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Diffusion-controlled intrachain reactions of polymers. II 
Results for a pair of terminal reactive groups*,t 

Gerald Wilemski* and Marshall Fixman 

Department of Chemistry, Yale University, New Haven, Connecticut 06520 
(Received 18 September 1973) 

The formulas and results of the preceding paper are used to calculate the rate of reaction between 
reactive groups attached to the ends of a polymer chain. Extensive numerical calculations have been 
made for both transient rate processes and steady state luminescence quenching. The results are 
restricted to chains in dilute solution, in either the free draining or nondraining limits and with no 
excluded volume forces present. A discussion of the qualitative effects of excluded volume forces on 
the results is included. The results suggest that experimental studies of these processes may be 
feasible. 

I. INTRODUCTION 

In the preceding article l (hereafter referred to as I) 
a general formalism has been used to describe the dif
fusion-controlled intramolecularly catalyzed reactions 
of special reactive sites incorporated in linear flexible 
chain molecules. The formalism requires that the re
active and catalytic sites be given specific, though not 
unique, locations along the chain backbone. From an 
experimental standpoint this is distressing because the 
synthesis of macromolecules with particular moieties at 
specific locations is apt to be difficult whereas obtaining 
a random distribution of sites ought to be much easier. 
For the theorist, however, the random distribution 
poses a problem because the formalism does not lend 
itself to the facile performance of the required random 
average. Presumably a Monte Carlo technique for sam
pling distributions and performing the average could be 
used. Even so, the presence of only a moderate number 
of catalytic sites would require the numerical evaluation 
of a large number of reduced Green's functions [cpo Eq. 
(1-94)] in order to compute the reactivity of even a sin
gle active site. 

Fortunately there are some simple distributions which 
ought to be accessible both experimentally and computa
tionally, and studies made for these distributions should 
yield information about the diffusive behavior of the 
chain that is potentially more useful than any obtained 
from results for random distributions. Perhaps the 
Simplest of these consists of a pair of reactive groups 
attached to the ends of the chain. The results for this 
case depend directly on the relaxation of the end-to-end 
distance and may be a useful source of new information 
about low frequency relaxation behavior in chains. This 
special case is the subject of this article. 

In order to utilize the existing formalism in a compu
tational scheme only a specific choice of a reaction sink 
function must be made. This allows us to complete the 
evaluation of the reduced Green's function D(t) and, 
hence, to calculate the quantities needed to perform the 
inversion of the Laplace transforms previously obtained. 
After this is done, several aspects of the numerical 
analysis will be reviewed. The remainder of this arti
cle will concentrate on the presentation of the numerical 
results and their interpretation in terms of the charac
teristics of the various models. 

II. NUMERICAL CALCULATIONS 

A. Choice of sink function 

We immediately specialize to m 0= 1 in Eq. (1-94). 
Then 

D(t) 0= J du1du2 S 1(U1 ) Sl(u2 )Dll (u1 , u 2 , t), (1 ) 

and we recall that Sl(U) appears in Eq. (1) because of the 
use of the delta function in the evaluation of Du via Eq. 
(1-89). 

Sl(L)o= J 6(L- u)Sl(u)du , (2) 

where 

(3) 

is the end-to-end vector of the polymer chain. For DIt 
in Eq. (1), Eqs. (1-112)-(1-116) and (1-136)-(1-138) give 

DU(u l ,u2 , t) 0= (21TL2j3)"3 (1- pi,)"3/2 

x exp {- 3 [u~ - 2PL ul • u2 + u~ ] 

(4 ) 

The time dependence of Du resides in the autocorrelation 
function for L denoted here by PL • 

The particular choice of sink function will be moti
vated by the need for computational convenience and by 
consideration of the grosser details of the reaction pro
cess. For example, a Gaussian form could be chosen 
in which case D(t) would be given by another bivariate 
function. Perhaps the simplest choice which can be 
made is 

(5 ) 

for which D(t) is given as 

D(t)o= (21TL2j3)"3 (1- pt(t))-3 /2 . (6) 

Equation (6) is appealing in that it does not depend on any 
parameters characterizing the reaction; hence the only 
new parameter needed in the development of this aspect 
of polymer theory would be k, the second order intrinsic 
rate constant. However, Eq. (6) possesses a strong 
singularity at t '" 0 making it unsuitable for computational 
purposes since its Laplace transform would ostensibly 
diverge. A different choice for S is therefore indicated. 

Another relatively simple choice is the Heaviside step 
function H(x). However, its use produces a lengthy ex-
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pression consisting of Gaussian functions, error func
tions, and integrals of the bivariate probability function 
which was deemed too cumbersome for numerical use in 
this initial, exploratory work. 

The actual sink function used in this work stems from 
the employment of 

(7) 

However, the resulting D(t) is still too singular to be 
useful. Therefore the r in one of the S's of Eq. (1) is 
averaged over a sphere of radius R. The other S is 
evaluated at r = o. This procedure is equivalent to the 
simultaneous use of Eq. (5) and the Heaviside function 
in Eq. (1), a somewhat "unbalanced" choice. However, 
an average over the second r wouid have negligible ef
fect because D(t) is a well behaved function of the sec
ond r. 

This procedure has the secondary effect of introducing 
an additional parameter R, the radius of the effective re
action volume, commonly found in other theories. 2 With 
this choice of sinks Eq. (1) gives 

D(t)= (47TR 3/3)"1 f du l du2H(R - u I ) 0(u2 ) 

XDu(ul , u2 , t) . (8) 

The integrals are easily done with the result 

D(t)= (41TR 3/3)"1 (21TL2/3)"3/2 K(t) , (9) 
where 

K(t)=erf [z(t)]- (2/1T1I2 )z(t)exp [- Z2(t)] , (10) 

erf(x)= (2/1T1/2) fox exp(- y2)dy (11) 

z (t) = "YR(1 - P~ (t)t1/2 , (12) 
and 

"YR= (3/2)1/2(R/L). (13) 

We note that the D's of Eqs. (6) and (9) become numer
ically equal as t- 00. That is, the equilibrium probabil
ity density for finding the ends in contact, multiplied by 
41TR3/3, is approximately equal to the probability for 
finding the ends within a spherical volume of radius R : 

(41TR3/3)(OI0(L)IPeq)",(oIH(L-R)IPeq). (14) 

A brief inspection of the quantities in Eq. (14) shows 
that even for "YR as high as 0.1 the approximate equality 
is satisfied very well. 

B. Formulas resulting from the specific choice of sink 
function 

First, recall that in I the probability rp(t) that the site 
has not yet reacted and the probability v(t) that the unre
acted ends are proximate were given as 

rp(t) =L rple-fJlt , 
I-I 

We also have exactly from I 

drp/ dt = - kVeq v(t) . 

(15 ) 

(16 ) 

(17) 

Then, the experimentally observable first order rate 
constant kl is obtained from Eq. (17) as 

879 

k l =- (drp/dt)/rp(t) 
(18) 

= kv eq v (t)/ rp (t) . 

Since, as will be seen, rp (t) is exceedingly well charac
terized by the first term of the sum in Eq. (15), Eq. 
(18) gives 

kl = 01 • (19 ) 

From Eq. (1-149) we can write 

(20) 

where ii is the transform of. H(t) defined in Eq. (1-49) as 

H(t)=D(t)-lim D(t) • (21 ) 
t-= 

Next, a dimensionless "diffusion-reaction" parameter 
B may be introduced: 

(22 ) 

The translational diffusion constant D of the macromole
cule is given by3.4 

DFD =kT(N~)"1 (free draining) 

DND =0. 1928kT(N1/2 bo 1)0)"1 (nondraining). 

