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Binary nucleation kinetics. III. Transient behavior and time lags
Barbara E. Wyslouzil
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester,
Massachusetts 01609-2280

Gerald Wilemski
Lawrence Livermore National Laboratory, Livermore, California 94551-9900

~Received 1 February 1996; accepted 9 April 1996!

Transient binary nucleation is more complex than unary because of the bidimensionality of the
cluster formation kinetics. To investigate this problem qualitatively and quantitatively, we
numerically solved the birth–death equations for vapor-to-liquid phase transitions. Our previous
work @J. Chem. Phys103, 1137~1995!# showed that the customary saddle point and growth path
approximations are almost always valid in steady state gas phase nucleation and only fail if the
nucleated solution phase is significantly nonideal. The current work demonstrates that in its early
transient stages, binary nucleation rarely, if ever, occurs via the saddle point. This affects not only
the number of particles forming but their composition and may be important for nucleation in
glasses and other condensed mixtures for which time scales are very long. Before reaching the state
of saddle point nucleation, most binary systems pass through a temporary stage in which the region
of maximum flux extends over a ridge on the free energy surface. When ridge crossing nucleation
is the steady state solution, it thus arises quite naturally as an arrested intermediate state that
normally occurs in the development of saddle point nucleation. While the time dependent and steady
state distributions of the fluxes and concentrations for each binary system are strongly influenced by
the gas composition and species impingement rates, the ratio of nonequilibrium to equilibrium
concentrations has a quasiuniversal behavior that is determined primarily by the thermodynamic
properties of the liquid mixture. To test our quantitive understanding of the transient behavior, we
directly calculated the time lag for the saddle point flux and compared it with the available analytical
predictions. Although the analytical results overestimate the time lag by factors of 1.2–5, they
should be adequate for purposes of planning experiments. We also found that the behavior of the
saddle point time lag can indicate when steady state ridge crossing nucleation will occur. ©1996
American Institute of Physics.@S0021-9606~96!01327-X#

I. INTRODUCTION

During transient binary nucleation, both the number and
composition of particles being formed differ from one’s ex-
pectations based on steady state nucleation. For nucleation in
glasses, the time to reach steady state is long, and transient
behavior must be considered when interpreting experimental
results for phase transformation kinetics.1,2 In nucleation
from the vapor phase, transient effects can be important for
experiments with short time scales, for example, in expan-
sion cloud chambers, shock tubes and supersonic nozzle ex-
pansions. To determine when transient effects will dominate,
we may estimate the time lag for the system. In a time de-
pendent nucleation process, ifng(t) is the cumulative num-
ber of particles of sizeg formed in the time interval@0,t# and
Js is the steady state nucleation rate, the time lagtg is the
parameter that makes the equation~cf. Ref. 3!,

ng~ t !5Js3~ t2tg!, ~1!

asymptotically correct fort@tg . In general,tg depends on
the cluster size of interest. In this paper, we restrict consid-
eration to the time lag for the critical cluster size, which will
simply be denoted ast* .

Considerable effort has been made to understand the be-
havior of time lags and transient nucleation kinetics in unary

systems.1–29 In contrast, work on binary systems has been
limited, possibly because the two-dimensional nature of clus-
ter formation complicates mathematical analysis. One par-
ticular complication not present for unary kinetics is the dif-
ficulty in defining the average path followed by a cluster as it
grows to critical size and composition. Wilemski30 devel-
oped the first expression for the time lag in binary nucleation
by assuming that the major flux through the subcritical clus-
ter sizes followed the path defined by tanu5j * / i * , wherei *
and j * are the numbers ofA andB molecules, respectively,
in the critical cluster. He applied his results to estimatet* for
vapor-to-liquid nucleation in the water–ethanol system and
found that when both species are abundant and have vapor
phase activities greater than 1, time lags are on the order of 1
ms. When the ethanol activity drops below 0.01, the time lag
for binary nucleation increases rapidly and homogeneous
nucleation of water becomes the only viable nucleation pro-
cess.

Schelling and Reiss31 used a variational technique to cal-
culate time lags in the H2SO4–H2O system. They found that,
under conditions typical of their experiments, the times re-
quired to establish the steady state cluster distribution could
be on the order of 0.1 s and that even longer times were
required for the newly formed particles to grow to an observ-
able size.32 This theoretical work helped explain their experi-
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mental observations32 that particle formation above
H2SO4–H2O solutions in an expansion cloud chamber was
consistent with either unary nucleation of water or some
combination of pure water nucleation and binary nucleation
of acidic droplets. Shi and Seinfeld33 used the method of
matched asymptotic expansions to develop expressions for
the time dependent rate and the time lag of binary nucleation.
They stated that large time lags could be due to anisotropy of
the free energy surface as well as to large differences in the
impingement rates of the two condensible species. Recently,
McGraw34 used a computational approach based on the
negative eigenvalue theorem to obtain the cumulative eigen-
value distribution for nucleation in the H2SO4–H2O system.
From the smallest eigenvalues he estimated the nucleation
time lags and found them to be of the same order of magni-
tude as those obtained by Schelling and Reiss.31

