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Diffusion-controlled intrachain reactions of polymers. I 
Theory*·t 

Gerald Wilemski* and Marshall Fixman 

Department of Chemistry. Yale University. New Haven. Connecticut 06520 
(Received 18 September 1973) 

A theory of diffusion-controlled intramo1ecularly catalyzed reactions of polymer chains in dilute 
solution is formulated. A closure approximation yields a soluble integral equation for (essentially) the 
transient rate of the reaction. The time dependent solution consists of a sum of simple exponential 
terms whose coefficients and decay constants can be readily calculated. The theory is also applied to 
luminescence quenching and ring-chain interconversion. 

I. INTRODUCTION 

A recent article by Morawetz1 has drawn attention to 
the substantial amount of information concerning the 
structure of macromolecules that may be obtained by 
studying the rates of chemical reactions taking place in 
polymer solutions. Nishijima2 has also discussed the 
importance of using fluorescence methods to study 
structural and relaxation properties of polymers. 

These techniques can be significantly augmented by the 
consideration of very fast intramolecular rate processes 
in polymeric systems. We visualize a dilute solution of 
linear flexible polymer chains in which each chain is 
characterized by some distribution of reactive groups 
along its backbone. If the intrachain reactions are intrin
sically very fast, it should be clear that the rates of these 
processes will be limited by the rates at which confor
mational changes take place which bring potentially re
active groups into contact. Thus, the experimental in
vestigation of these rate processes is a direct method for 
studying this relaxation behavior and can provide useful in
formation about the dynamical behavior of polymer chains. 

To illustrate the capabilities of this technique consid
er the case in which only two reactive groups are fixed 
to the ends of a chain, This is the simplest case to 
handle theoretically and, probably, experimentally, and 
it is treated in detail in the following paper. The mea
sured rates will depend directly on the relaxation of the 
end-to-end distance. In particular, if the probability 
of the reaction per collision is very near unity (i. e., a 
very high "intrinsic" rate) the rate measurements give 
a direct experimental determination of the time depen
dent probability of first contact between the chain ends. 
Until now, this probability seems to have been obtain
able only from computer studies such as those of 
Verdier and Stockmayer3 (though they did not bother to 
obtain it) or from estimates of the diffusion- controlled 
rate presented by Wang and Davidson. 4 

There is some recent work4•5 dealing with intrachain 
reactions, however, to the best of our knowledge, no 
detailed study of diffusion-controlled intra chain reac
tions has previously been presented, In addition to ful
filling our objective of applying the formalism of our 
earlier paper6 (hereafter referred to as nCR) to a rela
tively complex many-particle system, this paper is an 
attempt to provide a theoretical basis for the experi
mental study of chain relaxation using chemical reac-

tions and luminescence quenching. 

The only work known to us which seems to substantiate 
the feasibility of such experimental studies is that re
viewed by Nishijima7 on fluorescence polarization for 
dilute solutions of macromolecules carrying fluorescent 
end groups. From this work we infer the possibility of 
luminescence quenching studies for which the relevant 
theory is presented herein. 

The plan of this paper is the following. After present
ing the approximate equations of motion which have 
previously been developed to treat the dynamics of 
polymer solutions, the formalism of DCR is employed 
to treat the kinetics of intramolecularly catalyzed reac
tions, luminescence quenching, and ring-chain intercon
version. Approximate expressions for the quantities 
of experimental interest are obtained in terms of re
duced Green's functions of the polymer diffusion opera
tor. These reduced Green's functions are the kernels 
of the various integral equations which arise in the 
analYSiS, and they are evaluated by using the boson op
erator formalism. 8 The solution of the equations is then 
presented, and the convergence of the approximation 
scheme is also briefly considered. Extensive numerical 
results have been obtained for a system featuring a 
pair of reactive groups attached to the ends of the chain 
and they are reported in the following paper. 

II. SUMMARY OF BASIC MATHEMATICAL FORMALISM 

The basic equations and mathematical techniques have 
been presented in great detail by Fixman, 8 The per
tinent aspects will be summarized here in a manner 
which reflects their specific use in later sections. Es
sentially this means that we will be using the hydrody
namic interaction tensor in its pre-averaged form, no 
external flows or forces will be considered, and the 
center of mass dependence is neglected. The first 
specialization is almost routine in the treatment of dy
namical problems, and with the potentials we will be 
using it insures that in the boson representation the dif
fusion operator will be quadratic in bosons. This is a 
necessity for the types of operator rearrangements to 
be employed. The center of mass dependence can be 
neglected because we are explicitly conSidering only 
intramolecular effects in dilute solution. 

The chain consists of N + 1 segments whose pOSition 
vectors are denoted 1'1> ••• , r N+l' In terms of these 
coordinates the time dependent distribution function if! 
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satisfies the generalized diffusion equation 

fJ1/J/fJt + 91/J = 0, (1) 

where 
H+1 H+1 

91/J=-kTL, :0 V I ,(rr1o/j1+T(r/j))o(vi 1/J+1/J("VJU)/kT). 
1-1 J-1 

(2) 

The hydrodynamic interaction tensor T(rli ) will later be 
used in its preaveraged form. In Eq. (2), U is the in
tersegment potential energy, and (3 is the friction con
stant for a chain segment. To facilitate the solution of 
Eq. (1) we let 

1/J=1/J"'p. 

A modified Gaussian distribution function, 1/J"', serves 
as a zeroth approximation to the equilibrium distribu
tion function. With the effective inter segment potential 
chosen as 

H 

5'" = (3kT/2(ab o)2) L, I r l +1 - r l 1
2 

, 
/-1 

1/J'" is given by 

1/J"'=exp(-S"'/kT)/ J exp(-S"'/kT)dr1 ... drH+1 • 

The parameter a measures the expansion relative to the 
unperturbed reference length of a segment boo The po
tential S'" can serve as a crude way of introducing ex
cluded volume forces via the expansion parameter a, 
but when a more explicit choice for an excluded volume 
potential is made a is chosen to make 1/J'" come as close 
as p0ssible to the new equilibrium distribution function, 
and it becomes the expansion factor of only the lowest 
normal mode. 

When Eq. (3) is substituted into Eq. (1) the result is 

fJp/fJt+.£p=O, (6) 

where .£ is given in the boson operator representation 
as 

H H 
.£ =L L bt oAkl , [b, + (bl> U- S"')/kT] • (7) 

ka1 1-1 

Here 

H+1 H+1 

Akl = 2kTaka , L, L, Qkl Q,A{3-10/j 1 + T(rlj)] . (8) 
1-1 i-1 

and T(r) is understood to be in its boson representation. 
The quantities a, and QJk are given as 

O!I = 61/2(aborl sin(l1T /2M, (9) 

QJk = N-1/2(2 - OkO)1/
2 cos{jk1T!N) • (10) 

The center-of-mass dependence has also been neglected 
in Eq. (7). 