(23 ) 

(24) 

The factor 6D/L2 determines the time scale in terms of 
a dimensionless time variable r: 

(25 ) 

This time scale appears naturally in the harmonic spring 
model (see the Appendix of I), and was adopted through
out all of the calculations. 

In terms of these scaled variables, Eqs. (9)-(14), 
(20)-(22), and (25) gives for kl 

k l L
2/6D = BK= [1 + BKI (- klL 2/6D)]-1 , 

where 

K l (a)= 10= e-<1T KI(r)dr , 

KI(r)=K(r)-K= , 

and 
K= = lim K(r) 

T-= 

(26 ) 

(27 ) 

(28) 

(29 ) 

(30 ) 

Other quantities obtained in I can be readily expressed 
in terms of the scaled variables. For VI and rpl of Eqs. 
(15) and (16) the equations read 

VI = [1 + BKI (- k l L
2/6D) - (k l L

2/6D) BK{(- k lL
2/6D)]-1 

and 
rpl = [1 + BKI (- klL 2/6D)]v l , 

where 

K{(a)=- .Cre-<1TKI (r)dr. 
o 

For the integrals of V (t) and rp (t) we have 

10= v(r)dr= (BK=)"1 

fo=rp(r)dr=[I+BKl (O)][BKoo ]-I. 

(31) 

(32) 

(33) 

(34) 

(35) 

Finally, steady state luminescence quenching results can 
be calculated from Eq. (1-69) whtch now appears as 

J. Chem. Phys., Vol. 60, No.3, 1 February 1974 
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where (36) 
w = (y+ F) L2(6D)"1 • 

C. Numerical analysis 

To perform the calculations, values of the functions 
K(t) and z(t) are required. Equation (10) defines K(t). 
For the harmonic spring model it should readily be seen 
from the Appendix of I that 

(37) 

and for the segmented chain model, of course, Eq. (12) 
defines z (t). Results from Secs. IV B and IV E of I en
able us to write 

[ 
N J-1 N 

PL(t)= Li;(1+Gsr1 Li~(1+Glr1 
s=l 1==1 

xexp[-AI(1+G I )t] . (38) 

where Eq. (1- 25) defines AI' In order to give a more 
explicit expression for AI we use Eq. (1-27) to calculate3 

(O!T(r/j)! PeQ )= 1(1- 0IJ)(61T3/21Jot1 

(39 ) 

Thus, in the approximation that retains quadratic terms 
in the excluded volume potential we obtain 

AI = 2kTa~ [{3""1 +2N1/2 «(6 1T3)1/2bo1Jor1En]' (40) 

where 

(41 ) 
and the dependence of is on i and j is implicit. The E kl 

have previously been defined by Horta and Fixman. 3 

For the U = S'" approximation we have 

(42) 

which becomes 

(43) 

for N» 1. In this approximation we have the standard 
results 5 

and 

AI = 2k T a~ [13 -1 + (8N)1/2 [(61T 3)11 2 abo1JoZ21T 2r1 11 (l)], (45) 

where ft(Z) has been previously defined5 as 

and the Fresnel integrals are given by 

C2(x) = (21Tr 1/2 foX rl/2 cos(t)dt, 

S2(X) = (21Trl/2 foX rl/2 sin(t)dt . 

(46) 

(47) 

(48) 

Calculations were performed using Eq. (43) for a = 1 (no 
excluded volume interaction) with AI in its two well 

known limits: the freedraining limit, 

AI = 3kT [11T/(aNbo)]2 13- 1
, 

and the nondraining limit, 

AI = 12kT [(121T 3)1/2 (aN 1/2 bo)31Jof1 11 (I) . 

(49) 

(50) 

Equation (43) is very slowly convergent for small l, 
and computational facility is greatly enhanced by em
ployment of the Euler-Maclaurin formula to evaluate the 
sum. With terms through third derivatives retained, 
the expression used for computation, in the free drain
ing limit, is 

19 

(1T 2/8) [1- PL(t)] = '6["2 [(-1)1 _1]2 [1- e- 12T1 ] 
1=1 

where 

+ t h 1T)1/2 [1 - erf(21Ti 12)] +c d1 _ e-441T11 

~[28 3 2 2 2201 ] -441T 
+15 T1+21 T1-(21)3 T1 e 1, 

(51 ) 

(52) 

(53) 

For Tl = 00, this formula reproduces the values of 1T 2/8 
to 9 significant figures, or better than 1 part in 109 • 

A similar expression for the nondraining limit is given 
by 

19 1/2 
(1T 2/8) [1 - P

L 
(l) ] = L I -2 [( - 1)1 _ 1]2 [1 _ e -'2 (2 I r ) 11 (! ) J 

1=1 

x [1- e- T2 (21r)1/2(21 r -1/2)] 

1/2 + [C2 T2+ C3 T~]e-'2(21r) (210-1/2), (54) 
where 

(55) 

(56) 

and 

(57) 

The C I are listed in Table 1. The values of the Fresnel inte
grals needed for the evaluation of 11 (1) were calculated6 for 
Z,,:; 19, butforl~2ltheasymptoticvalues, S2(00)=C2(00)=t 
were used. Equation (54) is expected to be accurate to 
9 decimal places for T2 < 10-6 0 When So is chosen so that 
T2(S01T)3/2 = 1, Ia will be given to 9 places by 

Ia = (21 T2)2 1T 3/8 - T2 1T {(2l7T)1 12 + [2 (211T)1/2]-1} 

(58) 

With T 2 (s 0 1T)3 12 = 1, I b(SO , O()) can be transformed to read 

Ib(so, 00) = (1T/2) T~/3 ftro dx x-2 

(59) 

Neglecting the T~/3 term in the exponent which is always 
much less than one, this integral may be calculated as 

J. Chem. Phys., Vol. 60, No.3, 1 February 1974 
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TABLE 1. Values of Cj, coefficients ap- III. RESULTS 
pearing in Eqs. (51), (54), and (58), dis-

played to the required precision. A. Method of plotting 

1 

2 

3 

4 

0.0249792386 

- 0.014369581 

O. 7071 

1. 395207520 

5 0.7097854 

(60) 

where r is the Gamma function and Y, the incomplete 
Gamma function, is defined as 

(61) 

For 7 2 > 10-6 the sum in Eq; (43) was calculated ex
plicitly, the upper limit being chosen as so'" 7T -1 (20/72)2/3 

for which any correction terms would be less than 10-10
• 

In case So was determined to be in excess of 10000, a 
new So was computed from so'" 7;,2/3/ 7T and the correc
tion term Ib(so, 00) was added to the sum. Such precision 
in calculating these series was deemed necessary be
cause of the sensitivity of K(t) to small changes in PL(t), 
as can be seen by consulting Table II. 

The primary feature of the numerical calculations is 
the computation of the various transform integrals. An 
effective upper limit t", is easily found. The integrals 
over (too, 00) are then vanishingly small and can be ne
glected. The remaining integrals were computed by 
subdividing the interval (0, too) into 16-27 subintervals 
depending on the behavior of the integrand, and the inte
gral over each subinterval was computed with a 12 point 
Gauss-Legendre quadrature. Equation (26) was solved 
for kl using a simple iterative scheme which began with 
the guess kl = 0 on the right-hand side. In several in
stances 02 of Eqs. (15) and (16) was obtained from Eq. 
(1-153) which was rearranged into a form suitable for 
iterative solution. For this case the iteration was begun 
by setting 02 equal to the smallest nonzero chain relaxa
tion frequency that is active in the reaction process. 
For both k1 and °2 , convergence to within 1% was usually 
obtained within 4-6 iterations. Knowledge of the coeffi
cients arising in the expansion of K(t) (obtained from the 
eigenfunction expansion of the Green's function) is needed 
to carry out the computation of °2 , These coefficients, 
furthermore, determine the active chain relaxation fre
quencies in the reaction process; their calc'ulation is 
presented in the Appendix. 