In the second paper~WWII !35 of this series, we pre-
sented steady state results based on our numerical solutions
of the binary kinetics equations. In this paper we discuss our
transient results. Several other numerical studies of transient
binary nucleation have recently been published. Nishioka
and Fujita36 studied the early to intermediate phases of bi-
nary nucleation in the H2SO4–H2O system, but due to com-
putational limitations they were unable to follow this very
slowly relaxing system all the way to steady state. Kozˇı́šek
and Demo37,38 restricted their work to binary systems that
form ideal mixtures in the nucleated phase. Here, we shall
provide a much more detailed look at the full transient period
for six binary systems representing a wide range of ideal and
nonideal solution behavior. Our specific goals are to examine
how the two-dimensional distributions of cluster concentra-
tions and fluxes evolve to their steady state values and to
stringently test the available expressions for the time lag in
binary nucleation. To determine how robust these expres-
sions are, we examine how the time lag depends on several
binary system parameters including impingement rates, equi-
librium vapor pressures, vapor phase activities, and the de-
gree of liquid phase nonideality. We are particularly inter-
ested in understanding how the time lag for the saddle point
flux varies under certain limiting or special conditions that
occur, for example, when the concentration of one compo-
nent approaches zero, or when ridge crossing is the dominant
steady state pathway for particle formation. Although all of
our calculations are for vapor–liquid phase transitions, the
general conclusions we draw should apply equally well to
condensed phase systems. In Sec. II of this paper we describe
the kinetics equations we solved, how we derive the esti-
mates for the time lag from the numerical data, and the avail-
able analytical expressions fort* in binary systems. Our re-
sults are presented and discussed in Sec. III. We conclude
with a very brief summary of the results in Sec. IV.

II. COMPUTATIONAL METHODOLOGY

As discussed in more detail in WWII, we solved the
kinetics equations describing binary nucleation39 assuming
that the growth and decay of clusters proceeds only by the

addition or loss of monomers. Under these conditions, the
change with time of the number densityf ( i , j ,t) of clusters
of composition (i , j ) is given by

d f~ i , j ,t !

dt
5JA~ i21,j ,t !2JA~ i , j ,t !1JB~ i , j21,t !

2JB~ i , j ,t !, ~2!

where the fluxes between adjacent cluster sizes,JA andJB ,
are written as

JA~ i , j ,t !5GA~ i , j !NA f ~ i , j ,t !2EA~ i11,j ! f ~ i11,j ,t !,
~3!

and

JB~ i , j ,t !5GB~ i , j !NB f ~ i , j ,t !2EB~ i , j11! f ~ i , j11,t !.
~4!

Here, Gn( i , j ) is the forward rate coefficient for adding a
monomer of typen to a cluster containingi molecules of
speciesA and j molecules of speciesB, En( i , j ) is the re-
verse rate coefficient for removing a monomer of speciesn
from a cluster with composition (i , j ), and the monomer con-
centrations are defined asNA5 f (1,0,t) and NB5 f (0,1,t).
The forward rate coefficients are given by the kinetic theory
expression for the collision frequency between two particles
of unequal mass assuming a unit mass accomodation coeffi-
cient for each species. The reverse rate coefficients are ob-
tained from the forward rate coefficients and the equilibrium
cluster size distribution by using the principle of detailed
balance. As noted previously,35,40 for large i and j the rate
coefficients asymptotically approach the expressions used in
conventional binary nucleation theory. For smalli and j the
rate coefficients differ from the conventional ones because of
the various self-consistency corrections that we introduced.
Explicit expressions for the rate coefficients and the equilib-
rium distribution are available in the first two papers of this
series.35,40 The kinetics equations were solved subject to the
following initial and inner boundary conditions:

f ~ i , j ,0!50, i1 j.1, ~5a!

f ~1,0,t !5NA , t>0, ~5b!

f ~0,1,t !5NB , t>0. ~5c!

The boundaries of the rectangular computational grid are set
by the maximum values ofi and j , imax and jmax, respec-
tively. Rather than introducing a sink at the edge of the grid
by setting f ~imax,j ,t!5f ~i , jmax,t!50, we estimate the con-
centrations of the largest clusters by logarithmically extrapo-
lating the concentrations of smaller clusters at the previous
time step. At i5 imax, for example, f ~imax,j ,t!
5 f ~imax21,j ,t21!2/f ~imax22,j ,t21!. This results in a
smoother variation in the cluster concentration as the edge of
the grid is approached, and the effect is to mimic a somewhat
larger grid. Runs with different grid sizes gave invariant re-
sults as long as the grid was large enough. Our computations
were performed on a Digital 3000/300 AXP workstation. For
an 80380 grid, 6238 equations were solved in about 8 h of
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CPU time for the ‘‘stiffest’’ conditions considered. For
milder conditions, less CPU time was needed.

Our computational code normally stores the values of all
cluster compositionsf ( i , j ,t) and all fluxes between adjacent
cluster sizes,JA( i , j ,t) and JB( i , j ,t), at 20 times, logarith-
mically spaced in the integration interval. To provide better
time resolution, 80 intermediate values are stored for a few
cluster compositions in the saddle region. The code also
stores the total flux crossing lines of constanti1 j at 80
logarithmically spaced times. At steady state each of these
sums equals the nucleation rate. Under transient conditions
these sums are more difficult to interpret because they usu-
ally contain contributions from both subcritical and super-
critical fluxes. As in unary nucleation,6 the transient fluxes
for subcritical cluster sizes overshoot their steady state val-
ues while supercritical fluxes take longer to reach their
steady state values than does the critical flux.37 To avoid this
complication in our time lag calculations, we used the well-
defined flux through the saddle point

J* ~ t !5JA~ i * , j * ,t !1JB~ i * , j * ,t ! ~6!

to compute numerical time lags.
By analogy with the definition for unary systems,4 we

define41 the time lag for the saddle point flux,t* , as

t*5E
0

`U12
J* ~ t !

