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Two localized picture methods of analyzing the magnetic circular dichroism in x-ray absorption will
be applied to experimental results: the branching ratio (BR) and sum rule {SR)approaches. A deriva-
tion of the BR formulas and detailed comparison to the SR expressions wi. ll be made, including error es-
timations. The SR approach will be seen to be a limiting case form of the SR spin-moment expression
and provide a simple picture of the underlying physics in magnetic x-ray circular dichroism absorption
im 3d magnetic Inaterials.

I. INTRODUCTIGN

In the past several years there has been a surge of in-
terest in using circularly-polarized x rays as a probe of
electronic and magnetic structure in magnetic material
systems. ' One particularly simple, yet powerful, mea-
surement is x-ray absorption, ' where strong variations
can be induced by changing the helicity or circular polar-
ization of the x rays. In this experiment, an x ray is ab-
sorbed, promoting an electron from a core level into an
empty, unoccupied state (Fig. 1). The strong variations
occur in the peak or "white line" structure at the edge
jumps (Fig. 2). In this work, attention will be focused al-
most exclusively upon p to d transitions in 3d magnetic
materials. These peaks occur at the absorption thresh-
olds because of the large density of unoccupied d states
immediately above the Fermi energy. In magnetic sys-
tems, this is split into majority and minority density of
states. The transitions are electric dipole in nature and
exhibit a strong dependence upon the relative alignments
of the magnetization vector and helicity, which will be
defined below.

In the pioneering work of Shiitz et al. ' and Chen
et aI. fairly small e6'ects were observed and results were
reported in terms of asymmetries. The asymmetry is
defined as shown in Eq. (1) below:

i+(hv) —i (hv)
asym(h v) =

i+(hv)+i (hv)

Here, the i's are the intensities at a given photon energy
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FICr. 1. Shown here is a schematic of the absorption of a
photon and transition of an electron into an exchange split
valence band density of states.

(hv) and for each circular polarization configuration,
parallel (+), and antiparallel ( —). This refers to the rela-
tive orientation of the magnetization vector and the x-ray
helicity. A lowercase i is used to indicate that peak inten-
sities are not integrated in this approach. This method
has the advantage of emphasizing small variations but re-
quires very good statistics because of the di6'erence taken
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pendix A). This permits us to focus on the key element,
the variation of the branching ratio with polarization,

4(N) BR+ —BR
BR++BR- for 3d elements. (6)

Here, n is the number of 3d valence electrons, N = 10—n
is the number of 3d valence holes, and BR+ and BR are
as described above [see Eq. (3)]. A pleasing aspect of this
expression is its explicit retention of a dependence upon
polarization, a significant concern for an experimentalist.
While other experimental studies have used an ad hoc
linear correction for polarization, this work provides a
theoretical justification for such a correction in spin-
moment measurements and demonstrates that the proper
approach is via a branching-ratio-related method, not
necessarily an intensity symmetry as in Eq. (1).

A far more sophisticated derivation, still within a lo-
calized, one-electron framework, has arrived at sum rules
(SR) for the spin' and orbital magnetic moments. For
3d elements and 2p~3d transitions these are summa-
rized below in relation to the quantities defined in Fig. 2,

SR 2(g )—
6(N) c+

SR (L )—

—3(L, &
—7(T, &,

B++c+ c+
B+

C C

(7)

c+ c+ c- c-

A significant amount of debate remains concerning the
general applicability of these rules ' (i.e., the accu-
racy of their predictions versus the true result). For ex-
ample, the magnetic dipole term ( T, ) can be of impor-
tance in noncentrosymmetric systems, e.g., with surfaces
and interfaces. ' Dispersive and many-body effects also
remain items of concern. [Note also that the sum rules
have been derived for the P& =+1 ideal case. Again, a
justified method of correction for nonideal polarization is
required. ]

A comparison of BR and SR approaches yields several
interesting observations. (1) If

~
( T, ) ~

&&
~ ( S, ) ~, then the

psppII and p, ;„expressions are very closely related. In Ap-
pendix B, the following equation is derived:

for Fe

Pspin Pspin ( x )(i spin+3Porb) — ' i spin '

In this case X=(4/3)/(BR++BR ), a measure of the
deviation from statistically (statisticality: BR++BR
=4/3, and BR""=2/3). Thus, as one might expect, for
the BR approach to hold, the departure from statisticali-
ty must be small and the orbital moment must be small
relative to the spin moment. (2) The branching ratio is

handicapped in terms of measuring the orbital moment.
Earlier work" indicated that the deviation of the branch-
ing ratio, obtained with linear polarization, from the sta-
tistical value of 2/3 was a measure of the valence band
spin-orbit splitting. Nevertheless, the absence of any
direct comparison of ( A ++8+ ) versus ( A +8 ) lim-
its measurement of p„&.

Thus, while the BR analysis will give us no measure of
p„~, it may provide a fair estimate of p,p;„, and thus p„„,,
in systems in which ~p„b~ && ~p,p;„~. In 3d magnetic ma-
terials, ' it is often the case that orbital quenching is
strong and hence the BR approach may be useable.
Below we will test this hypothesis and the above relations
with experimental results.