The final point regarding the numerical calculations 
is that in terms of the dimensionless time variable 7, 

71 and 72 of Eqs. (52) and (57) are given as 

71 = (7T 2/2) 7 , 

72 = (121/2 7T0.1928t1 
70 

(62a) 

(62b) 

Henceforth, we abbreviate free draining and nondrain
ing, respectively, as FD and ND. 

Equations (13) and (22) give 

B"'7T-l(3/16)(3/2)1/2k(DLY~rl • (63) 

Rate calculations were performed for Y R = O. 01 and 0.05 
with Eq. (26). Values of k 1L2/6D are plotted versus By~ 
in Fig. 1 for the various limits of the chain models used. 
Also included is the straight line 7 BKoo vs By~ which is 
the maximum rate attainable and corresponds to the 
maintenance of an equilibrium distribution throughout 
the lifetime of the reaction. The effects of finite diffu
sivity are quite evident considering the large deviations 
from the predictions of the simple equilibrium theory. 

Several aspects of the method of plotting are very im
portant. First, each curve is valid only for a particular 
value of YR' Thus, along any particular curve, Rand L 
are not independent parameters. Second, but most im
portant, the results for the different models are plotted 
as if the D's appropriate to these models were equal for 
a given L. This is clearly not the case as can be seen 
by comparing Eqs. (23) and (24). However, because of 
the ambiguity associated with calculating DFD for a given 
L, it is probably the most convenient way of presenting 
the results. Failure to appreciate this point can lead to 
very wrong conclusions regarding the relaxation behav
ior of these models. Thus, if it proved possible to ob
tain macromolecules such that 

DND =DFD 

LND = LFD , 

(64) 

(65) 

the FD chain would have much higher relaxation rates, 
and its intrachain reactions would be much less limited 
by diffusion. However, a brief inspection of Eqs. (64) 
and (65), employing Eqs. (23) and (24) and with L=Nl/2bo 
and f3 given by Stokes' law as f3= 37TTJobo , will show that 
no physically self-consistent solution exists. Specifical
ly this means that DFD cannot equal DND for a given L, 
but has a correspondingly smaller value given by Eq. 
(23) (after some assignment for N, bo and/or f3 is made). 
The results of Fig. 1, then, are strictly comparable as 
predicted rates only if one were correlating independent 

TABLE 11. Values of PL(T) and K(T) in the nondrain
ing limit for selected values of T; 'Y R = O. 01. 

T PL K(T) 

2.397 x 10-9 0.9999963 0.999994 
2.187x10-8 0.9999838 0.895778 
1.133X 10-7 0.9999514 0.439854 
3.106 x 10-7 0.9999050 0.211571 
1.133 x 10-6 0.9997755 0.693223 x 10-1 

1. 018 X 10-5 0.9990380 0.884646 x 10-2 

3.503 X 10-4 0.9901755 0.274301 x 10-3 

4.936 X 10-2 0.7840707 0.314565 x 10-5 

5.046 X 10-1 0.2666679 0.840215 x 10-6 

1.009 0.0876491 0.760959 x 10-6 

0 0.752208 X 10-6 

J. Chem. Phys., Vol. 60, No.3, 1 February 1974 
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TABLE III. Results for transient rate processes in nondraining chains without excluded volume 
forces; 'YR~O. 01. Listed are the decay constants 01 and 02' the expansion coefficients <Pl. <P2' VI, 

and v2' and the quantities.ff and K. The former is the ratio of the integral of <p(t), with that func
tion given by the lead term of its expansion, to the total integral of 1>; the latter is the ratio of the 
diffusion-controlled (long time) rate constant to the maximum possible (equilibrium) value. 

B 01L2/ 6D VI 1>1 JiI) K 

5.0 X 103 0.00373 0.992 1. 00 1. 00 0.992 
1.0 x 104 0.00741 0.985 l. 00 l. 00 0.985 
5.0 x 104 0.0350 0.929 l. 00 1.00 0.929 
1. 0 x 105 0.0653 0.868 1. 00 1. 00 0.868 
2.5 x 105 0.136 0.723 0.999 1. 00 0.724 
5.0 x 105 0.213 0.565 0.996 1.00 0.567 
1. 0 X 106 0.297 0.392 0.993 1. 00 0.395 
2.5x106 0.388 0.204 0.987 0.999 0.206 
5.0 x 106 0.432 0.113 0.984 0.999 0.115 
1.0 X107 0.458 0.0597 0.982 0.999 0.0608 
2.5 X107 0.475 0.0247 0.980 0.999 0.0252 
5.0x107 0.480 0.0125 0.980 0.999 0.0128 
1. 0 x 108 0.484 O. 00629 0.979 0.999 0.00643 
5.0x108 0.486 0.00127 0.979 0.999 0.00129 
00 0.487 0 0.979 0.999 

measurements or estimates of D, L, and k. Having 
made these prefatory remarks we now undertake the in
terpretation of the results. 

B. Rates for chains in the theta state 

Numerical results for· ND and FD chains with ex '" 1 (no 
excluded volume forces) and 'YR=0.01 are presented in 
Tables III and IV. Included in the results are the quan
tities If and K. The ratio of the integral of 1>(t) with 
that function given by the first term of Eq. (15) to the 
total integral of 1> given by Eq. (35) is denoted If; K is 
the ratio of the diffusion-controlled rate to the maximum 
rate under equilibrium conditions for a given value of B. 
This latter quantity then serves as a direct measure of 
the degree of deviation from the equilibrium rates. 
Another quantity, If, can be defined by analogy with 

11IP. However, this quantity is exactly identical to 1>1' 
The results show that the effect of the i = 2 term on 
the long time behavior is negligible. In almost all 

0~2/6D v2 x 107 <P2 X 108 

4.4091 507 3.75 
4.4092 328 4.50 
4.4093 83.0 5. 08 
4.4093 42.8 5.14 
4.4094 17.5 5.17 
4.4094 8.78 5.18 
4.4094 4.41 5.19 
4.4094 1. 77 5. 19 
4.4094 0.883 5.19 
4.4094 0.442 5. 19 
4.4094 0.177 5.19 
4.4094 0.0884 5. 19 
4.4094 O. 0442 5.19 
4.4094 0.00884 5.19 
4.4094 0 5.19 

cases, the i = 1 term accounts for over 95% of the inte
gral of v and over 99% of the integral of 1>. It appears 
possible in some cases for the sum 1>1 + 1>2 to exceed 
unity. This is solely the consequence of round off in 
preparing the tables. In the actual calculations the nor
malization was never exceeded. 

Numerical results for 'YR = 0.05 and for the harmonic 
spring model have been presented elsewhere. 8 The 
trends in all of the results are very similar, and it is 
unnecessary to present additional tables because a con
venient way of summarizing the results exists. Consid
er the expressions 

kIL2(6D)"I = BKro(1 + BK.)"I , 

1>1 = [1 +BK.] [1 + BK. + klL2(6D)"IBK;]-1 , 
where 

K. =/(1 (- kr L2(6D)"1) 
and 

(66 ) 

(67) 

(68) 

TABLE IV. Results for transient rate processes in free draining chains without excluded volume 
forces; 'YR = 0.01. Listed are the decay constants 01 and 02, the expansion coeffiCients 1>1> <P2' VI, 
and v2, and the quantities fl' and K. The former is the ratio of the integral of 1>(t), with that func-
tion given by the lead term of its expansion, to the total integral of 1>; the latter is the ratio of the 
diffusion-controlled (long time) rate constant to the maximum possible (equilibrium) value. 