J* Udt, ~7!

where J* is the steady state value ofJ* (t), which is not
identical to the total steady state nucleation rate. We use the
fluxes stored at intermediate times to directly integrate Eq.
~7! and call this the numerical time lag,tnum* .

Many exact and approximate expressions have been de-
veloped fort* in unary nucleation; see, for example, Refs.
3–5, 7, 9–11, 13–22, 26, and 30. Only two analytical ex-
pressions are available for binary nucleation.30,33The first is
the estimate for the time lag at the saddle point developed by
Wilemski,30

tW* 5tWL~w* ,n* !5
3n*

Dav* ln S*
L~w* ,n* !, ~8a!

wheretW is a characteristic time scale for binary nucleation
determined by the collision frequency of the monomers with
a critical cluster containingn* monomers,n*5 i *1 j * . The
average impingement rate,Dav* , is given by

Dav* 5
GA*GB*NANB

GA*NAxB
21GB*NBxA

2 , ~8b!

whereGn* 5 Gn( i * , j * ). The effective critical supersaturation
S* is given by

ln S*5xA ln SA1xB ln SB , ~8c!

whereSn5Nn/Nn
`(xn) andNn

`(xn) is the number concentra-
tion of vapor molecules of typen in equilibrium with a bulk
solution of compositionxn ~e.g.,xB5 j * /n* !. The functionL
depends primarily on the dimensionless barrier height
w*5W* /kT, whereW* is the reversible work required to
form a cluster of composition (i * , j * ) from the gas phase.

For our calculations we assumed ideal gas behavior and the
capillarity approximation forW( i , j ). Wilemski originally
evaluatedL(w* ,n* ) numerically. His formal expression,
however, is functionally identical for binary and unary nucle-
ation and is equivalent to more recent unary time lag
expressions.19,20 This equivalence provides a more conve-
nient way to evaluateL for binary systems using the asymp-
totic results derived for unary time lags. With the usual para-
bolic approximation forW* , Shneidman and Weinberg20

found

L~w* !5
1

2 S ln w*

3
1gED , ~8d!

where gE50.5772••• is the Euler–Mascheroni constant.
Wu’s result19 is similar but less precise. We will demonstrate
later that Eq.~8d! gives results that are very similar to a
simple parametrization forL(w* ,n* ) using the numerical
values presented in Table III of Wilemski’s original paper.
Adding the small nonparabolic correction term of Shneidman
and Weinberg20 to Eq. ~8d! gives even better agreement. As
discussed below, however, the parabolic approximation pro-
vides a more appropriate basis for comparing the different
theoretical results.

The second expression, derived by Shi and Seinfeld,33 is
given by

tSS* 5
tSS
2

@E1~e
2lSS!1gE12lSS#. ~9!

Here,E1 is the exponential integral, andtSS is a characteris-
tic time scale for binary nucleation given by

tSS5~2u!21, ~10!

whereu is defined as

u52@DAA1DBB2~~DAA2DBB!214DAB
2 !1/2#/2, ~11!

and

Dab5~Ga*Gb*NaNb!1/2wab* . ~12!

The second derivatives ofw( i , j ) with respect toi and j at
the saddle point are denoted bywab* .

For gas-phase nucleation, the expression forlSSderived
by Shi and Seinfeld is

lSS5)S p

3
2tan21

112j0

)

D 1 lnF3~12j0!A3u
cA11j01j0

2G , ~13!

wherej0 is the value of

j5~11cx!1/3 ~14!

evaluated ati51 and j51. The value ofc is given by

c5
~GA*NA!1/2 cosa1m~GB*NB!1/2 sin a

i *1m j *
, ~15!

wherem is the ratio ofA andB monomer volumes and the
anglea is given by42
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tana5
1

2DAB
@DBB2DAA2~~DAA2DBB!2

14DAB
2 !1/2#. ~16!

Finally, the rotated coordinatex is given by

x5X cosa1Y sin a, ~17!

where, in our notation,X 5 ( i 2 i * )/(GA*NA)
1/2 andY5

( j2 j * )/(GB*NB)
1/2.

By comparing Eqs.~8a! and ~9! and recognizing that
E1(e

2l)!1 for all relevant values ofl, we see that
L(w* ,n* ) corresponds tolSS1gE/2 in the Shi–Seinfeld re-
sult. Although L(w* ,n* ) actually contains information
about the nonparabolic form ofW, a more appropriate com-
parison between the theories of Wilemski and Shi and Sein-
feld is one based on Eq.~8d! for L because Shi and Seinfeld
worked solely in the parabolic approximation. Restricting
ourselves to the parabolic approximation, we see that the
term ln~w* /3! corresponds to 2lSS, and thus each theory can
be characterized by two parameterst andl,

t*5t~l1gE/2!. ~18!