II. EXPERIMENT

The experiments were performed at the Standard Syn-
chrotron Radiation Laboratory (SSRL) using the spheri-
cal grating monochromator of beam line 8-2, which is
part of the facilities of the University of California/
National Laboratories Participating Research Team
(UC/NL-PRT). ' This is a bending magnet beam line,
where the circular polarization of the x-rays is obtained
by moving the first mirror or an aperture so that the x
rays above or below the horizontal plane are selectively
accepted. For the Fe/Cu(001) samples, the absorption
process was monitored in a "partial yield" mode, typical-
ly by counting electrons in a window near kinetic energy
(KE) of 47 eV, thus emphasizing the contribution from
the MVV Fe Auger electrons. The spectrometer has
been previously described. The near-edge x-ray-
absorption fine-structure (NEXAFS) measurements were
normalized to photon Aux via dividing by the output of
an upstream Io detector, based upon a 95% transmitting
grid of gold. The films were magnetized using a magnetic
pulse of 3 kOe. ' Fe/Cu(001) sample preparation, in-
cluding cleaning and Fe evaporation, is described else-
where. We conservatively project a factor of 2 uncer-
tainty in all absolute coverage estimates of the Fe over-
layers, which does not strongly impact the results of the
MXCD study. Base pressure was 2X10 ' Torr. In the
case of the multilayer Fe/Pt samples, x-ray absorption
was performed by partial and total yield measurements.
Sample preparation of the Fe/Pt films was described pre-
viously. ' Generally, NEXAFS measurements were
made by aligning the sample magnetization and the
Poynting vector of the x rays. For perpendicularly-
magnetized samples this implies normal incidence, and
in-plane magnetization requires grazing incidence (ap-
proximately within 10' of the surface plane). The rela-
tionships between the helicity vector and magnetization
were varied by changing hehcities, Gipping magnetiza-
tions, and in the case of grazing incidence, moving the
samples. All measurements were made in remanence. In
our fits, an entire spectrum is fitted with two peak func-
tions, two step functions, and a linear background with
each edge having both a peak and step function. The in-
tegrated area of a function is used as the integrated inten-
sity. This emphasizes the white-line characteristics and
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A proper comparison of the sum rule and branching
ratio results must include not only an evaluation of the
deviation of pgpj~ versus pgpj~p but also realistic estimates
of the errors propagated in each analysis. For example,
consider Eqs. (6)—(8). First, lets look at a best case
scenario. Neglecting the (L, ) and ( T, ) terms in Eq. (7),
each of the magnetic moment results, p, ;„,p, ;„,and p„b
is a fractional difference times a prefactor. Assuming
that the polarization is 100%, the coefficient would be 4,
6, and 4/3 times (N), respectively. Using %=4 for Fe,
N =3 for Cu, and N =2 for Ni, it is found that the pre-
factor is about 4 for p„b and about 20 for p, ;„. Thus an
uncertainty in any of the fractional diff'erences of —,'%
would give rise to errors of about 0.02pz in the p«b and
about 0. lpga in p,~;„. (This is essentially an issue of pre-
cision or reproducibility, with appropriate error propaga-
tion. We are not yet addressing accuracy, the issue of ob-
taining the true value. ) A more complete summary is
shown in Table I. Here it is assumed that N is known ab-
solutely and the only error is from the area estimates. If
an estimate of b,N/N of 10% is applied, all of the values
in Table I approximately double. Thus the values in
Table I are probably the minimum error that can be
reasonably expected.

These errors will appear regardless of whether one per-
forms peak fitting or spectral matching. ' ' In peak
fitting, analytic functions are used to simulate the spec-
tra. In our case, two peak functions, two step functions,
and a background were used. This approach has the ad-
vantage of focusing on the white line intensities with the
removal of the underlying steps, typically associated with
the sp density of unoccupied states and possible inelastic
multi-electronic effects. The concomitant disadvantage is
that there tend to be too many variable parameters for
the data: restrictions of parameter space can lower error
estimates and improve convergence of the fit, at the risk
of introducing systematic errors. For example, variation
of the height, position, and width of each step function
can have a strong effect. Peak widths and positions can
vary with resolution. Overlap of the two peak and two-
step functions can cause uncertainty. Often times, it is
difticult to obtain the proper peak shape. Alteratively,
spectral matching allows the circumvention of some of
these problems. As suggested by Eq. (1) and Figs. 2 and
3, one matches the pre-edge and post-edge regimes au-

TABLE I. Minimum error in magnetic moments. For a
0.005 error in each asymmetry or fractional difference. Using

N =4 for Fe, N =3 for Co, and N =2 for Ni; assumes zero error
in¹

~psYI(pB )

~Pspin(P'B ~

gpSR (p )

Fe

0.08
0.12
0.03

Co

0.06
0.09
0.02

Ni

0.04
0.06
0.013

tends to omit contributions from transitions into states
other than the empty valence band d levels, e.g., s and p
states.

III. ERROR ANALYSIS

toregressively, i.e., set D + =D and C+ =C . A
difference can then be taken between the two spectra, in-
dependent of any peak fitting. At this point, the
difficulties begin, as it is necessary to arrive at meaningful
estimates of

B+
C- ' C+

B
, etc.