B olL2/ 6D VI <PI H' K o~2/6D v2 x 103 <P2 X 104 

5.0x1 03 0.00376 0.999 1. 00 1. 00 0.999 9.8733 0.375 0.00143 
1.0 x 104 0.00750 0.997 l. 00 1. 00 0.997 9.8770 0.748 0.00569 
5. Ox 104 0.0371 0.985 l. 00 1.00 0.985 9.9063 3.67 0.139 
l.OX105 0.0730 0.971 l. 00 1. 00 0.971 9.9423 7.17 O. 542 
5.0 x 105 0.327 0.867 0.998 1. 00 0.869 10.206 29.9 11.0 
1. ox 106 0.577 0.762 0.995 1. 00 0.766 10.483 48.1 34.5 
2.5 x 106 1. 06 O. 552 0.981 0.999 0.563 11.070 68.0 116 
5.0X106 1. 46 0.373 0.962 0.996 0.388 11. 606 65.4 212 
·1.0 x 107 l. 79 0.223 0.940 0.994 0.238 12.079 48.5 302 
2.5X107 2.06 0.101 0.918 0.991 0.110 12.487 25.0 375 
5.0 x 107 2.17 0.0524 0.908 0.989 0.0577 12.651 13.6 407 
1.0 x 108 2.23 0.0267 0.902 0.989 0.0296 12.739 7.12 422 
5.0 x 108 2.28 0.00543 0.897 0.988 0.00605 12.813 1. 47 434 

2.29 0 0.896 0.988 0 12.832 0 437 
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EQ 

HS5 

FD 
ND2 
NDI 
HS4 

HS3 

HS2 

HSI 

10
2 

FIG. 1. Results for transient rate processes. EQ: Maximum 
rate under equilibrium conditions; FD: Free draining, no ex
cluded volume forces, "YR = 0.01; ND1: Non-draining, no ex
cluded volume forces, "YR=O.Ol; ND2: Same as ND1, but"YR 
=20.05; HSI through HS5: Harmonic spring model, !; = 1,4.4082, 
rr, 100, 1000, respectively, and "YR=O. 01. 

(69) 

and kf is the solution to Eq. (26) for k = oo(B= 00). (A 
similar expression for 1'1 can readily be written down. ) 
With the limiting values K", ,KG and K: appropriate for 
the different models and limits, these expressions are 
capable of reproducing the numerical results with very 
high accuracy over the entire range of B. None of the 
quantities calculated in this way deviated by more than 
3. 5% from the more preCisely calculated quantities. 
Typically, the deviation was less than 1% with the larg
est deviations obtained for 1'1 in FD chains. Consider
ing the approximate nature of the more precise calcula
tions, this Simplification is numerically inconS€quential. 
The values of K." KG, and K: are listed in Table V. 

Now let us compare the rates for the FD and ND 
chains for a given L. In order to make a definite com
parision let us again put {3= 3rr1)obo , then Eqs. (23) and 
(24) give 

DND = (0. 1928)(3rr)N 1
/

2 
DFD , 

and with Eq. (63), the B's are related by 

BFD = (0. 1928)(3rr)N1
/

2 
BND • 

(70) 

(71) 

Thus, BFD is arbitrary'to the extent that N (or bo) is. 
With Eqs. (66), (70) and (71) the ratio of kl for the FD 
chain to that for the ND chain may be approximately ex
pressed as 

kFD 1 B KND 
~_ + ND • 

krD - 1 + (0. 1928)(31T) N 1/2 BND K:D 
(72) 

Using Table V to evaluate Eq. (72) it can be seen that 
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kiD will equal or exceedkfD o'f,lly for NS7 when YR=O.01 
and for NS4 when YR=0.05. So we see that for physi
cally reasonable values of N the ND chain always exhib
its larger rates than the FD chain, and we therefore 
conclude that the ND chain has a higher diffusive re
sponse than the FD chain for a given L. Of course, Eq. 
(72) always approaches unity for very small B in which 
case the reaction is no longer diffusion-controlled, and 
the chain dynamics are therefore unimportant. 

It should be mentioned that the theory has dubiOUS ap
plicability when N is as small as the values mentioned 
above, particularly for the nondraining limit. Realistic 
predictions for such small chains would require a differ
ent theoretical treatment of the chain dynamics, and the 
rates would probably not be diffu~ion-controlled unless 
the chains were very stiff. 

Next, let us consider the R dependence of the rates. 
Note that a vertical translation between curves for dif
ferent YR represents a fivefold change in R since only two 
values of YR, 0.01 and 0.05, were used in the calcula
tions. For the FD chain this increase has only a slight 
effect on k1 • The increases in k 1L 2/6D are less than 
4.2% over the entire range of abscissa. Consequently 
these results have. not been included in Fig 1. For the 
ND chain the changes are more pronounced with increases 
of up to 42% occurring. The increased reaction volume 
must act as an additional advantage for the relatively 
mobile ND chain whereas it does not appreciably enhance 
the reactivity of the more slowly relaxing FD chain. 

Regarding the L dependence at constant R, for the ND 
chain the product DNDL is independent of L (or N), so 
the effect of increasing L at constant R is shown by 
jumping vertically to a curve characterized by smaller 
YR' For the FD chain, the product DFDL is not indepen
dent of N so increasing L also increases BFDY1. In both 
cases increaSing L reduces the reaction rate. It is in
structive to compare the relative decreases in rates in
curred by the FD and ND chains when L is increased by 
a factor of 5 and R is held constant. Using Eqs. (23), 
(24), (66), (70), and (71) it is readily established that in 
this case the FD chain always suffers a proportionately 
greater decrease in rate than the ND chains for any 
given reference value of B ND • It seems reasonable to 
suppose that this behavior will, in general, be true for 

TABLE V. Values of K"" K., and K;. 

'YR 0.01 0.05 

K",(x 107) 7.522 938.9 

Nondraining 

Ka(x 106) 1. 546 139.7 
Ka(x 108) 6.824 918.95 

Free draining 

Ka(X 107) 3.288 393.8 
K;(x 108) 1. 668 212.2 

Harmonic spring 

Ka(x 104) 2.002 
K;(X 106) 2.559 
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any increase in L. Thus the implication is found that 
because of its higher diffusive response the ND chain is 
better able to offset the adverse effect on relaxation 
rates arising from increased chain size than is the FD 
chain. 

Other interesting results remain to be mentioned. One 
particularly useful estimate which can be made is of the 
size of k which must obtain in order for significant de
parture from equilibrium rates to occur. For the ND 
chain kl deviates from the equilibrium prediction by 
about 7% at BYR = 0 .05 when YR = O. 01. The deviation in
creases to 13% at By~= 10-1

• For this latter case, with 
T= 300,oK, 1)0 = 1 cp, Eqs. (24) and (63) give k '" 1. 1 X 10-12 

cm 3/sec or about 109 liters (mole-sec)"l which is about 
an order of magnitude smaller than values which are typ
ically quoted9 for reactions involving small molecules. 
The presence of excluded volume forces might be ex
pected to lower this threshold by at least another order 
of magnitude. For comparison, the FD chain shows a 
13% deviation at Byt = O. 5 Eqs. (23) and (63) with 
(3 = 31f1)obo give 

k "'N-1 / 2 3 X 10-12 cm3/sec 

for the same T and 1)0 as above. Even for N= 100, this 
value is about 27% of that for the ND chain. 

A more relevant quantity for experiment is the first 
order rate constant kl defined in Eq. (18). Using Eq. 
(66), the approximate value of kl for any given fractional 
deviation, say 100x%, from the equilibrium rate may be 
given as 

(73 ) 

Values of kl are listed in Table VI for a 10% deviation 
from the equilibrium rate. 