For degenerate binary systems, the characteristic time scales
tW andtSS are identical, and for the conditions and systems
explored in this work, they are also generally of comparable
value. As we shall see, the major quantitative differences
between the two theories stems from the parameterl.

In addition to calculatingt* , we use the appropriate val-
ues fort andl to directly compare the time dependent be-
havior of the numerical saddle point fluxJ* (t) to the ex-
pected double exponential behavior13,15,17,22,33given by

J* ~ t !/J*5exp~2exp~2~l2t/t!!!. ~19!

This type of time dependence was first found for supercriti-
cal particle fluxes,11 although in this case the factor of 2 is
absent in the inner exponential.

In our calculations we considered two ideal systems~o-
xylene–m-xylene and ethanol–hexanol!, two systems that
exhibit negative deviations from ideality~dichloromethane–
tetrahydrofuran and chloroform–tetrahydrofuran!, and two
model systems that exhibit positive deviations from ideality
~PD1 and PD2!. The two positively deviating pairs had the
same physical properties aso-xylene–m-xylene ~PD1! and
ethanol–hexanol~PD2! but had excess Gibbs free energies
of mixing given bygE5AxAxB . Choosing the value ofA so
thatA/RT52 at the simulation temperatureT put each posi-
tively deviating system at its upper critical solution tempera-
ture ~UCST!. Under these conditions the free energy surface
still has a single well-defined analytical saddle point but the
saddle region is extremely broad. The physical properties
used as input for the calculations are documented in Appen-
dix B of WWII.43

III. RESULTS AND DISCUSSION

A. Evolution of cluster concentrations and fluxes

Solving the full set of kinetics equations in time rather
than simply finding the steady state solution gives valuable

insight into the dynamics of the transient state and permits us
to calculate directly any time lag of interest. The other quan-
tities of interest are the transient fluxes,J( i , j ,t)5JA( i , j ,t)
1JB( i , j ,t), the cluster concentrations,f ( i , j ,t), and the ra-
tios of nonequilibrium to equilibrium cluster concentrations,
f ( i , j ,t)/N( i , j )([F( i , j ,t)). Although we examined sys-
tems with a wide range of liquid phase nonideality, our gen-
eral discussion of transient behavior will focus on binary
nucleation in the ideal ethanol–hexanol system. This system
is interesting because of the large disparity in the equilibrium
vapor pressures of the pure components. For example, at our
simulation temperature, 260 K, the ratio of equilibrium
monomer number densitiesNE

`/NH
` is 226. This disparity

gives rise to a large difference in the monomer impingement
rates and, hence, in the forward reaction rates44 while the
saddle point is still far from either pure component axis. At
steady state, significant differences can therefore exist be-
tween the Reiss39 and Stauffer45 formulations for the nucle-
ation rate.35 Moreover, the transient calculations are affected
by this disparity in the forward reaction rates because the
times required for the pure cluster concentrations to approach
their steady state values differ by more than an order of
magnitude. Although this difference in time scales is signifi-
cant, it does not stop our differential equation solver from
evolving the rate equations into the steady state. In contrast,
for the extreme case of H2SO4–H2O examined by Nishioka
and Fujita,36 the much larger time scale differences did pre-
clude the attainment of steady state. An examination of tran-
sient behavior for ethanol–hexanol is also of interest because

FIG. 1. Contour plot of the free energy surface for the ethanol–hexanol
system at vapor activities ofaE51.5 andaH59. The analytical saddle point
d is located at the junction of the intersecting contours, where
( i * , j * )5~22.5,20.8! andw*542.4. The solid contour lines denote free en-
ergies above the saddle point value, and the dashed contours denote free
energies below the saddle point. The heavy contour lines are spaced at 5kT
intervals, and the light contours are spaced at 1kT intervals relative to the
saddle point free energy.
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nucleation rates have been measured for this system in an
expansion cloud chamber at 260 K.46 Thus these calculations
will confirm that the expansion rates used in these experi-
ments were small enough to ensure that steady state nucle-
ation was obtained.

Figure 1 illustrates a typical free energy surface for the
ethanol–hexanol system. At the conditions indicated in the

figure, NE/NH537, and the ratio of ethanol and hexanol
monomer impingement rates is 56. Figures 2 and 3 show
how the values ofJ( i , j ,t) andF( i , j ,t), respectively, evolve
to the steady state at these conditions. The first three times in
each figure represent transient states, whereas the final time
is about an order of magnitude larger thant* . The grid size

FIG. 2. Contours of constant flux,J( i , j ,t)5JA( i , j ,t)1JB( i , j ,t), for the ethanol–hexanol system at four times for vapor activitiesaE51.5 andaH59. The
heavy contour lines correspond to a flux of 1 cm23 s21. The light solid lines correspond to fluxes greater than 1 cm23 s21 and the short dashed lines
correspond to fluxes less than 1 cm23 s21. The contour spacing is two orders of magnitude in flux. The arrows indicate the local direction of the flux along
one of the contours. The saddle point is marked by the open square.~a! The contours of constant flux extend further along pure ethanol axis than along the
hexanol axis.~b! The region with the highest flux begins to swing away from the ethanol axis toward the saddle point as the fluxes along the ethanol axis
decrease.~c! The region with the highest flux continues to move towards the saddle point, and the fluxes in the ethanol-rich region decrease rapidly.~d! At
steady state, the highest flux flows through the saddle region along a path that depends on the shape of the free energy surface and on the relative monomer
impingement rates. The long dashed lines represent contours at log10(J( i , j ,t))58.5 and 9. This figure is equivalent to the steady state flux plot presented in
Fig. 2~b! of Ref. 35.
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used in these simulations was 80380, but for clarity we re-
stricted the figures to a grid size of 45345.