C

While this nicely removes the N dependence from Eqs. (7)
and (8), it unfortunately removes the very important can-
cellation of factors between the numerators and denomi-
nators of Eqs. (7) and (8). The normalization of the peak
areas A+, B+, A, and B now becomes fairly ill
defined and the removal of the radial matrix element fac-
tor (Appendix A and Refs. 6, 9, and 10) is defeated.
Now it is necessary to assume that (C+ ), =(C+'

)~ is
an appropriate intersample normalization, implying that
the s,p spin-dependent density of states, the p to d radial
matrix elements, and the p to s,p transitions are all in-
variant between different samples or at least vary in such
a way to cancel out irregularities. In the original formu-
lation of the sum rules, C+' is necessary only as a
cross-spectral normalization, taking out variations from
spectral intensity and sample number (of atoms). Now
C+' becomes an intersample normalization as well,
which is far less certain. Despite the admittedly fortui-
tous agreement of earlier studies ' ' ' ' it would be wise
to approach this method with caution.

Thus we propose a minimum error of +0.10pz for
p p and +0.02pz for p,b as realistic first-order esti-
mates. Application of these to earlier studies may seri-

One option is to arbitrarily integrate above and below
zero intensity. ' ' However, other limits of integration
may be equally valid, particularly in light of the strong
overlap of the wings of the 2p3/Q and 2p»z peaks. In
fact, it may be appropriate to subtract off a cosine bell or
other double symmetric step function to eliminate the de-
viation caused by unequal "tailing" of the A+ and A
peaks, which may in fact be manifestations of multielect-
ronic effects or dichroic variations of transitions into s
and p states, associated with the L», and L» edges. (The
position, size, and width, of the cosine bell onset and fal-
loff, or correspondingly the step positions, heights, and
widths on peak fitting, are very important, and open to
variant interpretation. ) Regardless of the method, errors
associated with equating D+ =D, equating C+=C
and ascertaining A +, B+, 3, and B propagate
through the analysis. Thus we return to our assertion
that it is difficult to ascertain any of the fractional
differences in Eqs. (6)—(8) to better than 0.005, with the
resultant errors shown in Table I. A more quantitative
and complete description of this process is under prepara-
tion.

An intriguing variant of the spectral matching ap-
proach is the introduction of the "proportionality"
method, ' ' where N is under proportional to the sum:

B+ A B
C+ C+ C C
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ously impact the conclusions drawn from them.
In our studies, to err on the conservative side, we will use
+0.2pz for the spin and +0.05pz for the orbital mo-
ments.

IV. EXPERIMENTAL AND SLAB CALCULATION
RESULTS

Shown in Table II are the results for Fe/Cu(001). Two
cases are considered: low I2 monolayer (ML)] and high
(10 ML) coverage. Both are nominally fcc structures, al-
beit with significant level of disorder ' ' and with a re-
laxation to bcc at higher coverages. The 10 ML sample
with an in-plane magnetization may in fact, suffer from
domain closure and alignment effects, causing the small
magnetic moment values. The 2 ML sample, with mag-
netization perpendicular to the surface, exhibits a very
large MXCD effect, suggesting dominance of a single
domain. Two branching ratio and sum-rule results are
included: one using an idealized circular polarization of
100%, and a second, using a realistic 90% circular polar-
ization, reflecting the imperfect characteristics of the
beam line. Additionally, we have performed linear
muffin-tin orbital (LMTO) calculation (Fig. 4) using a 2
ML Fe/5 ML Cu/2 ML Fe slab, to obtain an indepen-
dent determination of the spin moment of the 2 ML
Fe/Cu(001). All of the observed values of p, ;„fall in the
range of 2.0 to 2.5 pz, with solid agreement between our
slab calculations and the sum-rule result.

Table III contains a summary of results for several
Fe/Pt samples of various thicknesses. Again, the (p, ;„)
has two values, one for the idealized 100%, and the other
for the realistic 90%%uo polarization.

Consistently, the p,„;„and p, ;„values agree within the
error estimates of +0. 1p~ or +0.2p~. Nevertheless, in
the context of our error estimates, one can still observe
the trend that p,„;„&p,~;„as suggested by Eq. (9). Be-
cause p, In and p, ;„are generated from the same fits,
some errors will be systematic to both. Nevertheless,
there will be some nonsystematic effects, e.g. , from the
exclusion of the background (C,C ) in the BR calcula-
tion and their inclusion in the SR calculation of p, ;„.
Based upon our error analysis above and the data in
Tables II and III, it is possible to make the following ob-

TABLE II. FeCu(001): Fe magnetic moments. See text for
details.

a
b
C

d

92 0.95 0.95 0.09
100 0.93 0.47 0.08
110 0.53 0.94 0.11
100 0.71 0.93 0.03
75 1.24 0.93 0.12

0.94
0.56
0.27
0.29
0.46

0.85
0.44
0.17
0.24
0.36

0.95 1.04
0.49 0.62
0.19 0.30
0.27 0.32
0.40 0.51

servations.
(i) At best, p„b estimates are probably only good to

about +0.05pz.
(ii) At best, p,~;„estimates probably are only good to

about +0.10pz.
(iii) Using 100% circular polarization, p, ,„p, ,„,

probably to within about 20% for Fe.
(iv) Branching ratios provide a convenient, easy

method to cross-check sum-rule predictions of p, ;„,with
the cons«»n«hat

I p.,b I
«

I p.„.l.
(v) Branching ratios provide a mechanism for proper

inclusion of nonideal polarization, i.e., IPh I
& 100%%uo. It

is reasonable to expect that both p,ppz and p,pin should
scale the same with IPh I, so long as Ip„b « Ip,~;„I.