The inter segment potential U is taken to be the sum 
of the potential of interaction between segments close 
together along the backbone,S, and the excluded volume 
potential E: 

U=S+E. (11) 

We make the conventional choices for 5 and E 9: 

867 

2 '" 3kT ~ I 12 S=aS =Pb L.J r l -rl +1 , 
o I-I 

(12) 

E=kTXL o(rli ). (13) 
Pi 

The binary cluster integral for a pair of segments, - X, 
represents the effective volume excluded to one segment 
by another. The boson representations of S'" and S 
are readily expressible8 as 

H 

5/ a2 = SOl = (kT/2) L, (b, + bi)' (b, + bi) • 
I-I 

Fixman8 has apprOXimated E as 

H H 
E=-kT(X/321T3/2)I: L, L (eljp/2fkf, 

Here, 

and 
1 H 

eli = -I: fl2 
2 I-I 

I>i 1-1 k-l 

With Eqs. (9), (10), and (16), Eq. (17) gives 

elJ =t I j - il 0!2b~ 

(14) 

(15) 

(16) 

(17) 

(18) 

for N» 1. Next, from Eqs. (11), (14), and (15) we ob
tain 

U-S"'=%kTL E Gk/(bt+bk)'(b/+bJ), (19) 
k I 

where 

Gkl = (a2 - l)0kl - (X/161T3/2
) E (e/j)-5/ 2 fkf, • (20) 

Pi 

To obtain the form for .£ which will be used in the rest 
of this analYSis further approximations are required. 

Following Fixman, 8 the Gkl for k'" 1 are neglected, 
and we set Gil = G, • Further, all off-diagonal Akl are 
neglected, T(r) is replaced by its equilibrium average 
(T) eq' and we can then set A II = A,l. In view of the rela
tive success of this latter approximation for the theory 
of intrinsic viscosity near the Theta point at vanishing 
shear rates it is believed that this will not be a serious 
source of error particularly because our numerical cal
culations were performed mainly for molecules at the 
Theta point. Excluded volume forces are explicitly in
cluded in the general formalism principally to illustrate 
that it is possible to do so and to be able to investigate 
their qualitative effects on chain relaxation. 

The average of any function f of coordinates, 

(j) = J 1/J"f pdr1• •• dr H+1' (21) 

is expressed in the boson representation as 

(j) = (01 fl p), (22) 

where I p) may be either the equilibrium or nonequili
brium solution of Eq. (6). With Eq. (22) we have 

(23) 
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868 G. Wilemski and M. Fixman: Intrachain reactions of polymers. I 

With the above restrictions Eqs. (7), (19), and (23) 
give 

N 

J3 =L A,bl' [b, + G,[b, + bi] J, (24) 
1-1 

where 
N+1 N+1 

A,l=2kTex~ L; L; Q,IQU(/3-10Ij l+(0IT(rij)lpej), 
1-1 j-1 

The vector r (Il connects the active segment at, say, r l 

to the lth catalytic segment located at, say, r j , and in 
the coordinate system originally presented is given as 
r (0 = rj - rl' The probability rp(t) that the segment is 
acti ve is given by 

rp(t) = J ljidr1 • •• dr N+1 = (01 p), (32) 

where Eqs. (3) and (22) have been used. 

(25) Integrating Eq. (30) over all coordinates gives 

In Eqs. (23) and (25) I PeQ) is the solution to 

£1 PeQ) = 0 , (26) 

and is approximately given by Fixman8 as 

IpeQ)=exp[-~F.1 G,(1+G,t1bi·bl]10). (27) 

The parameter O! is chosen to make G1 = 0, and the re
maining GI are functions of the strength of the excluded 
volume interaction which also vanish at the Theta point. 
In the U= set approximation Eq. (24) reduces to 

N 

J3 =6 A,bl· b l , (28) 
1-1 

and we also have 

(29) 

In the absence of excluded volume forces ex = 1, and Eq. 
(24) again reduces to Eq. (28); A" of course, is now 
evaluated for O! = 1. More explicit eppressions for 
(T)eQ and A, can be found in the following paper where 
they are used in the calculations. 

III. FORMAL DEVELOPMENT FOR SPECIFIC 
REACTION PROCESSES 

Beginning with this section the mathematical develop
ments of OCR and the polymer formalism summarized 
in the preceding section will be combined in a detailed 
explication of several types of intramolecular rate 
processes. The development will be mainly formal at 
first with detailed mathematical calculations being de
ferred to later sections. 

A. Intramolecular catalysis 

The polymer chain of N + 1 segments is now additional
ly characterized by the presence of m special segments 
which can catalyze the reaction of the single reactive 
segment. As noted in OCR, more than one reacti ve 
segment could be present in the chain, but since the 
reactivities of these segments are independent it is suf
ficient to consider only one. The basic equation for this 
type process was discussed in OCR, and it reads 

(30) 

where 9 is the same operator that appears in Eq. (1) 
and 

'" s= L; SI(r(J)). (31) 
1-1 

drp/dt=-kv(t), (33) 

where 

v(t) = (01 sip) =L; (01 S,(J3 (1l)1 p). (34) 
I 

The function v(t) is the joint probability density that the 
reactive site is active and is in the vicinity of any 
catalytic segment. 

Using Eq. (3), Eq. (30) becomes 

ap/at+J3p= - kSp • (35) 

With the identity 

ap +J3p=e-£t ~ (e£t p ) 
at at (36) 

a formal solution of Eq. (35) can be written as 

Ip)=e-£tlp(O)-kf dTe-£(t-1)slp(T). (37) 
o 

For the initial condition, I p(O), the equilibrium distri
bution is chosen 

1 p(O) = 1 PeQ)' (38) 

Employing Eqs. (34) and (38) and acting with (OIS on 
Eq. (37) gives 

v(t) = v eQ - k fot dT(0ISe-£(t-1)sl p(T) , 

Where, with Eq. (31), 

veq=(ols IPeQ)=:B (ols,(rOJ)lpeq)' 
1.1 

(39) 

(40) 

To make further progress it is necessary to introduce 
an approximation for I p) in Eq. (39). If the intrinsic 
rate constant k is not too large, the internal distribution 
would remain very close to the equilbrium distribution 
and I p) would be proportional to rp(t). Then J3 in Eq. 
(39) would act only on S. Therefore, as a zeroth ap
prOXimation to I p) we set 

(41) 

and v(t) is to be determined by requiring the ground state 
average of Eq. (41) to be correct in this order of ap
proximation: 

< 0 lsi p) = v(t) < 0 I s I Peq) . 