As illustrated in Fig. 2~a!, at the earliest times the higher
impingement rate of ethanol dictates that the particle fluxes
build up more rapidly in the direction of the ethanol axis. At
these early times, the net fluxes between adjacent cluster
sizes are essentially equal to the forward fluxes. At some-
what later times, in Figs. 2~b! and 2~c!, the fluxes near the
pure ethanol axis decrease, and the region of highest flux
swings toward the saddle. The flux decrease occurs because

the early surge in ethanol-rich cluster production is damped
as the rates of the various cluster decay steps gradually in-
crease. At the same time, with progress curtailed in the
ethanol-rich direction, the slower kinetics of hexanol addi-
tion gradually influences the overall course of cluster forma-
tion. In Fig. 2~c!, the region of highest flux is still located
primarily below the saddle point, and it extends considerably
up the ridge that lies between the saddle point and the pure
ethanol axis. The particle formation process now resembles
steady state ridge crossing nucleation, cf. Fig. 5~b! in WWII,

FIG. 3. Contours of constantF( i , j ,t) at three transient times and at steady state for vapor activitiesaE51.5 andaH59. The heavy contour line corresponds
to F( i , j ,t)50.1. The light solid lines correspond to higher values ofF( i , j ,t) and increase in steps of 0.2. The short dashed line corresponds toF( i , j ,t)
50.99. The saddle point is marked by the open square.~a! Ethanol-rich clusters approach their equilibrium concentrations more rapidly than do hexanol-rich
clusters.~b! and~c! The contours spread out and become more horizontal as they approach the saddle point.~d! At steady state, the contours are almost parallel
to the ethanol axis. At the saddle pointF( i , j ,t)50.5.
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although here this state is an intermediate stage en route to
saddle point nucleation. Finally, in Fig. 2~d! we see the rela-
tively narrow steady state nucleation path whose course is
influenced both by the shape of the underlying free energy
surface and the kinetics of monomer addition.

Although not illustrated, the buildup of the cluster con-
centrations occurs in a qualitatively similar manner. The con-
centration of ethanol-rich clusters increases more rapidly
than the concentration of hexanol-rich clusters. This buildup
of ethanol-rich clusters is similar to the initial rapid forma-
tion of water-rich clusters observed by Nishioka and Fujita36

in their simulations of transient binary nucleation in the
H2SO4–H2O system. At steady state, there is a broad region
of elevated cluster concentrations extending from the mono-
mers through the saddle to the stable particles of the new
phase.

A much simpler picture emerges when we examine the
transient behavior ofF( i , j ,t). As illustrated in Fig. 3, in this
ideal system the contours form a set of straight, parallel
lines. Ethanol-rich clusters reach their steady state concen-
trations much more quickly than do the hexanol-rich clusters.
As the region of the grid withF>0.99 expands to contain
clusters with progressively more hexanol molecules, the dif-
ference in time scales for ethanol and hexanol leads to con-
tours that are almost parallel to the ethanol axis and to the
large increase in the region of quasiequilibrium along the
ethanol axis. H2SO4–H2O is the classic example of a system
in which the quasiequilibrium region is not confined to its
usual location near the origin but forms a strip extending
along the axis of the component~water! with the shorter time
scale.47,48 As in unary nucleation, Fig. 3~d! shows that the
critical cluster concentration equals one half of the equilib-
rium value at steady state.

The qualitative behavior shown in Fig. 3 does not seem
to depend on the specific values used for the gas species
activities and, hence, for the impingement rates. We have
found that it occurs even, for example, when the hexanol
impingement rate greatly exceeds that of ethanol and unary
nucleation of hexanol is the dominant kinetic process. The
spacing and absolute locations of the contour lines are, how-
ever, affected by the activity values. This tendency to rapidly
‘‘equilibrate’’ with respect to ethanol, regardless of the ac-
tual gas species impingement rates, is connected to the ten-
dency of the evaporation rate of ethanol (A) to exceed that of
hexanol (B) for most cluster compositions. Aside from
Kelvin and compositional factors, eachEn is determined pri-
marily by the equilibrium monomer number density of pure
speciesn.40 Thus the large inequality of the equilibrium va-
por pressures in this system results in the corresponding dis-
parity, EA@EB , for almost all cluster compositions. The
compositional variation ofEA andEB reduces the inequality
for small values ofnA ~and can reverse it for large values of
nB!, but in the subcritical region this effect is small.

Some additional appreciation for this behavior can be
gained by transforming Eq.~2! into an equation for the time
evolution of F. Similar transformations have previously
been used in studies of binary nucleation kinetics.33,37,38,48

To do this, we use detailed balance relations40 to replace the

forward rate coefficients,GA andGB , by the corresponding
evaporation rate coefficients,EA andEB , and we change to
continuous composition variables~i→nA , and j→nB! to
keep the final form more compact. The result is a comple-
mentary version of the equation that forms the basis for the
analytical analysis of transient behavior in unary11,15 and
binary33 systems,

]F~nA ,nB ,t !