(vi) The branching ratio approach provides easy physi-
cal insight into about 80% of the observed behavior in
MXCD absorption in 3d magnetic materials.

The theoretical calculations of Wu, Wang, and Free-
man ' places similar constraints upon evaluation with the
sum-rule analysis. If one accepts the theoretical values of
Ref. 21 as being correct, then the limitations or errors
discussed by Wu, Wang, and Freeman ' are actuaHy esti-
mates of the accuracy of the sum-rule method. Our

Density of states for Fe on Cu (001) surface
I I

Majority spin Total D.O.S.
- - - - - - d-partial D.O.S.

C

O

TABLE III. Fe/Pt multilayers: Fe magnetic moments. Lay-
er and interplanar spacings with moment values in p& (Fe
atom ). NI is the number of layer pairs. tp, is the thickness of
the Pt layer. t„, is the thickness of the Fe layer.

SR SR BR BR SR
Porb Pspin I spin Pspin Pspin

Sample NL, tF, tp, (100%%uo) (100%) (100%) (90%) (90%%uo)

2 ML fcc Fe Branching ratio (90/o pol. )

Branching ratio (100'Fo pol. )

Sum rules (90%%uo pol. )

Sum rules (100% pol. )

Slab calculations

10 ML fcc Fe Branching ratio (90%%uo pol. )

Branching ratio (100%%uo pol. )

Sum rules

1 orb Pspin

(p&) (p&)

2.3
2.0
2.5

0.21 2.3
small 2.4

1.1
1.0

0.05 1.10

ates

Minority spin
I I

-2 EFermi

Energy (eV)

FIG. 4. These are the results of a local density approxima-
tion (LDA) slab calculation. The slab consisted of nine layers, 2
Fe/5 Cu/2 Fe. Total density of states (DOS) and d-partial DOS
are shown, for both the majority and minority spins. Spin-orbit
coupling in the valence band has been neglected.
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minimum error estimates are more along the lines of pre-
cision, e.g. , a type of standard deviation. Interestingly,
our predictions of limitations in precision for p„b and

IMpplrl are consistent with the projections of Wu, Wang,
and Freeman ' concerning accuracy. Further work is
necessary to ascertain the impact of complications such
as band delocalization, multielectronic effects, and non-
centrosymmetricity. While the BR analysis provides a
quick cross-check of the SR analysis and insight into the
physics behind MXCD absorption, the SR analysis is far
more complete and well founded. The explicit formula-
tion of the polarization dependence in the BR formula is
a useful tool for the experimentalist.
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APPENDIX A

We have developed a simplified single-electron analysis
based upon the ground-breaking original method of
Erskine and Sterne, ' in which a renormalization of raw
data is performed to eliminate the nonstatistical contribu-
tion and from which the major contributor to 3d magne-
tism, the spin component of the magnetic moment, can

=———(P )(P ).2 1
hv E (A 1)

be extracted. The justification for this approach is as fol-
lows.

(i) The orbital moment contribution to the total mo-
ment in 3d metals is usually quite small. Consider the re-
sults for bulk Fe, Cu, and Ni from Ref. 18. These relativ-
istic calculations predict the ratio of the orbital to spin
components (p„b/p, ;„) to be on the order of 10%%uo or
less. Concentrating on the major component is a good
first approximation. Moreover, a comparison of these
analyses will permit the determination of whether this
first operational assumption still holds true. It should be
noted that while we are operating in the limit of
p„b «p, ;„, a nonzero p„b value is absolutely necessary
for coupling p to the lattice.

(ii) The deviation of the linear and circular polarization
branching ratios from the statistical values appears to be
rooted in many-body effects coupling to the spin-orbit
splitting perturbation of the 3d valence states. '" As
pointed out in Ref. 6, spin-orbit splitting increases
I(2p3/2) relative to I(2pi&2), thus shifting the branching
ratios upward, which may be further enhanced by many-
body effects such as valence-core hole attraction. Previ-
ously, we have proposed that for situations where the de-
viation of the linear branching ratio from the statistical
value of 2/3 is fairly small, that to zeroth order, the non-
statistical effects are the same in BR+, BR, and BR"".
(We will assume throughout that BR+BR =2 BR"".)
Then, we simply normalized all experimental values by
0.667/Br, „p(lin), obtaining the reduced BR' introduced
before. This permitted us to compare the BR,'„values to
the predictions of a simple, one-electron model which has
a particularly simple and concise form, shown below.
The modified definitions of rz and P (previously used in
Ref. 4) and Pi„and P, are summarized in Table IV),

3+2(1—rz)P+2(a)(1 —P)
theory 6

TABLE IV. Empty valence states/photon helicity. N is the number of empty d valence states. The
symbols f' and $ denote spin-up and spin-down, respectively. a is the spin-down alignment of the d
valence states P, is th.e polarization of the d valence states. P is the degree of left circular polarization
of the x rays. PI, is the circular polarization of the x rays. F&(FI ) is the intensity Aux of the right (left)
circularly-polarized component of the x-ray beam.