From Eqs. (34) and (40) v(t) can be identified as 

v(t) = v(t)!Veq . 

(42) 

(43) 

We now see that I p) is proportional to v(t). For small 
k or high diffusivity this is rigorous, since in either of 
those limits v(t)- rp(t)Veq' For large k or small diffu
sivity the approximation may also be reasonably suit
able. We know from the discussion of OCR that regions 
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of configuration space in which active and catalytic sites 
are found in proximity are rapidly depleted by the reac
tion. Since S acting on I p> singles out those particular 
regions of configuration space and since vet) initially 
decreases very rapidly and changes slowly thereafter, 
the approximation preserves the correct qualitative be
havior in the distribution function for the reaction re
gion. 

Utilizing Eqs. (41) and (43), Eq. (39) becomes 

vet) = 1 - (k/ Veq) It dT D(t - r) v( T) , (44) 
o 

.where 

(45) 

The explicit evaluation of D(t) is deferred to Sec. IV. 
Equation (44), an inhomogeneous Volterra equation of 
the second kind, has the convolution form, and its solu
tion is conveniently obtained in terms of the Laplace 
transform defined by 

g(s) = I'" e-stg(t) dt . 
o 

Taking the transform of Eq. (44) we obtain 

D(s) = [s(l + (k/veq)D(s))]-l • (46) 

Taking the transform of Eq. (33) gives exactly 

¢(s) = s-l(l - kveqiJ(s)) . (47) 

It will be seen in Sec. IV that 

lim D(t) = (Veq)2 • 
t- '" 

Hence, defining H(t) to be 

H(t) = D(t) - (veq? 
the transform of D(t) becomes 

D(s) = ii(s) + s -l(veq)2 , 

and Eqs. (46) and (47) may be rewritten as 

D(s)= [s+s(k/veq)ii+kveqr l , 

¢(s)= [1 + (k/veq)H]iJ • 

(48) 

(49) 

(50) 

(51) 

(52) 

Thus, vet) and cp(t) may be obtained if the inversion of 
Eqs. (51) and (52) is performed. In Sec. V this analysis 
will be carried out. 

Equations (37) and (39) can be used in an iterative 
scheme to generate higher order approximations to vet) 
and CP(t) starting with Eq. (41). This is readily pursued 
in the Laplace transform representation. Formally, 
the Laplace transform of Eq .. (37) is 

11i)=s-lIPeq)-k(£+s)"lsl.o>. (53) 

Using Eq. (41), a first order approximation for I Ii) is 
generated. 

Ilil)=s-lIPeq)-k(£+s)"1sIPeq)iJ, (54) 

where iJ is given by Eq. (51). After dividing Eq. (39) by 
veq , taking its transform, and using Eq. (54) for 1.0>, 
the first order expression for iJ is given by 

j/1= 1 - (k/Veq )2[(D)2 - veOY] 
s + s(k/ Veq)1i(s) + kVeq 

where 

(55) 

869 

(56) 

Equations (47) and (55) may be used to give a first order 
expression for ¢. The result is 

3 A 2 
¢L S + s(k/ Veq)H + (k/ Veq) [(D) - VeqY] (57) 

- s[s + s(k/ veq)1i + kVeq] 

The implications of these expressions will be discussed 
after the solutions of Eqs. (51) and (52) are presented. 

B. Luminescence quenching 

As in DCR, the quenching process is treated as a type 
(i) reaction. Equation (30) is modified by the addition of 
source decay terms, and the basic equation z:eads 

Employing Eqs. (3) and (36), Eq. (58) can be trans
formed to read 

I p) = I Peq ) t dre-y(t-T) F( T) exp[ - f F(t ') dt '] 
o T 

(58) 

- k t dTexp[ - (£ + y)(t - T)] exp[ - t F(t ')dt '] 
o T 

XSlp(T». (59) 

The initial condition is I p(O» = 0 since the source term 
will account for the excitation of the active sites. Act
ing with (0 I S on Eq. (59), making the same closure ap
prOXimation used in the preceding section and defining 

o(t)=(ol slp)/veq , 

OCt) = W) e-yt exp[ - t F(t ') dt '] , 
o 

aCt) = F(t) eyt exp [t F(t ') dt '] , 
o 

(60) 

(61) 

(62) 

we obtain an equation for ~(t) whose transform readily 
gives 

~(s) = D(s)a(s) • (63) 

The probability density v is identical to that of the pre
ceding section, and its transform j/ is defined by Eq. 
(46). Equation (40) defines Veq' 

In analogy with Eq. (32) let 

(64) 

so when Eq. (58) is integrated over all coordinates, the 
resulting exact equation reads 

d<f>/dt= - kveq 0(t) - [y+F(t)]<f>(t)+F(t) • 

Equations (61), (62), and (65) with 

<p(t) = !;(t) e-yt exp [- t F(t ') dt '] 
o 

(65) 

·(66) 

give an equation for !;(t) whose transform, using Eqs. 
(47) and (63), can be written as 

~(s) = ¢(s)a(s) • (67) 

Upon inverting Eq. (67), Eq. (66) gives 

<p(t) = f dT F( T)CP(t - T) e-y(t-T) exp [- t F(t ') dt ']. (68) 
o T 

Thus, knowledge of CP(t) enables the calculation of tran
sient effects in luminescence quenching to be made 
straightforwardly. 

If the specialization to a constant light source, F(t) = F, 
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870 G. Wilemski and M. Fixman: Intrachain reactions of polymers. I 

is made, the steady state probability, cI> •• , that the 
special site is in the excited state may be obtained via 
Eq. (39) of DCR by evaluating s~(s) as s- O. Calcula
tion of the transform from Eq. (68) with Eqs. (51) and 
(52) yields for the limit: 

cI> = F[l + (k/lIeq)H(y+F)] 
S. (y+ F) [1 + (k/ veqW( y+ F) + (y+ F)"l kVeq 

(69) 

C. Reversible ring opening and closing 

Though most ring closing reactions of macromolecules 
may be too slow to show the effects of slow relaxation 
rates, this example is still worth pursuing because it 
illustrates nicely the complications which ensue if the 
reaction greatly modifies the potential of interaction be
tween reactive particles. We exclude the possibility of 
multiple ring formation. 