]t
5 (

n5A,B
F ]

]nn
SEn

]F

]nn
D

1EnS ] ln N

]nn
D ]F

]nn
G . ~20!

The important difference between these earlier equations and
ours is that in Eq.~20! the ‘‘diffusion coefficients’’ are equal
to EA andEB , rather thanGANA and GBNB . This form is
advantageous because it shows how the disparity between
EA andEB is responsible for the rapid increase ofF in theA
direction and for its much slower progress in theB direction.
Moreover, in the usual ideal gas approximation,EA andEB

are independent of the gas phase activities and the total pres-
sure. This explains why the qualitative behavior ofF has a
‘‘universal’’ character to it: Changes in the vapor phase ac-
tivities will only weakly affect the time evolution ofF
through the components of the ‘‘drift’’ velocity,
En~] ln N/]nn!. These velocity components depend logarith-
mically on the activities, and they vanish at the saddle point.
Consequently, the transient and steady state contour plots of
F for each system have a characteristic ‘‘signature’’ that
depends predominantly on the relative sizes ofEA andEB .
We will discuss this more extensively in a later paper.

Although not illustrated here, the time evolution of the
fluxes in the PD2 system mirrors the transient behavior illus-
trated in Fig. 2 quite closely. When ridge crossing nucleation
is the steady state solution, the location of the saddle point is
in the vicinity of the pseudohexanol (B) axis. The impinge-
ment rate of pseudoethanol (A), however, is still signifi-
cantly higher that ofB. Because of this disparity in impinge-
ment rates, the region of highest flux initially hugs theA axis
and then moves away from it towards the saddle point. How-
ever, unlike the ethanol–hexanol case, the region with the
highest particle flux gets ‘‘stuck’’ and never reaches the
saddle point. Rather, as illustrated in Fig. 4~b! of WWII, at
steady state it avoids the saddle point and passes over a low
ridge in the free energy surface. In a sense, ridge crossing
nucleation arises naturally out of what is normally an inter-
mediate state in the development of saddle point nucleation.

For systems whose pure components have comparable
equilibrium vapor pressures, for exampleo-xylene–m-
xylene, the initial cluster buildup is still driven in the direc-
tion of the species with the higher impingement rate. The
region with the highest cluster concentrations and the highest
fluxes still swings from near the axis of the dominant species
to the saddle point. The difference is that for systems with
comparable equilibrium vapor pressures, a large difference in
the impingement rates occurs only when there is a corre-
spondingly large difference in the vapor phase activities. For
these systems, the difference in vapor phase activities forces
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the saddle point to be located near the axis of the dominant
species and the region of highest flux always lies reasonably
close to the line joining the ‘‘origin’’ to the critical cluster
composition.

B. Time lags and the transient saddle point flux

Calculating time lags requires much less effort than and
is often as useful as solving the full set of kinetics equations.
As discussed earlier, the two time lag expressions presented
in Sec. II both depend on the parameterst andl. The char-
acteristic time,t, is related to the rate of monomer impinge-
ment for the critical cluster size, andl is a parameter that
characterizes the free energy barrier. As seen in Eq.~19!,
these parameters also control the transient behavior of the
saddle point flux. Foro-xylene–m-xylene, which is essen-
tially a degenerate binary mixture, the two characteristic
times, tW and tSS, are practically identical. Even for the
many nonideal systems we examined, the two characteristic
times rarely differed by more than 1%–10% withtW always
greater thantSS. In the worst cases, we foundtW/tSS'2–3.
These extreme differences occurred in two instances:~1! in
the ethanol–hexanol system for the transition to unary nucle-
ation of ethanol and~2! in the PD2 system in and near re-
gions of ridge crossing. The differences are the result of a
discrepancy between the anglesu anda implicit in the two
expressions fort.

Before discussing our results for the time lags, we first
show a representative comparison, in Fig. 4, of our numeri-
cal transient results for the saddle point flux with the analyti-

cal results given by Eq.~19!. The comparison is made for the
same conditions used in Figs. 1–3. The solid line corre-
sponds to usingtW and 2l5ln~w* /3!, and the heavy dashed
line usestSS and lSS. Neither curve agrees quantitatively
with the numerical results although the slope of the solid line
looks reasonable. Since the slope of lnJ is dominated byl
and since J* (t)/J*'0.95 when t5~l13/2!t, modest
changes int at constantl will shift the curves along the time
axis without greatly affecting the slope. The light dashed line
uses 2l5ln~w* /3! with the value oft adjusted to better fit
the numerical results. In general we find that the double ex-
ponential form of Eq.~19! fits our numerical results well in
the range 0.01<J* (t)/J*<1, that ~1/2!ln~w* /3! is a better
estimate forl than Eq.~13!, and that bothtW andtSS over-
estimate the value oft.

An independent test for the consistency of our numerical
data with the double exponential form relies on the following
special property:49

J* ~ t* !/J*5exp~2exp~2gE!!50.57. ~21!

This result, which also holds for supercritical particle
fluxes,50 follows directly from Eqs.~18! and ~19! and does
not depend on the values oft or l. The value oft* for which
our numerical data in Fig. 4 satisfy Eq.~21! agrees well with
the value found by numerically integrating Eq.~7!. Equation
~21! thus provides an alternative means of estimating the
numerical time lag that avoids the time integral in Eq.~7!.
We found similar consistency in the other cases we exam-
ined.