N~ N~

N~+N~ N
N~ —N~

P, = =2a —1N~+N~

Pure down

1.0

1.0

Empty valence states
Pure up

0.0

—1.0

Random

O.S

0.0

F
Fz +F

FL, —F
P„„= =2P—1

F~ +F1.

Positive helicity
Pure left circular

1.0

1.0

Photon helicity
Negative helicity

Pure right circular

0.0

—1.0

Zero helicity
Linear

0.5

0.0
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[Here, we have restated Eq. (5) to explicitly emphasize
the relationship between our new expression and that
used previously in Ref. 4.] To derive this expression in a
simple-electron picture, a number of additional caveats
need to be applied. Perhaps the most important is that
concerning the relative unoccupation of the m; 2 states.
Two possibilities that give rise to Eq. (3) are (a) all m; 2 s
have equal unoccupation and (b) there is an effective octa-
hedral crystal field splitting. All of this will be discussed
below. The key here is that variations of the branching
ratio with helicity can be directly related to variations of
spin alignment.

Ultimately, it is desirable for it to be possible to go
from measured branching ratios directly to elementally-
specific magnetic moments. Within the constraints that
have been used to derive Eq. (3) and assuming both com-
plete orbital quenching (the Lande g factor being 2, g =2)
and the validity of atomic configurations, Eq. (6) will be
derived. In the next several sections, we will derive the
above equations within a single electron picture, discuss
the limitations imposed by the assumptions of the deriva-
tion, and finally, support our contentions with the results
of both modeling and experiments.

Derivations

hmI=hm =+1, hm, =O,

Right circular polarization —negative helicity

(A2)

Am =Am = —1j Am, =O . (A3)

Our approach is to consider four boundary cases and
then do a weighted sum of the contributions from each
case to arrive at a general expression. Each component is
dependent upon the size of the spherical harmonic matrix
elements and the degree of unoccupation of the final d
states. We can take the sum of the four boundary cases
because of the particularly fundamental nature of the cir-
cular polarization selection rules. The four boundary
cases are (a) right circular polarization, spin-up only
(empty); (b) right circular polarization, spin-down only
(empty); (c) left circular polarization, spin-up only (emp-
ty); and (d) left circular polarization, spin-down only
(empty) (Fig. 5). We have assumed no jmixing of the ini-
tial P3/2and Pi/2 states. Here, a ket notation is used for
the initial states and the u's are percentage unoccupied

To obtain Eqs. (Al) and (6), a stepwise sequence will be
followed, outlining assumptions and limiting conditions.
All of this is based upon circular polarization selection
rules, supposing an electric dipole transition between a
full p core-level and an empty d valence state [Eqs. (A2)
and (A3)]. In this study, the transition could be 3p ~3d
or 2p —+3d. Because of the larger spin-orbit splitting, we
will concentrate upon the latter case. This derivation ex-
tends the pioneering work of Erskine and Sterne. ' The
reader is also referred to the work by Smith et al. ,
which includes both a number of useful references as well
as helpful tables of basis states and matrix elements. As
per Jackson, the following are defined:

Left circular polarization —positive helicity

Spin Mp Spin down

m/ z
2
1
0
-1
-2

3/2, 3/2
3/2, 1/2

3/2, -1/2
3/2, -3/2

1/2, 1/2
1/2, -1/2

Lett Right
circular polarization circular polarization

Lett Right
circular polarization circular polarization

FIG. 5. A schematic of the electric dipole transitions using
circular polarization.

functions. At this point, it is useful to define some matrix
elements:

=(4/5)r,
S=S "=~(1=2,m, =kl[o ' ~1=1,m, =O&~'

=(2/5)r,

(A4)

(A5)

=(2/15)r . (A6)

Here, we have 0 and o the electric dipole operators,
such that o =q(x+iy) and o"=q(x iy), wher—e q is the
charge. The symbol r is the radial matrix element factor
and includes a number of constants. The magnetic vector
B, and the helicity or polarization vector P& are along
the z direction, but can independently be parallel or anti-
parallel with z. The magnetic vector B is meant to generi-
cally represent either an applied magnetic field or the
remanent magnetization. The helicity or polarization
vector, PI, , di6'erentiates between right- and left-handed
circular polarization. The key is whether B and Pz are
parallel or antiparallel. Because we will deal with the
unoccupation functions separately, we can dispense with
the separate treatment of the right- and left-handed cases,
using simply A, X, and 8.

Now, we need to sum the intensity contributions for
each boundary case and each initial j state, i.e., P3/2 and
P»2. For a given spin and circular polarization, there
will be two to three terms, each comprised of the radial
term, r, times an unoccupation function times an initial
m& state distribution factor times an orbital cross-
sectional factor, i.e., A, S, or C.