If the reaction is irreversible, then the formalism of 
Sec. IlIA is applicable. Of course, the sink function S 
must now depend only on the coordinates of the two par
ticles which are capable of forming the new bond. If the 
reaction is reverSible, a source term must be added to 
Eq. (30) which accounts for the reconversion of rings in
to chains. The discussion of nCR regarding source 
terms is now inadequate. The reason is that the gen
eralized diffusion operator which governs the time de
velopment of the ring distribution function differs from 
Eq. (1) for chains because the bonding of the formerly 
free chain ends causes a substantial alteration of the in
tersegment potential. 

The diffusion-reaction equation now has the form 

(70) 

where kr is the intrinsic first order rate constant for 
ring opening, and </!r is the time dependent distribution 
function for ring molecules. The distribution function 
</!r satisfies its own diffusion-reaction equation: 

(71) 

The operator Sr differs from S because of the altered 
inter segment potential. There is no necessity for an S 
function to multiply kr</!r in either Eq. (70) or (71) be
cause the ring can presumably reconvert to a chain from 
any of its internal configurations. Though some of these 
configurations are undoubtedly more favorable for reac
tion than others, a weighting factor would most surely 
prove to be a useless complication. 

Thus, a complete speCification of the problem requires 
the simultaneous solution of Eqs. (70) and (71). How
ever, a useful approximation which would greatly sim
plify this procedure consists of putting </!r in Eq. (70) 
equal to its equilibrium value multiplied by the fraction, 
1 - p(t), of rings present at time t and ignoring Eq. (71). 
The approximate equation reads 

(72) 

and integrating over all coordinates gives 

dp/ dt = - kveqc(t) + k,. [1 - p(t)] (73) 

which is exact and could have been obtained from Eq. 
(70). 

It is possible to write </!:q as the product of </!et and a 
correction function: 

(74) 

Then, using Eq. (3) and following the same steps which 
led to the integral equations presented earlier, we ob
tain from Eq. (72) 

c(t) = 1 - (k/ v eq ) .{ t dT D(t - T) c( T) 

+(kr/v eq ) f dT R(t- T) [l-p(T)] , (75) 

where 

(76) 

and the initial condition I p(O» = I Peq) was chosen. Upon 
taking the Laplace transform of Eqs. (73) and (75) we 
obtain 

and 

c= S-l - (k/lI eq )Dc+ (kr /veq)R[s-l- p] . 
It will be shown in Sec. IV that 

limR(t) = Veq • 
t- ~ 

Hence, we may define Q(t) through 

R(t) = Q(t) + Veq , 

and we also have 

With Eqs. (50) and (80), Eqs. (77) and (78) give 

c(s) = (s + kr )S-l [(s + kr ) (1 + (k/ veq)il) 

and 

The steady state value of p{t) is given by 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

which can be contrasted with the prediction of the simple 
equilibrium theory 

p:~ = kr /(kr + kVeq) . 

IV. EVALUATION OF GREEN'S FUNCTIONS 

A. General considerations 

The Green's function for the polymer diffusion equa
tion describes the propagation in time of the N + 1 seg
ment chain, initially in an arbitrary discrete state, sub
ject to the various forces which may be present. The 
final state is independent of time and of the initial state 
and is determined only by these forces, so the long time 
limit of the Green's function must be the equilibrium dis 
tribution. 

J. Chem. Phys., Vol. 60, No.3, 1 February 1974 
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Now, the operator exp(- £t) is a formal representa
tion of the full Green's function. Its representation in 
the occupation number basis set, W, can be obtained by 
using the identity operator, !J; 

(83) 

(84) 

n 

+ L 6 ! n> < n! e -.ct ! m > < m! , (85) 
nhn 

where we have defined 

(86) 

If £ were diagonal on this basis, the double sum in Eq. 
(85) would be absent and W would be given by the familiar 
eigenfunction expansion of the Green's function. How
ever, even £ defined in Eq. (24) is not diagonal on this 
basis unless excluded volume forces are neglected or 
the U= SO! approximation is used. So neglect of the 
double sum in Eq. (85) to get an approximate diagonal 
expansion for W results in the incorrect long time limit 
for W when excluded volume forces are explicitly re
tained. A better approximation is probably 

W= !Peq><O! +6!n>e-Lnt <n! (87) 
n~O 

which effectively sums a large class of terms in the 
double sum of Eq. (85) to give the correct time indepen
dent term in Eq. (87). In the U= SO! approximation Eq. 
(87) correctly reduces to 

(88) 
n~O 

the diagonal approximation of Eq. (85). 

Equations (87) or (88) could be used in an attempt to 
evaluate the various reduced Green's functions such as 
D and R which have arisen in this analysis, but such an 
effort seems to be prohibitively difficult. However, 
knowledge of the first few terms of the expansion for D 
in terms of Eq. (88) will prove very useful in the later 
analysis, and these terms are calculated in the Appendix 
of the following paper. Fortunately, there exists a very 
powerful technique for obtaining closed form expres
sions for the reduced Green's functions which involves 
appropriate rearrangements of the·various groupings of 
boson operators that appear in these expressions. In 
the following sections we will carry out the evaluation of 
these reduced Green's functions or structure functions 
as they could alternatively by called since they depend 
explicitly on the structure of the polymer model through 
the operator £. 

The complete evaluation of these reduced Green's 
functions requires a specific choice for S, the sink func
tion. However, in general, the S I are functions of r ii 
= r i - r l , and they may be given a boson representation 
through the relation 

(89) 

when the boson representation of the delta function is 
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employed. So a specific choice for s,(r) may still be 
postponed. 

The boson representation of the delta function has been 
given by Fixman8 as 

6(rlj -r)=(21ft3 [ duexp(-c(/)u2 +iU· r) 

(90) 

The superscript notation will be used to designate im
plicitly a particular pair of segments. In Eq. (90), (l) 
deSignates the (i, j) pair. Thus rij = r(/) as in Eq. (31); 
in addition c(/) = Cii' which is evaluated in Eqs. (17) and 
(18), and 

N 

r!!) = 6 f !!)b~ , (91) 
s=1 

N 

r~ll =6 f!llb s , (92) 
s=1 

where f!l) was defined previously in Eq. (16) for the 
(i, j) pair. 