Let us now define a quantity k2 , 

(74) 

which is the long time value of the second order rate 
constant that would be "observed" if an independent mea
surement or estimate of v.Q were available. Using Eqs. 
(63) andj66), Eq. (74) gives 

(75) 

and also 
41fDL 

k2 (4rrDL/k) + m372(K./2Y~) (76) 

Equation (75) has the form obtained in several theories lO 

for bimolecular reactions of small molecules. The dif
ference is that in those theories unity appears instead of 
the term 3K./ 4y~. The term 3K./ 4Y~ is considerably 
smaller than unity, and this enables diffusion-controlled 
effects to be produced for smaller values of k. 

There are two different ways of regarding the param
eter YR' One way is to deprive R of physical signifi
cance and pick YR so that the agreement between Eqs. 
(6) and (9) for D(t) is made over the largest range of t, 
while the singularity is still smoothed over. Obviously, 
choosing YR to be ever smaller, but nonzero, will ac
complish this, but then no criterion exists for determin-

ing how small YR is to be made. Figure 2 shows plots of 
K(T)/Y~ for the two values of YR compared with Eq. (6) 
for the ND chain. Recalling that DNDL is independent of 
L (or N), this view of YR also implies that k2 for the ND 
chain would be independent of L since the factor K./y~ 
would be a constant in Eq. (76). The alternative view 
has been employed implicitly throughout this discussion. 
The parameter R is interpreted as some kind of effective 
collision radius within which the reaction can occur. In 
this interpretation, k2 of Eq. (76) is predicted to have an 
L dependence since YR and K. are now functions of (R/ L). 
The former view also predicts that for the ND chain the 
conditional probability density 1)(t) for finding the ends 
in proximity depends on L only through v.

Q 
at long times 

since 

1)(t) = v eQ V (t)/¢ (t) , 

and by Eqs. (18) and (74) 

1)= k2 V eQ/k . 

Since increasing L slows down the chain relaxation as 
well as lowers veq , 1) might be expected to exhibit an ad
ditional L dependence through k 2 • Thus the latter view 
of YR and R seems preferable. 

C. Qualitative results for chains with excluded volume 
forces 

Before proceeding further, a brief discussion on the 
effect of different time scales is appropriate. Consider 

Kf(a)= 10'" e- aT Kl(~T)dT , (77) 

where l; is a scaling factor. The time dependence of 
Kl (T) could be that appropriate to any of the various 
models and limits we have discussed. In terms of Kl (T) 
Eq. (77) may be rewritten as 

Kf(a)=l;-lKl(ai;-l)=~-l fo"e-a~-lTK1(T)dT. (78) 

TABLE VI. Examples of the smallest first order rate constants 
expected to be characteristic of a diffusion-controlled reaction; 
calculated from Eq. (73) with T ~ 300 OK and 110 ~ 1 cpo These 
values deviate from the equilibrium rate constants by 10%. For 
a deviation of 1% the values would be one order of magnitude 
smaller. The maximum diffusion-controlled rate (B = 00) is one 
order of magnitude larger than these values. Note for the FD 
chain that the reported quantity is N 1/ 2 k 1• 

Nondraining Free draining 

L(A.) R(A.) kl (sec-I) N 1/ 2 kl (sec-I) 

100 4.08 3.22 x 10 5 6.29 X 105 

100 0.82 2.33x105 6. 03x 105 

200 8.16 4.02x104 7. 86x 104 

200 1.63 2.91 X 104 7.54 x 104 

300 12.25 1. 19 x 104 2.33x 104 

300 2.45 8.63 x 103 2.23 x 104 
400 16.33 5.03 x 103 9.82 X 103 

400 3.27 3.64 X 103 9.42 X 103 

500 20.41 2.58 x 103 5.03 X 103 

500 4.08 1. 86 x 103 4. 83X 103 

750 30.62 7. 63x 102 1.49x 103 

750 6.12 5. 53x 102 1.43 X 103 

1000 40.82 3.22 x 102 6.29 X I02 

1000 8.16 2.33x102 6. 03x 102 
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P(r) 

FIG. 2. The function K('T")/ri for 'YR = O. 01 and 0.05 compared 
with p('T") = [4/(37T1/2)] [1- p[('T")j"3/2. 

Equation (78), of course, just represents the scaling 
property of the Laplace transform. With the fundamen
tal time scale set by D and L of the unscaled system 
(~= 1), the rate for the scaled system, kf, for a value 
of B is obtainable from the rate, k~, for B/~ in the un
scaled system as 

(79) 

Equation (79) follows directly from E;qs. (26) and (78). 

For ~ < 1, the resulting rates are scaled down relative 
to the unscaled, that is, 

(80) 

where kl is the rate in the unscaled system computed for 
the same B as kf. To see this, note that k~ > kl and that 
the maximum value k~ can attain for a given B and ~ is 
k~ = kl / ~. This value will be reached when both k~ and kl 
are specified by the linear relation which holds under 
equilibrium conditions: k 1L 2/6D = BK",. Otherwise, we 
have k~ <kl/~' Hence, k~ ~kl/~' and using this result 
with Eq. (79) we obtain Eq. (80). Similar reasoning holds 
for ~ > 1, implying 

(81) 

so that the curves would be displaced upward. 

We are now able to discuss the qualitative effects of 
excluded volume forces on the reaction rates. First, 
consider the U=S'" approximation. For N» 1 in the non
draining limit, Eq. (50) gives 

(82) 

where Al is the Zimm-Hearstll relaxation frequency. 
The factor a-3 acts as the scaling factor ~ introduced in 
Eq. (77). Since 
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(83) 

the rates in the presence of excluded volume forces will 
be diminished. In this approximation the chain relaxa
tion has been retarded relative to the unperturbed state. 
Next, we consider the approximation in which the ex
eluded volume potential is expanded through quadratic 
terms in the boson representation. From Eq. (38) the 
relevant relaxation frequencies are seen to be the A, 
x (1 + G,). Earlier results of Fixman12 give 

A, (1 + G/ ) = A" 1=1 ; 

A/(l+G/)=a2A,(l-a~zg,), Z>l. 

Since 

A/ (l+ G/ ) >0 , 

Eq. (84) and (85) give 

1- a-5 zg, ~ 1 . 

In the NO limit Eqs. (40) and (50) give 

ciA/=2-3/2A,Z2rr2Ell/ll (Z) , 

and we have also 

lim2-1/2Z2rr2Ell/l1(1)=I. 
'" -1 

Since the E" are decreasing functions of a, 

a2 A, < 71.,/2 . 

Then, Eqs. (84), (86), and (89) give 

A,(I+G/ )<A,/2 , 

and we can write 

A,(l+G/)=~/(a)A,/2 . 

Since the g, vanish for large l, 

A / (I+ G/ )- a2 A/ I» 1 ; 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

and even in this approximation the highest relaxation fre
quencies are still predicted by Eq. (87) to show an ex
eluded volume effect through Ell' Equation (91) shows 
that a single scaling factor is now insufficient, and the 
results of Eqs. (77)- (81) do not apply exactly. All of the 
~/(a) are less than 1, however, so this approximation 
also predicts a retardation of the chain relaxation and a 
corresponding diminishment of the reaction rates. The 
situation is somewhat more complicated because the co
efficients in Eq. (38) are also seen to depend on the ex
cluded volume forces through the Gz • As the strength of 
the interaction is increased the contribution of the first 
term will dominate the sum, and the time dependence 
might well be characterized as 

PL (t) - e-A1 (I) • (93) 

This is, of course, formally the same time dependence 
as that of the simple model. Calculations were made 
with Eq. (93) in the FD and ND limits but with Al evalu
ated from Eqs. (49) and (50) with a = 1, which corre
sponds to scale factors of ~ = rr2 and 4.408, respectively, 
relative to the harmonic spring (HS) model as discussed 
below. Even so, the rates, reported in Fig. 1 as curves 
HS3 and HS2, show a large decrease relative to those for 
the unperturbed chains. 
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If the interpretations made on the basis of these ap
proximate ways of including excluded volume forces are 
valid, it seems plausible that the relaxation of the non
draining chain can be significantly retarded by the ex
cluded volume forces so that the predicted reaction rates 
could approach or even become smaller than those cal
culated for the unperturbed free draining chain. These 
interpretations agree with Verdier's13 observations re
garding the dynamics of chains on lattices. Namely, the 
excluded volume effect and the hydrodynamic interaction 
have opposing effects on the chain relaxation, and the un
perturbed free draining chain might be appropriate in the 
simultaneous presence of these two forces. 