An example of this would be I3/2 the intensity for the

2p3/2 peak with left-circular polarization and spin-up
only:
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I =(r) u (1)(A)+u —X+u —C =(r) —u + u t+ u t2 y 1 4 ( 4 2
3/2 2 1 0 3 5 2 15 1 45 0 (A7)

There are eight such equations: two polarizations times two spins times two j states. Next, we take a weighted sum of
each contribution, using P and (1—P) as the weighting factors for left-handed and right-handed circular polarization.
Note that the r's are divided out,

Prq)~ +Prqq~ +(1 P)r—q/~ +(1 P)r—q~) ~
BRth...=

p(r~,'+r~,'}+p(r'„,'+r~ t )+(1—p)(r~,'+r~,')+(1—p)(r~, ,'+r~,') (AS)

Substituting the expressions such as (A7) into (AS) gives an expression containing sums of polarization factors times
unoccupation factors times coefficients. At this point, it is useful to apply some simplifying assumptions, from an ex-
treme situation. Consider the limiting case where all mI =2 states for a given spin are equally unpopulated. Here
Q ~=Q;~ for i = —2, —1, 0, 1, 2, and Q ~=Q;~ for i = —2, —1, 0, 1, 2,

theory

P—u ~+P2
3

10
u t+(1—P) u ~+(1—P) —u ~10 2

9 9 3

—Q'+ —Q'4 4
3 3

(A9)

Q'
CX = Q'+Q' ' (A 10)

Now, let us use the definitions of a percentage spin polar-
ization in the empty, unoccupied states, a and also the
polarization I'E from Table IV. Under these special con-
ditions we can express PE, a, and (1—a) in terms of u t

and Q',

the absolute value of m (up'~ =u p~), and (2) ups~
equals the average of u gi" and uop'". (This contains as a
subset, u gz" = u pi" = u Dp'", the first set of conditions
above. ) If the expressions of Eqs. (A13)—(A17) are in-
serted into Eq. (AS), once again Eq. (Al) is obtained.
However, we now have four independently variable unoc-
cupation factors: QT, QE, QT, and Qz, with
a=(3uz~+2uz~)/(3uz~+2uz~ +3uT+2uz~),

Q(1—a}=Q'+Q' '

Q'-Q'
&

=2o'. —1 .
Qg+Q

(Al 1)

(A12)

spin — u csin + Fn~ 1 1

2 2

spin spin
Q)

(A13)

(A14)

Equation (A9) then becomes the equation (Al) above. So,
in the limit that all of the m& =2 states for a given spin
are equally unoccupied, Eq. (Al) can be obtained.

It is useful at this point to digress to a consideration of
what constitutes the parallel (BR+ ) and antiparallel
(BR ) cases of Fig. 3 and Eq. (3). The magnetization and
helicity are the quantities called out in Fig. 2. The mag-
netization will be antiparallel to the majority spin and
parallel to the minority. For left-handed or positive heli-
city radiation that is 100%%uo circularly polarized,
Pi, „=+ 1. For this polarization, the parallel (antiparallel)
case would have a positive (negative} magnetization, a
negative (positive) majority spin, and a positive (negative)
minority spin. A positive (negative) minority spin means
PE less (greater) than zero. Thus the parallel (antiparal-
lel) case would have a BR greater (less) than 2/3.

Moreover, we can get the same result if we make a less
constricting assumption, an effective octahedral crystal-
field splitting (CFS). The general equations for two exam-
ples, fcc and bcc metals, are shown below. T and E stand
for T2g and E symmetry states. There are two major re-
strictions imposed by the octahedral CFS assumption: (1)
the unoccupation functions are dependent upon spin and

spin spin
Qp

spin spin
Q )

—QT

spin — u csin + csin1 1
-2 —

2 2

(A15)

(A16)

(A17)

im, p,„= [BR'—2/3] .
hv

(A19)

This is essentially the result used in Ref. 4. Moreover, it
is possible to generate a more comprehensive expression
by using BR+ and BR for a given + ~P&„~. This has the
advantage of using both data directly and emphasizing
the variation of BR with helicity. The process is shown
below, and the normalization of the BR values is shown
explicitly.

Finally, it is necessary to invert Eq. (Al) to obtain Eq. (6).
Using p, ;„/(S, ) =2, Eq. (A18) can be written:

p, ,„=N(2a 1)=N(PF ) . —

Inverting Eq. (Al) and substituting into Eq. (A18) gives
us the following:
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BR+ + BR-

Pspin
= I spin i spin

(BR+ ) 3. 2
BR++BR

+

r

(BR )

. 3 2
BR++BR

(A20)

Equation (A20) simplifies to Eq. (6). This compact ex-
pression, using a branching ratio asymmetry, utilizes the
two key pieces of data, BR+ and BR, and directly in-
corporates the previously discussed normalization for ex-
cursions from statisticality, i.e., (BR +BR )A4/3. The
element-specific spin magnetic moment can be deter-
mined solely from N, ~Pi„~, BR+, and BR . In Appen-
dix B, the close relation between this expression and the
sum rules will be established. Next the validity of the
above approximations will be discussed.

Discussion of limitations and approximations

There are many limitations, approximations, and possi-
ble shortcomings to the BR analysis method described so
far. Here, there will be discussed, as well as some con-
ceivable solutions and justifications.