B. Evaluation of D(t) 

Equations (31) and (45) give for D(t): 

m m 
D(t)= 66 <O!sk(r(k»)e-.cts,(r(/»)!Peq > • 

k=1 1=1 

Employing Eq. (89), Eq. (93) may be written as 

D(t) = f dPt dP2 t t Sk(Pt)S, (PZ)D kl (PI> P2, t) , 
k I 

where 

(93) 

(94) 

Dkl(pl> Pz, t) = (0 !6(r(k) - pt)e-.ct6(r(Z) - P2)! Peq >. (95) 

USing Eq. (90), Eq. (95) becomes 

Dkl = (21f)"6 J dUtduzdk/(U h u2, t) 

(96) 

where 

dkl = < O! exp( - iU I • r~k») exp( - £t) 

xexp(-iu2 • r!l))exp(-iu2 • r~/))!Peq>, (97) 

and use has been made of the annihilation property of 
b+ when acting on < 0 I , 

(98) 

Equation (97) has been evaluated10 for the general case 
in which excluded volume forces are approximately re
tained explicitly in £ and in I Peq > as given by Eqs. (24) 
and (27). However, for convenience the calculation will 
be performed only in the U = SO! approximation. The 
more general result can be obtained in an obvious man
ner once the results for the special case are available 
for inspection. 

Taking into account Eqs. (28) and (29) and noting that 

exp(-iuz • r~/))!o>= !O>, (99) 

and that in this special case 

£!O>=O, 

Eq. (97) may be recast as 
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d kl = < O! exp ( - i u1 • r ~ k) ) exp ( - ie - £tU2 • r; j) e£t ) ! 0) . 

(100) 
Since bosons of different modes commute 

N 

e-oCt r~ I) e.{·t = '6 f~1) exp(- A.,b~· b sf) b; 
8"1 

(101) 

Since different components of the same mode also com
mute, we may restrict our attention to one of the com
ponents of b~, for which the required transform is 

q(t) =e-Ab+bt b+e Ab+bt • 

Differentiating q(t) gives 

dq/df=Ae-Ab+bl(b+, b+ b)e Ab+bt 

The commutator in Eq. (103) is given as 

(b" b+b)=-b+ 

Therefore, 

q(t) =e- At b+ 

(102) 

(103) 

(104) 

(105) 

With Eq. (105) for the required transform, Eq. (101) 
gives 

N 

e-£t r~1l eJ:t = '6 f~ll e-Astb: , 
s.l 

and with this result Eq. (100) becomes 

dkl = (O! exp(- iU1 • r~k») 

(106) 

xexp(-i~f~1l e-Ast u2 ·b:)1 0) . (107) 

The evaluation of Eq. (107) may be completed by using 
the properties evinced in Eqs. (98) and (99) and the re
lationll 

for any two operators which commute with their com
mutator. The result is 

dkl (u1 , u2 ,t)=exp[-u1· u2nUk)(f)] , 

where 

n(lk)(f)='6f~llf;k)e-Ast • 
s 

Substitution of Eq. (108) into Eq. (96) gives 

Dkl(Pl, P2, t) = (27Tt6 f du1 du2 

where the elements of the matrix A are given as 

Au =C(k) , 

A l2 =A21 =±n(/k)(t) . 

(108) 

(109) 

(110) 

(l11a) 

(111b) 

(111c) 

The integrand of Eq. (110) is recognizable as the 
Fourier transform of a bivariate Gaussian probability 
distribution for Pl and P2. The integration may be 
readily performed12 with the result 

Dkl (P1, P2, t) = (47T1 A!1/2t3 

xexp[ -(4IA!t1E EAiJPi·Pi] ' (112) 

where A ii is the cofactor of the element Ai J and I AI is 
the determinant of A. Using Eq. (111) these quantities 
may be expressed as 

All=c(1) , 

A 22 =C(k) , 

Al2 =A21 = _ ~ n(/k)(t) , 

i AI =C(l)C(k) _HnOk)(t)]2 • 

(113a) 

(113b) 

(113c) 

(114) 

To complete the evaluation of D a specific choice for 
the sink function must be made. This choice will be 
deferred until the numerical calculations are discussed 
in the following paper. 

The sole effect of the inclusion of the excluded vol
ume potential via Eq. (24) and (27) is the modification 
of the elements of the matrix A. Instead of the rela
tions given by Eq. (17) and (109) we now have 

c(l) =~ '6 (1 + Gst1(j~1l)2 (115) 
s 

and 

The form of these modifications will be intelligible once 
the results of Sec. IVE are presented. 

Finally, the verification of Eq. (48) will be made. 
This is most easily done by substituting Eq. (84) into 
Eqs. (45); then employment of Eq. (87) for 'W gives 

D(t)=(0IS!Peq)2+'6 (O!S!n)(nls!Peq)e-Lnt . (117) 
n#J 

When the limit t- 00 is taken, Eq. (117) gives 

D(oo)=,(0!sIPe)2 (118) 

which, using Eq. (40) we see is identical to Eq. (48). 
This result could also be established by directly con
sidering the long time limit of Eq. (112) when substi
tuted in Eq. (94). 

The calculation of b from Eqs. (117) and (40) is sim
ple: 

c. Evaluation of Y 

Equation (56) for Y may be rewritten as 

Y(S)=~~dte-st J;/dTX(t,T) , 

where 

xU, T) = (0 Is e-J;( toT) S e-oCT s! Peq). 

(119) 

(120) 

(121) 

Equation (121) can be evaluated10 using boson operator 
rearrangements. The result, which is not reproduced 
here, is a trivariate Gaussian distribution function. 
Instead we evaluate :Y(s) in the occupation number basis 
since this representation of Y will be useful in dis
cussing the convergence of the approximation scheme. 
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From Eq. (84) we find 

(£ + s )"1 = ~ (£ + s )-t 11 = \V 

Calculating \~ from Eq. (87) gives 

\v= I Pe,') (ols-t+ 2: In)(nl (Ln+s)"t, 
a;«) 

and Eqs. (56), (122), and (123) give 

y(s) = ~+ 2veg 2: (Olsln)(nISlpeg) 
s S a;<O La +s 

D. Consideration of R(t) 

Equations (76), (89), and (90) give 

R(t) = (21T)"3 J drduRt(u, t) S(r) 

x exp(- eN+t,t u2 +iu' r), 

where 

R t (u, t) = (0 I e-iu' r_ e-.ct I Prj. 

(122) 

(123) 

(124) 

(125) 

(126) 

The superscript notation has been dropped since we are 
dealing with only a pair of reactive segments figura
tively connected by the end-to-end vector rN+1 - r 1. Ne
glecting consideration of excluded volume forces, a 
zeroth approximation for the ring distribution function 
could be 

<fJ:0 = </!'"exp[- (3kT/2b2
) IrN+t - rtl 2 J . (127) 

Equations (74) and (127) imply 

Ipr)=exp[-(3kT/2b2)lrN+t- r lI 2 JI0) , (128) 

where I r N+t - r l l 2 would be. given in the boson repre
sentation. No explicit evaluation of Eq. (126) will be 
given, though this could easily be done. 