D. Harmonic spring model 

The actual calculations shown in Fig. 1 were made 
with the time scale, ~ = 1, set by the diffusion constant 
characteristic of a macromolecule rather than that char
acteristic of small molecules. These results were 
scaled with ~ = 100 and 1000 in the manner described by 
Eqs. (77)-(81), in order to get results appropriate to the 
diffusion of small molecules coupled by a spring. We 
have already noted above that the HS results scaled for 
~ = 1T2 and 4.408 represent approximately the limit of 
very large excluded volume forces in free draining and 
non-draining chains, respectively. 

The two cases, ~ = 100 and ~ = 1000, correspond to 
systems for which the small molecule diffusion constant 
is 100 and 1000 times as large as the macromolecular 
diffusion constant. The curves for these two cases lie 
near, respectively, the curves for unperturbed nondrain
ing and free draining chains. Since DND is usually at least 
an order of magnitude larger than DFD and since 100D FD and 
1000DFD are approximately the right order of magnitude 
for diffusion constants of small molecules, the results 
seem qualitatively in accord with the presemption that 
the average force on the ends arising from the internal 
segments is crudely approximated by the harmonic 
spring. 

E. Mean first passage time for end-to-end contact 

Following Montroll and Shuler14 we may define a mean 
first passage time, T m(k), for the first reactive encoun
ter between the chain ends: 

(94) 

Recalling Eq. (17) and using the properties ofthe Laplace 
transform, this expression can be evaluated as 

Tm=_dS<$(S)1 =_kVOqdV(S)1 • (95) 
ds .=0 ds .=0 

With Eq. (1- 52) and/or Eq. (1- 51), T m is approximately 
given as 

(96) 

and in terms of the function K(t) and the scaled variables 
used in the numerical calculations Eq. (96) gives 

T m 6DL -2 = [1 + BKl (0)] [BK~]-l (97) 

which should be compared with Eq. (35). Equations (15) 
and (94) may also be used to evaluate T m with the result 

(98) 

The i = 1 term dominates the sum, and we note that val
ues of <P1/(OlTm) with Tm given by Eq. (97) have already 
been presented in Tables III and IV as the quantity ft. 
The agreement obtained by using only the i = 1 term is 
notable. 

The mean first passage time for first contacts between 
ends is obtained from Eq. (97) upon taking the limit 
B- oo(k - 00). In this limit v = 0 and ¢ constitutes an ap
proximate solution to the mean first passage time prob
lem of first contacts between the chain ends, since 
(- d<p/ dOdt will give the probability that the ends first 
touch in the interval dt. 

F. Results for luminescence quenching 

In view of the lengthy presentation of results for the 
transient rates, little additional discussion seems nec
essary for the luminescence quenching results. Repre
sentative results are presented in Tables VII-IX. As an 
illustration, results for By1= 5 are plotted in Fig. 3. 
As is the case above, no direct comparison between the 
results for the ND and FD chains can be made from the 
figures because the time scales which are set by D for a 
given L are different. Therefore, some numerical com
paris ions may be illuminating. Equation (71) relates 
(approximately) the different B's. Equation (70) will en
able us to relate the values of y+ F as they are scaled in 
the two systems. Let 

(y+F)ND = (y+F)L2 (6DND )"1 , 

and 

(y+F)FD = (y+F)L 2(6DFD )"1 , 

then, Eq. (70) gives 

(y + F)FD = (0. 1928)(31T) N 1
/

2 (I' + F)ND 

(99) 

(100) 

(101) 

The quantity 0.1928(31T)N 1
/

2 also relates the two B's of 
Eq. (71). For N= 121 this quantity is approximately 
equal to 20, and for N = 750 it is approximately 50. 
From Table VII for B = 5 X 105 and (I' + F)ND = O. 5 the frac
tion of molecules in the excited state relative to the un
quenched system is predicted to be 0.698 for the ND 
chain for any N(YR is fixed at 0.01). For the FD chain 
with N = 121, B = 1 X 107 and (1'+ F)FD = 10, Table VIII gives 
the corresponding value of 0.815. With T = 300 OK, 1)0 

= 1 cp, and L= 100 A this value of (y+F)ND gives approxi
mately (I' + F)"l = 4 X 10-6 sec. Again, for the ND chain 
from Table VII for B = 1 X 106 and (y + F)ND = 1. 0 the frac
tion is 0.765. For the FD chain, this time for N= 750, 
with B= 5xl07 and (y+F)FD = 50.0, Table VIII gives 
0.925 for the fraction. In this case for L = 100 A we 
have (y+ F)"l = 2 X 10-6 sec., and for L = 250 A we obtain 
approximately 3 x 10-5 sec. The ND chain gives consis
tently more quenching, and the lifetimes are not physi
cally unreasonable for luminescent species. 

In general, all of the same trends can be found in 
these results as were found above. The ND chain, which 
has a higher diffusive response, shows proportionately 
more quenching for given values of k, R, L, and y+ F. 
The excluded volume effect lowers the diffusive re
sponse; the hydrodynamic interaction raises it. The 
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TABLE VII. Luminescence quenching results. Values of cI>."F-I ('Y + F) for nondraining chains without excluded volume forces; 

'YR = O. 01. 

B= 5 X 104 1 X 105 5 X 105 1 X 106 

('Y + F)L2(6Drl 

LOx 10-2 0.222 O. 133 0.0446 0.0324 
3.0 X 10-2 0.462 0.315 0.123 0.0911 
5. 0 x 10-2 0.588 0.433 0.189 0.143 
7. ox 10-2 0.667 0.517 0.246 0.189 
1. 0 x 10-1 0.741 0.605 0.318 0.250 
2.5X10-1 0.877 0.793 0.537 0.453 
5.0 x 10-1 0.935 0.884 0.698 0.623 
7.5X10-1 0.955 0.920 0.775 0.710 
1.0 0.966 0.938 0.821 0.765 
4.0 0.991 0.984 0.947 0.926 
7.0 0.995 0.991 0.968 0.955 
1.0 X 101 0.996 0.993 0.978 0.968 
3.0 X 101 0.999 0.998 0.992 0.988 
5.0 x 101 0.999 0.999 0.995 0.993 
1. 0 x 102 0.999 0.997 0.996 

maximum quenching that could be obtained is that pre
dicted by the equilibrium theory from the equation 

<p:~=F(y+Ftl [1+ kVeq(Y+ F)"1 ]-1 

=F(y+F)"1 [1 + BK.,6DL-2(y+F)"I]-1 (102) 

Values calculated with Eq. (102) are recorded in Table 
IX. There is sufficient deviation between these results 
and those for the chain models to permit a clear choice 
in any experimental test. 