The linear branching ratios are not observed experi-
mentally to be the statistical value, 2/3, and it is tempt-
ing to adapt the above method to these observations.
One possibility is polarization of the 2p core levels, that
is, mixing of the 2p3/2 and 2p&&2 states induced by the
magnetic field. We have pursued this and found that to
obtain the BR"" value of 0.74 for Fe, '" it would be
necessary to change the coefficients of states in Fig. 5 sub-
stantially. Basically, the coefficients would go from being
+i/2/3 or +v 1/3 to ++ I /2. However, this is physical-
ly unreasonable. Experimentally, we have measured the
exchange-splitting-induced shift of the 2p —2p ' split-
ting in 4 Ml. of Fe/Cu(001). Here, the spin-orbit split-
ting is on the order of 13 eV and the exchange splitting
shift is measured to be 0.33+0.14 eV. (This may be shift-
ed due to peak broadening. ) From first-order perturba-
tion theory, the degree of mixing should go as
hE,„/b,E,p;„„b;,. The experimental value is (0.33+0.14
eV)/13 eV=2.5%+1%. To achieve the observed BR""
values of 0.74 eV would require mixing of about 17%,
which is much greater than the experimental value.
While this is a gross oversimplification of the issue of
core exchange shifts it seems unlikely that core polar-
ization is playing a dominant role here.

It should also be pointed out that, strictly speaking, the
radial factors for the unpolarized 2p and 2p' states
are not identical. While the nonrelativistic R„d are
equivalent, the relativistic R„can be difFerent. From our
slab calculations discussed below, we can estimate the irn-
pact upon the radial matrix elements of the two transi-
tion types. The variation is less than l%%uo, consistent with
earlier observations, ' which is negligible under these
conditions.

More importantly, we should consider the assumptions
of (1) all u P&'" being equal, for a given spin, and (2) the

effective octahedral crystal-field-splitting case. Two sets
of conditions could give rise to all of the u

&
for a given

spin being equal: (a) an atomic situation with all of the
3d states degenerate, ignoring the small spin-orbit split-
ting of the valence 3d states [g(Fe)=0.05 eV and g(Ni)
=0.1 eV, from Ref. 6]; (b) complete mixing induced by
efFects such as large dispersion. Both of these are fairly
unlikely, although they could be good staring points.
More physically appealing is the second case, as effective
octahedral crystal-field splitting within a larger exchange
splitting. For our approximation to work the dominant
potential terms must be the exchange splitting and
effective crystal-field splitting, followed by the perturba-
tions associated with dispersion, spin-orbit splitting, and
Zeeman splitting of the mI states. For example, if the
spin-orbit splitting would become too large relative to the
exchange splitting, the decoupling of the spin-up mani-
fold from the spin-down manifold would fail. However,
consider the supercell calculation result 2 Fe/5 Cu/2 Fe
shown in Fig. 4. This supercell calculation does not in-
clude spin-orbit splitting in the valence bands but it does
compare well with more relativistic overlayer calcula-
tions and its predictions of magnetic moments agrees
nicely with the relativistic calculations' introduced ear-
lier. The important point here is that the exchange split-
ting can be seen to be about 2 eV: thus the ratio of
b.Es o /b, E,„=0.05 eV/2 eV =2.5%%uo, using the spin-orbit
splitting parameter, /=0. 05 eV, from Ref. 6. Clearly,
the exchange splitting dominates the spin-orbit splitting.

A similar condition is necessary in terms of an effective
crystal-field splitting versus band dispersion. Obviously,
in metallic systems the valence and conduction bands are
dispersive, the energy of each state depending in part
upon its position in k space. This contributes to the finite
bandwidth observed in density of states calculations, an
example of which is shown in Fig. 4. However, in ab-
sorption measurements, momentum is not resolved and it
may be more appropriate to frame our analysis in terms
of density of states that refIects effective crystal potential.
In our derivation of branching ratio relations, it was
found that a dominant octahedral crystal-field splitting
was consistent with Eq. (Al). But the question remains:
will the dispersive effects coupled with momentum con-
servation in each individual transition be sufficient to im-
pose the space-group symmetry as a dominant potential
or will the averaging over the zone be complete enough
to induce an effective crystal-field splitting with the
point-group symmetry of the I point of the Brillouin
zone? The crux of the issue is whether the relation
u gz" =

—,'u gi" + —,'uoP'" actually holds. To address this
question, the majority and minority density of states of
bulk bcc Fe and fcc Ni have been decomposed into their
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I

Majority spin
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Density of states for bulk bcc Fe
l i

Total D.O.S.
- - - - - -T2g-partial D.O.S,
~ """"Eg-partial D.O.S.

d states

E~ and T2~ components. An example is shown in Fig. 6.
The above relation is found true to typically within about
10%. In retrospect, this result is not surprising. Addi-
tionally, it is also possible to use these results to confirm
the expectation of strong orbital quenching: the
effective crystal field energies are on the order of volts,
whereas /=0. 1 eV (Ref. 6).