FIG. 4. Numerical values~solid triangles! of the transient nucleation rates at
the saddle point are compared with the analytical predictions of Eq.~19! for
ethanol–hexanol vapor activities as indicated. The solid line usest5tW and
the parabolic approximationl5lp where 2lp5ln~w* /3!, the heavy dashed
line usest5tSS andl5lSS, wherelSS is given by Eq.~13!, and the light
dashed line usesl5lp andt5tadj , wheretadj is a value adjusted to better fit
the numerical results.tW51.403ms, lp51.325,tSS51.204ms, lSS55.617,
andtadj50.760ms.

FIG. 5. Several analytical estimates fort* are compared with the values of
tnum* ~solid squares! for ethanol–hexanol at the indicated ethanol activities.
The light solid line corresponds totw* calculated usingtW and a param-
etrized fit to the values given in Table III of Ref. 30,L(w* ,n* )
520.7611.40[w* (112/n*23(n* )22/3)] 1/6. The heavy solid line usestW
and Eq.~8d!. The heavy dashed lines correspond totSS* .
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We now present our time lag results beginning with the
ethanol–hexanol system. In Fig. 5 we compare several ana-
lytical predictions for the time lag with our numerical results
calculated by integrating Eq.~7!. The solid lines were calcu-
lated using Eq.~8a! and either a parametrized fit to the val-
ues ofL(w* ,n* ) given in Table III of Wilemski’s original
paper30 or Eq. ~8d!. These two estimates agree quite well
over the entire range of activities. Although not shown here,
adding the constant nonparabolic correction~5ln 321! of
Shneidman and Weinberg20 to Eq. ~8d! makes these two
curves practically coincide, although, curiously, it further di-
minishes the agreement with the numerical results. The Shi–
Seinfeld estimates,33 given by the heavy dashed lines, are
roughly three times higher than the other estimates just dis-
cussed. We note that sincetW and tSS are essentially equal
over most of this range of activity, the differences are due to
values oflSS that are too large. This is a consequence of
using the parabolic approximation forW to treat the time
evolution of subcritical clusters. Shi and Seinfeld have them-
selves noted that their use of this approximation would over-
estimate the value ofl.51

As summarized in Fig. 6 for the other five systems, the
ratios tW* /tnum* and tSS* /tnum* are remarkably consistent over a
wide range of vapor phase activities. The quantitative agree-
ment betweentW* and tnum* found here is actually better than
for the ethanol–hexanol system, withtW* usually only over-
predicting tnum* by 25%–50%. The values oftSS* are again
higher and do not approach the correct unary limit. As for
ethanol–hexanol, this is due to overly large values oflSS
resulting from the quadratic approximation forW.51

Despite the lack of quantitative agreement, the predicted
analytical trends closely follow the numerical results. With
the activity of one component fixed, increasing the activity
of the second component almost always decreases the time
lag. There are two reasons for this. First, an increase in the
vapor phase activity increases the vapor phase concentration
and thus the impingement rate of the monomers. This usually
decreasest. In addition, a higher vapor phase activity de-
creases the height of the free energy barrier reducing the
value of l. There are, however, some notable exceptions
~both real and apparent! to the rule that an increase in the gas
phase activities and an increase in the nucleation rate are
always accompanied by a decrease in the time lag. These
include some transitions from unary to binary nucleation, as
for ethanol–hexanol in Fig. 5, and situations in which ridge
crossing nucleation dominates, as for the PD2 system in Fig.
7.

We will first discuss the ridge crossing case. In the re-
gion where steady state ridge crossing nucleation occurs, il-
lustrated in Fig. 7 for the PD2 system ataA52.25, the abrupt
increase in time lag predicted by the analytical theory and
observed in the numerical results is not the behavior that
would be observed experimentally for the time lag of the
system, although it signals that ridge crossing may be occur-
ring. The problem is that in Fig. 7 we are plotting the ana-
lytical time lag for the flux through thesaddle point. Our
numerically derived time lags agree quite well with the ana-
lytical predictions because they are also calculated for the
discrete saddle point. The sharp increase in the analytical
time lag occurs because a slight increase in the activity of
pseudohexanol forces the saddle point to move very rapidly

FIG. 6. The values oftW* /tnum* and tSS* /tnum* are quite constant over a wide
range of gas phase activities indicating that the analytical theories predict
the relative time lag behavior quite well. The values oftW* are calculated
using Eq.~8d!. The five binary systems considered here includeo-xylene–
m-xylene ~OX/MX !, dichloromethane–tetrahydrofuran~DCM/THF!,
chloroform–tetrahydrofuran~CHL/THF!, the model positively deviating
system PD1, and the model positively deviating system PD2.

FIG. 7. The values oftnum* ~solid squares! are compared withtW* ~solid line!
for the model positively deviating system PD2, pseudoethanol~A!–
pseudohexanol~B!, in the region of ridge crossing. The values oftW* are
calculated using Eq.~8d!.
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from a location near the pseudoethanol axis to one near the
pseudohexanol axis. In a manner analogous to the ethanol–
hexanol system illustrated in Fig. 3, the nucleation of clusters
containing more pseudo–hexanol takes much longer to reach
steady state. Although this behavior is correct for the saddle
point flux, an observer counting the total number of particles
produced@cf. Eq. ~1!# should obtain a smaller and more
smoothly varying value oftg . As discussed earlier, ridge
crossing nucleation is, in a sense, an intermediate state on the
way to saddle point nucleation, and it is reasonable to expect
that it should have a shorter development time.