Equation (79) can be verified in the same fashion as 
Eq. (48) by employing Eqs. (76), (84), and (87). Then 

R(t)=(oISIPeo)+2: (01 Sln)(nlpr)e-Lat 
, 

and, as t- 00 

R(co) =veo 

by Eq. (40). 

a*O 

E. Reduced Green's functions and time correlation 
functions 

Following Verdier, Sb we may write for the time cor
relation function p(j,g, t) of two scalar functions, j and 
g, 

( (j(O)g(t) -(j)eg(g)eg 
P j,g,t) = «j2)eo-(j)~ij\«?)eo-(g)~i72 (129) 

and for the time correlation function Pv(u, v, t) of two 
vector quantities, u and v, 
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Pv(u, v, t) 

(u(O) • v(t) eo - (u) eq • (V) e9 
«u • u) eo - (u) eo' (u) eo)172«v . V) 00 - (v) eo' (v) 00)172 

(130) 

All of the quantities j, g, u, and v are assumed to be 
functions of the chain coordinates r 1 , ••• , rN+1 and the 
bracketed expressions in Eqs. (129) and (130) are given 
by 

and 

(j(O)g(t)eq = J d{r}d{rO}j( {rO}) </!eq({rO}) 

xw({r}, {rO}, t) g({r}) (131) 

(132) 

where W is, of course, the Green's function for the 
polymer diffusion equation expressed in chain coordinates. 

With Eqs. (22) and (84), Eqs. (131) and (132) may be 
written as 

(133) 

and 

(134) 

Besides enabling P and Pv to be evaluated in terms of 
the boson representation, Eqs. (133) and (134) are 
rather suggestive of the nature of the various time de
pendent functions which have been obtained in this in
vestigation. 

In particular, if j=g=S, we see from Eq. (45) that 
the reduced Green's function, D(t), or structure func
tion as it has also been called, is directly related to the 
autocorrelation function for the reaction sink function, 
S. Furthermore, from Eq. (49) we see that the function 
H(t), whose transform stands so prominently in Eqs. 
(51), (52), (69), and (82), is directly proportional to 
this autocorrelation function: 

p(s, S, t)O:H(t)=D(t) -V~q . (135) 

Regarding the time dependence of D(t) and H(t), using 
Eqs. (17), (l09), (114)-(116), and (130)-(134) and the 
boson representation8 of r( Il it may be seen that 

and 

(136) 

(137) 

(138) 

These relations enabled us to account for the effects of 
excluded volume forces so easily in Sec. IVB. 

For the specific case considered in the numerical 
calculations, the time dependence is related to the 
square of the autocorrelation function for the end-to-end 
vector L, Pv (L, L, t). Finally, it is notable and rather 
curious that the autocorreclation function for L2 should 
turn out to be the square of the autocorrelation function 
for L, 

(139) 
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as can be verified by direct calculation with the operator 
£ of Eq. (24). This perhaps correlates with Verdier's3e 
remark that L 2 relaxes twice as fast as the end-to-end 
length. 

V. SOLUTION OF APPROXIMATE EQUATIONS 

In this section the (numerical) inversion of Eqs. (51) 
and (52) for v and 1> will be discussed. The significant 
features of the inversion technique are well illustrated 
by consideration of a simple model for a pair of reactive 
groups on the ends of a polymer chain. In this model 
the two molecular groups are undergoing Brownian mo
tion and are connected by a long weak harmonic spring. 
Since only the relative motion is of interest, the rele
vant equation of motion is the Smoluchowski equation 
for a harmonically bound particle. The mathematical 
particularities of this model are presented in the Ap
pendix. The expressions for v and $ resulting from the 
use of this model are formally identical to Eqs. (51) and 
(52), but the reduced Green's function appearing in these 
expressions has a simpler time dependence than its 
counterpart associated with the complex chain model. 
Despite the simplicity of the model, all of the correct 
qualitative features of the solution are preserved. Al
so, note that no special choice for the sink function S is 
made in this discussion unless explicitly stated. The 
significance of higher order terms in the approximation 
scheme will also be considered. 

A. Inversion procedure 

Evidence will now be presented that v (t) and cp (t) are 
given exactly as a sum of exponentially decaying terms 
whose coefficients and time constants can be calculated, 
in principle, exactly. In order to carry out this calcula
tion it is necessary to be able to calculate n(s) for 
s ~ 0, and we deal with this problem first. 

The integral representation of n(s), 

n(s) = foro e- st D(t) dt , (140) 

with Eqs. (All) and (A14) for D(t) is moderatley well 
suited for numerical calculation, but unfortunately Eq. 
(140) is not defined for s ~ O. The integral diverges un
less s > O. On the other hand, the eigenfunction expan
sion of n(s), obtainable from Eqs. (AlO) , (A14), and 
(140) as 

n(s) =6 n; (s +A Dt 1 
, (141) 

D 

where 

(142) 

is defined for all s * - AD' but is not well suited for cal
culation in this infinite series form. To remedy this 
situation consider the functions H(t) and fi(s) defined in 
Eqs. (49) and (50). Since Do=veq, 

il(s) =6 D;(s + ADtl • 
D'O (143) 

This function is defined for s = 0 since the n = 0 term 
(with AO = 0) is missing. In fact, the first singularity of 
fi(s) is now seen to be located at s = - A(t) where A(1) is 

the smallest eigenvalue associated with a nonvanishing 
coefficient D(1l. It may be seen intuitively that il(s) de
fined through its integral representation, 

il(s) = ,~~ e- st H(t) dt , (144) 

will also be defined for all s >- A(1). This means that the 
integral representation of D(s) can be analytically con
tinued partly into the negative half plane by successively 
subtracting out the Singularities of D(s). The result can 
be established with more rigor by employing a theorem13 

which, loosely stated, guarantees the convergence of 
f{(s) defined through Eq. (144) for s > a c with 

ac = lim In(a(t) - a(oo))/t (145) 
t- ro 

and 

da(t)=H(t)dt. 