Although extensive caluclations have been made8 with 
Eq. (36) for <ps. , there exists an alternative and simpler 
way of obtaining these results. If Eqs. (1-68) and (15) 
are used to calculate <P ss , the resulting equation reads 

(103) <Iossrl(Y+F)= L¢I [1 + 0h+F)"I]"1 . 
I 

The first term dominates the sum, and values calculated 
from the i = 1 term of Eq. (103) for ND and FD chains 
with YR=O.Ol are in good to excellent agreement with 
those in Tables VII and VIII. The agreement is excellent 

5 xI06 1 X 107 5 X 107 1 X 108 5 X 108 00 

0.0223 0.0210 0.0200 0.0199 0.0198 0.0197 
0.0640 0.0605 0.0577 0.0573 0.0570 0.0569 
0.102 0.0967 0.0924 0.0918 0.0914 0.0913 
0.137 0.130 0.124 0.124 0.123 0.123 
0.185 0.176 0.169 0.168 0.167 0.167 
0.360 0.346 0.335 0.333 0.332 0.332 
0.528 0.513 0.500 0.498 0.497 0.497 
0.624 • 0.609 0.596 0.595 0.593 0.593 
0.686 0.672 0.661 0.659 0.658 0.657 
0.892 0.886 0.880 0.879 0.878 0.878 
0.932 0.927 0.923 0.922 0.922 0.922 
0.951 0.948 0.945 0.945 0.944 0.944 
0.981 0.980 0.979 0.978 0.978 0.978 
0.988 0.987 0.987 0.986 0.986 0.986 
0.994 0.993 0.993 0.992 0.992 0.992 

for the ND chain and good for the FD chain. The only 
Significant discrepancy, but never more than 10%, oc
curs in the FD results for large values of both Band 
(y+ F)L2/6D, and can be attributed to the deviation of 
¢1 from unity. The inclusion of the i = 2 term would lead 
to improvements of several percent in this case. Since 
01 and ¢1 are easily calculated with high accuracy by us
ing the asymptotic values of Kl and Kf, Ka and K~, <loss 

can be calculated straightforwardly with the first term 
of Eq. (103) for any values of k and Y + F. 

For an instantaneous pulse of light at t = 0 which ex
cites a fraction! of the potentially luminescent sites, 
the decay law is readily obtained in the form 

<Io(t)=!¢(t)exp(- yt) • (104) 

The long time dependence goes as exp[- (01 + y)t], and 
perusal of the results shows that 01 and Y can be found 
comparable in magnitude over a significant range. It 
thus appears possible to find conditions under which the 
transient behavior with intrachain quenching differs sig-

TABLE VIII. Luminescence quenching results. Values of cI>s"F-I ('Y+F) for free draining chains without excluded volume forces; 
'YR= 0.01. 

B= 5 x 104 1 X 105 5 x 105 1 x 106 5 X 106 1 X 107 5 X 107 1 X 108 5 X 108 00 

('Y + F)L 2 (6D )-1 

1. 0 X 10-2 0.213 0.120 0.0296 0.0170 0.00658 0.00526 0.00421 0.00408 0.00397 0.00395 
3. Ox 10-2 0.447 0.291 0.0840 0.0492 0.0195 0.0156 0.0125 0.0121 0.0118 0.0117 
5. Ox 10-2 0.574 0.406 0.132 0.0794 0.0320 0.0257 0.0207 0.0200 0.0195 0.0194 
7.0 x 10-2 0.654 0.489 0.176 0.108 0.0442 0.0356 0.0286 0.0277 0.0270 0.0269 
1. ox 10-1 0.730 0.578 0.234 0.147 0.0620 0.0501 0.0404 0.0392 0.0382 0.0380 
2. 5x 10-1 0.871 0.774 0.433 0.301 O. 141 0.116 0.0945 0.0918 0.0896 0.0890 
5.0 x I0-1 0.931 0.872 0.604 0.462 0.246 0.207 0.172 0.167 0.163 0.163 
7.5x10-1 0.953 0.911 0.695 O. 562 0.327 0.278 0.234 0.228 0.224 0.222 
1.0 0.964 0.932 0.752 0.630 0.391 0.337 0.287 0.280 0.275 0.273 
4.0 0.991 0.982 0.923 0.870 0.709 0.656 0.597 0.588 0.581 0.579 
7.0 0.995 0.990 0.954 0.920 0.800 0.754 0.699 0.690 0.683 0.681 
1.0x101 0.996 0.993 0.967 0.942 0.852 0.815 0.770 0.762 0.756 0.755 
3.0 x 101 0.999 0.998 0.989 0.979 0.938 0.918 0.888 0.883 0.879 0.877 
5.0x101 0.999 0.999 0.993 0.987 0.960 0.946 0.925 0.921 0.917 0.916 
1. 0 x 102 1 0.999 0.996 0.993 0.978 0.968 0.952 0.949 0.946 0.945 
4.0 x 102 1 1 0.999 0.998 0.994 0.990 0.984 0.982 0.981 0.980 

J. Chem. Phys., Vol. 60, No.3, 1 February 1974 



888 G. Wilemski and M. Fixman: Intrachain reactions of polymers. II 

TABLE IX. Luminescence quenching results. Values of <f>:F-l (y+F), the equilibrium results corresponding to the maximum pos-

sible quenching attainable. 

B= 5 x 104 1 X 105 5 X 105 1 X 106 5 X 10 6 

(y + F)L 2(6D)"1 

1. 0 X 10-2 0.210 0.117 0.0259 0.0131 0.00265 
3.0 X 10-2 0.444 0.285 0.0739 0.0384 0.00791 
5.0x10-2 0.571 0.399 0.117 0.0623 0.0131 
7.0 X 10-2 0.650 0.482 0.157 0.0851 0.0183 
l.OX10-1 0.727 0.571 0.210 0.117 0.0259 
2.5 X 10-1 0.869 0.769 0.399 0.249 0.0623 
5.0 X 10-1 0.930 0.869 0.571 0.399 0.117 
7. 5X 10-1 0.952 0.909 0.666 0.499 . 0.166 
1.0 0.964 0.930 0.727 0.571 0.210 
4.0 0.991 0.982 0.914 0.842 0.515 
7.0 0.995 0.989 0.949 0.903 0.650 
1. 0 X 101 0.996 0.993 0.964 0.930 0.727 
3.0x101 0.999 '0.997 0.988 0.976 0.889 
5.0 x 101 0.999 0.998 0.993 0.985 0.930 
1.0 x 102 1 0.999 0.996 0.993 0.964 
4.0x102 1 0.999 0.998 0.991 

nificantly from the behavior without it. The transient 
behavior of systems subject to excitation by time depen
dent sources can be calculated from Eq. (1-68). 

IV. DISCUSSION 

The results which we have obtained are encouraging 
and seem to justify an effort to establish the experimen
tal use of fast reactions to study chain relaxation. From 
an experimental standpoint, the luminescence quenching 
studies seem to be the most promising in terms of feasi
bility. The possibility of making such measurements 
may be inferred from the work reviewed by Nishijima. 15 

In addition, the effect of intramolecular interactions has 
been inferred, 16 and the possibility of synthesizing poly
mers with opposing ends terminated by fluorescing and 
quenching groups has also been suggested. 17 

With regard to the transient rate processes, one of the 
more Significant experimental limitations might be the 
inability to obtain an equilibrium initial condition. The 
study of transients in luminescence quenching would be 

, 
en l.L 
en + 

080 ~ 
l.L 

1 X 107 5 X 107 1 X 108 5 X 108 

0.00133 0.266 x 10-3 0.133 X 10-3 0.266 X 10-4 0 
0.00397 0.797 x 10-3 0.399 X 10-3 0.798 X 10-4 0 
0.00660 0.00133 0.664 x 10-3 0.133 X 10-3 0 
0.00922 0.00186 0.930 x 10-3 0.186 X 10-3 0 
O. 0131 O. 00265 0.00133 0.266x 10-3 0 
0.0322 0.00660 0.00331 0.664 x 10-3 0 
0.0623 0.0131 0.00660 0.00133 0 
0.0907 0.0196 0.00987 0.00199 0 
0.117 0.0259 0.0131 0.00265 0 

