too. All of this should be well known, and we men-
tion it mainly to reemphasize this connection between ther-
modynamics and kinetics in the near-equilibrium limit.
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