With 

H(t) =D(t) e-).w t +6 D~e-'nt , 
D'O, 
(1) 

we find for (a(t) - a(oo)): 

(146) 

(147) 

a(t)- a(OO)=D(l)A('i)e-).(l)t+ 6 DnA;le-'nt . (148) 
nt-Q, 
(1) 

Taking the limit, we obtain ac = - )'(1)' When the region 
of convergence is extended further, the successive 
limits are determined by which of the DD are nonzero. 
A little consideration of the properties of Hermite poly
nomials will show that for symmetric S functions the 
only nonvanishing DD are those arising from eigenfunc
tions which contain only even orders of Hermite poly
nomials. The generalization to the more complicated 
chain models is that the basis functions contain only even 
numbers of excitations of the components of normal 
modes. 

As evidence for the exponential decay, note first that 
the derivatives of v and 43 with respect to s, evaluated 
at s = 0, are finite for all orders. This is most easily 
seen by conSidering Eqs. (A12) and (A13) for;:; and 1> in 
terms of iI. The essential effect of repeated differen
tiation is to produce powers of t multiplying H(t). The 
Laplace transform of tn H(t) is convergent for s = 0 as 
may be seen by using the theorem expressed in Eq. 
(145). This property of the derivatives is one (though 
not unique) characteristic of exponential behavior. 

We next note that v and $ possess a series of simple 
poles, and that there are no complex roots in the de
nominator. Set the denominator of Eq. (A12) or (A13) 
equal to zero and rewrite it as 

(149) 

With fi(s) defined through its integral representation 
(for purposes of calculation), Eq. (149) is defined for 
s > - A(1)' and, in fact, it possesses a solution for 
- A(1)<S < 0 which is easily found iteratively. Though we 
have no mathematical proof that the solution is unique, 
evidence for this exists on physical grounds. This will 
be discussed shortly. First we prove the absence of 
any complex roots. 
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The existence of a complex root requires that the 
real and imaginary parts of Eq. (149) each separately 
equal zero. So, assume s = - € + ill, A(1) > € and use Eq. 
(144) for iI(s). Then, setting the imaginary part of Eq. 
(149) equal to zero and solving for Il results in 

M = - €(k/v.g) Jo""eet sin(Mt)H(t)dt 
1 + (k/v eg) fo""eet cos(llt)H(t)dt 

(150) 

for which one solution is M = O. Now assume Il > O. Since 
eetH(t) is a monotonically decreasing function of t, both 
integrals in Eq. (150) are positive and the minus sign in 
the numerator implies that the right hand side is nega
tive which contradicts our assumption. If Il < 0 is as
sumed, a similar contradiction is reached. Thus Il = 0 
is the only solution, and no complex roots exist for 
s > - A(1l. The proof may be extended to cover a larger 
region of the negative s plane by concomitantly extend
ing the region of convergence of the integral representa
tion of D(s) in the suggested manner and repeating the 
above argument. The proof in these extended cases de
pends on D! being positive, which is trivial since Dn is 
real. For example, if 

and 

J(t)=D(t)-v;g-D~lle-l.wt , (151) 

J(s) = f "" e-st J(t) dt , 
o 

(152) 

then J(s) is defined for s > - A(21) where A(2) is the small
est eigenvalue greater than A(1) associated with a non
vanishing coefficient. The equation 

o =s + s (k/v Og) J(s) + (k/v.q) D~lls (s + A(1))"l +kveq (153) 

is just the denominator of v or ¢ set equal to zero. Be
sides the solution of Eq. (149), an additional solution 
exists for - A(1) >s > - A(2) which is easily found itera
tively. Equation (153) can also be used in the fashion of 
Eqs. (149) and (150) to establish the absence of complex 
roots in the strip - A(1) > s > - A(2)' 

The physical grounds for the existence of unique roots 
is this: Each time a root is found it has the form 
s = - A - € where - A is the previous limit of convergence 
for the integral representation of D. For Eq, (149), 
A = 0; for Eq. (153), A = A(1). The A are, of course, fre
quencies for the various r!::laxation modes of the chain, 
so that the poles of f; and ¢ are the poles of the reduced 
Green's function, 15, perturbed by the ongoing reaction. 
Each active relaxation frequency A is shifted by an 
amount €(A) which, in general, differs for each pole. It 
seems ~reasonable that these should be the only poles of 
f; and ¢ since they appear so intimately related to the 
natural relaxation frequencies of the nonreacting chain. 
From Eqs. (A12) and (A13) or (51) and (52), it can also 
be seen that the poles of iI are the zeros of v and have 
no effect on $. 

Once the existence and location of each pole is ascer
tained, the calculation of the coefficient for the exponen
tial term is no problem. If the ith pole is found at - I>; 
and ¢ and v are given by 

¢(t) = ~ ¢; e-O it , 
i 

(154) 

v(t) = 6 vie-Oit , 
i 

then, by the calculus of residues 

¢ i = lim (s + ° i) $ (s) , 
s--6i 

v;= lim (S+Oi)V(S). 
s"-6i 
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(155) 

(156) 

(157) 

Equations (156) and (157) may be evaluated for i = 1 as 

V1 ={1 + (k/veq)[iI(- 01) - 01 H'(- 01)]}-1 , (158) 

where 

ii'(s) =- f"" te- st H(t) dt. 
o 

(159) 

(160) 

The procedure may be extended indefinitely, calcu
lating as many terms as is deemed necessary to repre
sent the full sQlution. In most cases, one term is suf
ficient to obtain in excess of 99% of the complete solu
tion for ¢. The integrals of v(t) and ¢(t) may be used 
as criteria for completeness. From the definition of 
the Laplace transform we have 

(161) 

f"" v(t)dt=v(O) . 
o 

(162) 

The values of Eqs. (161) and (162) can be compared with 
those obtained by integrating Eqs. (154) and (155). 

The above discussion was made primarily for the sim
ple model for which the Green's function is rigorously 
diagonal and with a symmetric S function used in the 
formal evaluation of D(t) or D(s). As mentioned, the 
exclusion of complex roots depends on the positive def
initeness of the expansion coefficients of D(t). In con
sidering the application of these results to the complex 
chain models we note first that with the retention of ex
cluded volume forces the expansion coefficients are no 
longer manifestly positive as may be seen by inspection 
of Eqs. (117) and (119). The asymmetry in these coef
ficients is probably attributable to the neglect of off di
agonal terms as discussed at the beginning of Sec. IV. 
Even when excluded volume forces are neglected or re
tained only through the U=S'" approximation it may hap
pen that the particular choice of sink function leaves 
doubt concerning the positive definiteness of the coef
ficients. Such a case arises for the choice made in our 
numerical calculations. There is no general proof that 
the coefficients remain positive, but direct calculation, 
presented in the Appendix of the following paper, shows 
that the coefficients of terms in A<1) and A(2) for the 
harmonic spring model and in A(1) for the more complex 
model are positive. 