0.347 0.0961 O. 0505 0.0105 0 
0.482 0.157 O. 0851 0.0183 0 
0.571 0.210 0.117 0.0259 0 
0.800 0.444 0.285 0.0739 0 
0.869 0.571 0.399 0.117 0 
0.930 0.727 0.571 0.210 0 
0.982 0.914 0.842 0.515 0 

an effective way of surmounting this difficulty; however, 
other considerations indicate that this difficulty may not 
be of major importance. The slowest chain relaxation 
processes are governed by the relaxation frequency of 
the lowest normal mode, and this frequency is sufficient
ly greater than the decay constant characteristic of the 
long time behavior of the reacting system so that the ab
sence of a well defined equilibrium initial condition 
might not be that serious. For example, for the ND 
chain we see from Table II for T '" 1 that PL (1) '" 0.09, 
while from Table III we have ¢(l);::,exp(- 0.49) for the 
fastest reactions possible. This corresponds to there 
being about 61% of the end groups still unreacted for an 
initial equilibrium distribution. If the nonequilibrium 
starting condition had predominantly larger end-to-end 
separations than at equilibrium we might expect an even 
larger percentage of material to be unreacted when the 
relaxation to equilibrium was nearly complete. 

The effect of different choices for S on ¢ and lJ can be 
briefly mentioned. Provided S is an even function, no 

FIG. 3. steady state luminescence quenching 
results for B y~ = 5. EQ: Maximum quenching 
under equilibrium conditions; FD: Free draining, 
no excluded volume forces. YR= O. 01; ND1: 
Nondraining, no excluded volume forces, YR = 
=0.01; ND2: Same as NDl, butYR=0.05; HS2 
and HS3: Harmonic spring with I; = 4. 4082 and 
7T

2
, and YR = 0.01. 
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qualitative changes in ¢ or v will result. Even the time 
dependence of the higher terms in Eqs. (15) and (16) will 
be qualitatively correct since the chain relaxation fre
quencies which are shifted by the reaction to become the 
°1 are determined solely by the evenness of S, not by 
its specific form, as was discussed in 1. The actual 
values of the °1, ¢I' and vI, of course, depend quantita
tively on the specific S function. 

Finally, we note that the magnitudes of the various 
calculated quantities, e. g., k1' ¢1 , <P ss , seem reason
able from physical considerations, and that the results 
do"have a very high degree of numerical self-consisten
cy. Though it does not constitute a rigorous mathemati
cal demonstration, this self-consistency lends credence 
to our supposition about the exponential character of ¢(t) 
and v(t). Specifically, we note that the integrals of ¢ and 
v, the mean first passage time T m' and the luminescence 
quenching fraction <I> ss can all be calculated independently 
of an assumed form for ¢ or v, yet these quantities 
agree exceedingly well with those calculated on the basis 
of the exponential solution for ¢. 
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APPENDIX: CALCULATION OF EXPANSION 
COEFFICIENTS FOR D(t) 

A. Harmonic spring model 

For this simple model Eq. (1-142) defines the coeffi
cient Dn. Using the Heaviside step function for S, Eq. 
(1-142) becomes 

Dn = (471R 3/3)"1(271L2/3)-3/2 f drexp[- (3/2)(r/ L)2] 

xH(R-r)hn(r). (A1) 

For n=a, ho(r)= 1, and with YR= (3/2)1/2(R/L) we obtain 
directly 

Do= (471R3/3)"1 [erf(YR)- (2/711/ 2) YR exp(- y~)]. (A2) 

Inspection of Eqs. (A1) and (I-A6)-(I-A9) shows that 
the smallest eigenvalue1B An for which the associated Dn 
is nonzero is 

(A3) 

The eigenfunctions19 which contribute to the correspond
ing D(1) have the form h2(x)ho(y)ho(z). Thus D(l) is given 
as 

D(l) = (3/ 8)1/2(4 71R 3 /3 )"1(271 L 2/3 )-3/2 

x f dr exp[- (3/2)(r/ L)2]H(R - r)H2([3/2)1 /2[Z/ L D. 
(A4) 

The factor 31
/
2 arises because there are three terms 

which make equal contributions to D(1) in Eq. (1-141). 
Since H2(u)=4u2- 2 and Z =rcos(e), Eq. (A4) can be re
duced to 

D(l)=- (2/3)1/2(471R3/3r1(2/711/2)y~exp(_ y~). (A5) 
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The next eigenvalue, A(2) , for which the associated 
coefficient is non-zero is 

(A6) 

The eigenfunctions which contribute to D(2) have the form 

h2(x)h2(y )ho(z) 

or 

Thus we have 

D~2) = (3/64)(471R3/3)"1 (M+ t3U6) , (A7) 

where 

131 = (271L2/3)-3/2 f drexp[- (3/2)(r/Lf]H{R-r) 

XH2([3/2]1/2 [x/L])H2([3/2]1/Z [z/L]} (A8) 

and 

~=(271L2/3)"3/2 f drexp[- (3/2)(r/L)2]H{R-r) 

XH4 ([3/2]1/2 [z/LD • (A9) 

With H4 (u)= 16u4
- 48u2+ 12, performing the integrals 

gives 

(Ala) 

and 

so 

(All) 

D(2) = (10/(371))1/2 (471R3/3)"1 (Y1- 2y~/5)exp(- y~) . 

(A12) 
The function K(t) defined in Eq. (la) which results 

from the "unbalanced" choice of sinks is expressable as 

K(t)= (471R3/3)(271L2/3)3/2lim [LDn(R)Dn{R1)exp(- Ant)] • 
R1 ~o n 

Taking this limit gives (A13) 

K(t) = K", + (2/711/2) Y1 e~~ e~6DL-2f 
~ ~2 

+(2/711/2)("h1_~y~)e~Re~12DL t+ ••• 

(A14) 
B. Chain model 

From Eq. (1-117) in the U=S'" approximation we have 

D(t)=v!q+L(a1s1n)(n1s1a)e~Lnf. (A15) 
n~O 

The smallest relaxation frequency, L(l), for which a 
nonzero coefficient is present in Eq. (A15) is 

(A16) 

The appropriate members of the basis set have the form 

12 1%>a,' 00 ,a) 

Thus, 

D(l)=3 1
/
2(a1sI21,.,a,"· ,a) (A17) 

which gives 

D(l) = (3/2 )1/2 (471R 3/3)"1 (271)-3 f dr dkH(R - r) 

xexp(- c 1Jk
2+ik. r)(alexp(-ik' r.) 
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(A18) 

upon using the Heaviside step function and Eqs. (1-89) 
and (1- 90). After performing the required boson oper
ator rearrangements! and the integral over k, the result 
is 

D(1) = (3/32)1/2 (fU C /j)(47TR 3/3)"1 (47TC Ii )"3/2 

X f dr exp[- ,-2/ (4 C ii)]H(R - r) H 2 (2 -1 [xl C Ii]) (A19) 

which is, of course, very similar to Eq. (A4). Finally, 
Eq. (A19) gives 

D(1) =- (2/3)1/2 (7TfU C li)(47TR3/3)"1(47TC /j/R2)"3/2 

xexp [- R2/(4c ii)] • (A20) 

For a pair of groups on opposite ends of the chain Eqs. 
(A20), (1-16), and (1-18) give for N» 1 

From Eq, (A13), K(t) may be obtained as 
2 

K(t) = K~ + (8/7T 2)2 (2/7T 1/2) y~ e-rRe -2A1 t + ••• 

(A21) 

(A22) 
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