Before discussing the other ‘‘anomalous’’ case, which
involves the transitional behavior of the ethanol–hexanol
system, it is instructive to examine the more usual time lag
behavior in the transition region from binary to unary nucle-
ation. Foro-xylene–m-xylene, Fig. 8~a! shows that the time
lag increases steadily as the activity ofm-xylene is reduced,
and it converges quite smoothly to the time lag for unary
nucleation ofo-xylene. This behavior is also observed for
the dichloromethane–tetrahydrofuran, chloroform–tetra-
hydrofuran and PD1 systems. In all of these systems, the
equilibrium vapor pressures and other physical properties of
the pure components are quite similar, as are the evaporative
time scales governing the evolution ofF. For ethanol–
hexanol, illustrated more clearly in Fig. 8~b!, the analytical
time lag overshoots the unary value by a factor of 3 as the
level of hexanol is reduced and only reaches the unary value
whenaH,0.01. Under these conditions, the analytical saddle
point contains less than 0.25 hexanol molecules. Clearly, by
this point unary nucleation is the dominant pathway. We
emphasize that the numerical and analytical saddle point
nucleation rates always agree to better than 10%. Based on
close examination of the flux behavior in the region where
binary nucleation is still important, ridge crossing is not oc-
curring during this transition. Furthermore, there is no abrupt
shift in the saddle point location. Nevertheless, the behavior
shown in Fig. 8~b! is fundamentally the same as that ob-
served in Fig. 7, but the increase in time lag in Fig. 8~b!
should be experimentally observable unlike that in Fig. 7.

The ‘‘bump’’ in Fig. 8~b! directly reflects the difference
in time scales for ethanol and hexanol impingement. In the
transition from unary to binary nucleation, the critical cluster
composition must become richer in hexanol. But, as illus-
trated in Fig. 3, the time required for hexanol-rich clusters to
approach their steady state concentrations is longer than that
for ethanol-rich clusters. At constant ethanol activity, the
critical cluster becomes more hexanol-rich by both adding
hexanol molecules and reducing the number of ethanol mol-
ecules. The maximum in the numerical time lags corresponds
directly to those critical clusters with the highest absolute
number of hexanol molecules. AsaH increases further, the
number of hexanol molecules in the critical cluster actually
decreases even though the hexanol mole fraction continues
to rise. This is possible because the critical cluster size itself
is shrinking. The decrease in the number of hexanol mol-
ecules in the critical cluster gives rise to a rapid decrease in
the time lag. We noted earlier that the transient behavior of
ethanol–hexanol is similar to that of H2SO4–H2O. Because

the water and sulfuric acid time scales are so different, we
expect to observe a much more pronounced increase in time
lag in the transition from unary to binary nucleation for this
system, except possibly when ridge crossing occurs.

IV. SUMMARY AND CONCLUSIONS

We have presented the transient results of our numerical
simulations of binary nucleation in vapor-to-liquid phase

FIG. 8. The values oftnum* ~solid squares! are compared withtW* ~solid lines!
for the transition from binary to unary nucleation in two systems. The values
of tW* are calculated using Eq.~8d!. ~a! For o-xylene–m-xylene, the binary
time lag converges quite smoothly to the value for the unary time lag.~b!
For ethanol–hexanol, the time lag exhibits a sharp maximum. For the nu-
merical results, this maximum corresponds to the critical cluster composi-
tion with the highest absolute number of hexanol molecules.
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transitions. These studies complement our earlier steady state
analysis35 and cover the same range of system parameters.
For all of our systems we found that, at the earliest times, the
cluster concentrations and the particle fluxes build up more
quickly in the direction of the species with the higher im-
pingement rate. The region with the highest flux then gradu-
ally shifts towards the saddle point, and during this part of
the transient period~roughly for t,t* !, it can extend over
the ridge that lies between the saddle point and the pure
component axis. During the latter part of the transient period,
the particle flux through the saddle point grows rapidly and
usually becomes predominant in steady state. When steady
state nucleation occurs via ridge crossing, we have seen that
it arises naturally as an arrested transient state. The region of
highest flux simply appears to get stuck on its way to the
saddle point. We also found that the ratio of nonequilibrium
to equilibrium concentrations~F! has a quasi-universal be-
havior that is determined primarily by the thermodynamic
properties of the liquid mixture. The relative sizes of the
evaporation rate coefficients are the principal factors deter-
mining the qualitative appearance of theF plots.

In addition to improving our qualitative understanding of
transient binary nucleation, we quantitatively tested the
available analytical expressions for the time lag of the saddle
point nucleation flux. Both of these expressions overpre-
dicted the numerically derived time lags under our condi-
tions. Wilemski’s expression,30 however, gave better agree-
ment with the numerical results than did that of Shi and
Seinfeld.33 We also noted that the theoretical behavior of the
saddle point time lag may indicate when ridge crossing
nucleation is the dominant steady state process, although we
do not actually expect this behavior to be characteristic of
the observedtime lag when the major nucleation current
avoids the saddle point.
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