Judging by these results, it may be generally true 
that the expansion coefficients are always positive. 
However, even if this assertion were Violated, the re
sults for the strip 0 >S > - Awwould still be valid. 
Thus, the long time relaxation behavior of the reacting 
system would still be purely exponential. 
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B. Convergence of approximation scheme 

A complete investigation of the convergence of the ap
proximation scheme has not been attempted. Instead, 
we present a brief discussion about the qualitative 
changes introduced by the first order approximation. 

Equations (119) and (124) give 

(fJ)2-v Y=66 <OISln)<mlslpe~ 
eq n*O m*O (s + LmXs + Ln) 

x{<O 1 S 1 m><nl S IPeq) - Veq <nl S 1 m) } (163) 

The expressions for v1 and ¢1 were given in Eqs. (55) 
and (57): 

A1 1 - (k/Veg)2[(.iW - Veq Y] 
V = 

S +s(k/veq)H +kveq 
(164) 

¢1_ S +s(k/veq) fl + (k/Veq)3[(D)2 - Veq Y] 
- s[s +s(k/veq)/i. +kveq] 

(165) 

The first notable consequence is the existence of a 
new set of poles in v1 and <i?located at s = - Ln which 
arise from terms in the double sum wtih n =m. The 
time dependence that is governed by the denominator has 
not been affected, however (assuming exponential be
havior that is determined by the poles of v1 and 4?). In 
particular, the long time dependence for the rate that 
would be obtained from these expressions is identical to 
that obtained in zero'th order. Other consequences are 
disturbing. 

First, the expressions are undefined for k = 00. Sec
ond, since it seems reasonable to believe that Eq. (163) 
is well defined and nonzero for s = 0, 4? is seen to pos
sess a singularity at s = O. This corresponds to cp (t) 
approaching a constant, nonzero, limit as t- 00, clearly 
an unphysical result. 

Since Eqs. (33) and (47) are exact, and since we must 
have cp (t) - 0 as t- co we can determine exactly the in
tegral of v (t). 

J
~ -1 

V (t) dt = (kv eq) . 
o 

(166) 

Equation (166) serves as a very important criterion for 
the goodness of an approximate expression for v (s). 
Failure to satisfy Eq. (166) automatically insures an un
phYSical behavior for cp(t) as t- cO. Equation (51) for 
v(s), the zeroth approximation, is seen to satisfy Eq. 
(166) while Eq. (55) or (164) does not, unless by some 
fortuitous cancellation of terms Eqs. (163) will equal 
zero for s = O. 

It thus appears that the zeroth order expressions 
given in Eqs. (51) and (52) are the best to be obtained 
in this approximation scheme. It does not appear likely 
that higher order terms would alleviate the difficulties 
that have been mentioned, and in any case this is not 
subject to easy verification. 

VI. DISCUSSION 

The application of the formalism of DCR to describe 
intrachain reactions of macromolecules has been pre
sented. Following a closure approximation, it was sug
gested that the integral equations arising in the theory 

could be solved exactly by a sum of simple exponential 
functions. Despite the simpliCity of this result, the ap
proximation scheme does not readily lead to any useful 
higher order corrections, yet in zeroth order it does 
have two other outstanding features. It has the merit of 
qualitatively reproducing the behavior of the distribution 
function in the regions of configuration space where the 
reactions are highly favored. It also has the virtue of 
giving exactly the value of the integral of v(t) [or v(t)] 

which is very important if the long time behavior of cp(t) 
is to be qualitatively correct. 

APPENDIX: THE HARMONIC SPRING MODEL 

With inclusion of the reaction term the Smoluchowski 
equation for a harmonically bound particle reads 

(a1J;/at) - DV • (V1J; + (3/2L 2)1J;V 1 r 12) = - kS1J; • (Al) 

Here, D is the relative diffusion constant characteristic 
of small molecules, and L is the root mean square 
length of the spring. The harmonic potential is supposed 
to be a crude approximation to the mean potential acting 
on the two molecules because of the intervening polymer 
chain. The operator on the left hand side can be formal
ly obtained from Eq. (1) by specializing to N = 1 in the 
free draining limit [T(rij) = 0 in Eq. (2)] with U = Sao as 
the backbone potential, setting b = L and transforming 
to relative coordinates. An operator of this form can 
also be obtained by integrating Eq. (1) over the coordi
nates of segments internal to the chain ends; several 
of the resulting integrals cannot be done exactly, but 
simple approximations lead to the desired result. 

With the substitution 

1J; =1J;oP , 

1J;o= (27TL2/3t3 /
2exp[- 31 rI2/(2L2)] , 

Eq. (A1) becomes 

(ap/at) - D(V2p - (3/L2)r' Vp) = - kSp. 

(A2) 

(A3) 

(M) 

The coordinate operator on the left-hand side of Eq. 
(A4) possesses the Hermite polynomials, Hn(u), as ei
genfunctions. Thus, 

Dv2hn - (3D/ L 2)r . V hn = - Anhn , (A5) 

where 

(A6) 

and 

Am = 2nx(3D/2L 2). (A 7) 

The normalized eigenfunctions, hn(r), are given as 

hn(r)=hnx(x)hny(y)hnz(z) , (A8) 

where 

hn(x) = (2"n! t 1
/

2 Hn «3/2)1/ 2 (x/ L)) (A9) 

The operator of Eq. (A5) is also self-adjoint when the 
function 1J;o, defined in Eq. (A3), is used as a weight. 

The eigenfunction expansion of the Green's function 
of Eq. (A1) is given as 
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(A10) 

which can be shown14 in a variety of ways to be equiva
lent to 

W(r, r 0, t) = [1 - exp(- 6Dt/ L 2)]-3/2 exp {_ (3/2)L- 2 

xl r - rOexp(- 3Dt/L2
) 12/[1_ exp(- 6Dt/L2)]}. 

(All) 

Equation (1\.1) can be solved in terms of this Green's 
function using the same approximation that was made for 
its more complicated analog in Sec. III. The results 
are formally the same, the only difference residing in 
the altered time dependence of D(t). We have 

v(s) = [s +s(k/v eq) jhs) +kv eq ]-1 (A12) 

and 

where 

cp(t) = J 1/Jdr , 

l'(t) = J 1/JSdr/v eq , 

v eq = J 1/Jo S dr , 

H is defined by Eq. (50) and, finally, 

D(t) = J drdr ° S(r)W(r, r 0, t) s(r 0) 1/Jo(r 0) 

(A13) 

(A14) 
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