Related to this issue is the possibility of a Zeeman
splitting perturbation of the mI and —mI states. From
the derivation above, it is obvious that if all the u'I'" are
independent, almost any BR can be obtained. Again the
strongest argument against the lifting of the +mI degen-
eracy is the retention of strong octahedral crystal-field
splitting, described above. Effective crystal-field splitting
such as this provides for quenching of the orbital contri-
bution (whether spin-orbit or Zeenian-induced) to the
magnetic moment. Thus the octahedral splitting approx-
imation seems to hold to within about 15% or less, for
the worst case system of a metal. It seems likely that it
will work even better with metallic oxides and other lo-
calized systems.

A further approximation used here is the neglect of the
s electron density of states in the unoccupied states. The
core p electron can undergo dipolar transitions to a d
electron state, as assumed here, but p to s transitions are
also allowed. These transitions will be negligible if the
s final state density is much smaller than the d final
state density. If this is not the case, the matrix elements
take the form

~
(initialp

~
V~finals+d )

~
2,

which leads to the obvious terms
~
(initialp

~
V~finald )

~
2,

~(initialp)V(finals)) 2, and the cross term or interfer-
ence term, (initialp( V)finald )(finals( V(initialp ). Both
the s contribution and the interference term are ignored
in this analysis, and their inclusion provides yet another
means of changing the linear branching ratio from its sta-
tistical value.

Finally, a very important assumption in our analysis is
that the valence states are either pure spin-up or spin-
down. This is a valid assumption provided spin-orbit

coupling is small, as is the case for the 3d transition met-
als, but is not true for the 4f elements. If spin-orbit
effects were not negligible, one consequence would be to
introduce interference effects between the spin-up and
spin-down final states for all the m~=1/2 states. The
m~ =+3/2 are not affected since they only couple to one
spin component for a given polarization. An alternative
procedure would be to treat the valence states in an m-
representation, which is a more natural one for atomic-
like orbitals.

APPENDIX 8

Recently, Carra et al. ' derived a sum rule for electric
dipole transitions in a single ion model that could be used
to extract an elementally-specific spin magnetic moment
(p,~;„) from magnetic x-ray circular dichroism spectra.
Earlier, we proposed the utilization of a branching ratio
analysis of the determination of p, ;„, based upon a
simplified one-electron, atomic picture which assumed
complete orbital quenching. Here, it will be shown that
these two approaches are essentially equivalent in the
case of 3d ferromagnetic materials. Both methods are
based upon a comparison of the integrated intensity in
the L„,(J=3/2) white line peak versus the sum of the
intensities in the J=3/2 and L» (J= 1/2 ) peaks, after
background removal. An error estimate will also be
presented.

Consider Eqs. (Bl}and (B2), taken from Ref. 10,

f dc@(p+ —p )
+J

P
CO P +P +P

+J
1 l(l+I)+2 —c(c+1)
2 l(l+ l)(4l+2 —n )

l(l+I) —2 —c(c+1)
( ) ( )3c(4l+2 —n )

f ~du(p+ —p ) — f dc@(p+ —p )
J C

(B2)f „dc@(p++p +p )
+J

For the case of 3d magnetic materials and using the
2p~3d transition, c =1 and l =2. The number of 3d
electrons (holes) is n(10 —n ). In our notation,

I3/2 +d COP p I3/2 d~ P+ +
J J

I,+/, = f de p+, I, /, =f de p
J

Switching to our notation and using p = I/2(p++p )

as in Ref. 10, a combination and rearrangement of Eqs.
(B1) and (82) gives us Eq. (83), shown below:

3/2 3/22(S, ) +3(L, ) =6(10 n)—
[I3+/2 i/2 3/p +I i/~ ]

Minority spin

I

-2 EFermi

Energy (eV)

FIG. 6. A spin-polarized LDA calculation for bulk bcc Fe,
including a decomposition into t2g and eg density of states.

(B3}

H«e we have also taken the liberty of dropping ( T ) as
done previously in Ref. 10. Again, Eq. (B3) is merely a
restatement of the sum rules of Carra et al. using our no-
tation and explicitly showing the spin moment
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(p, ;„=2(S,) ) and orbital inoment (p~,b= (L, ) ). The
superscript SR stands for sum rule.

Now consider the branching ratio analysis previously
proposed in Ref. 4 [see Eqs. (Al), (A19), and (A20).
Here, we use BR++BR =2 BR"". Again, lin +, and-
denote polarization: linear, parallel, and antiparallel (hel-

icity and magnetization]. PI„ is the circular polarization
(+ 1 for left; 0 for linear, and —1 for right circular). For
the remainder of this work, ~PI, ~=1, to be consistent
with Carra et al. By doing a series expansion of Eq. (6)
and rearranging, we can get Eq. (B4). (This requires
dropping terms of 1% magnitude or smaller) % error=

SR BR
Pspin Pspin

SR
Pspin

a —2/3 3 ( I,, )
2&S, )

(B7)

In a single electron picture with complete orbital quench-
ing and a statistical branching ratio for linear polariza-
tion (BR""=2/3), a =2/3, and p,~;„=p»,„. Now, it is
well known "that BR""%2/3, with the causes including
( L, )%0, band dispersion and multielectronic eff'ects.

However, for the 3d magnetic materials, (L, ) /(S, ) is
often quite small' and the BR'" value and a are close
to 2/3. The derivation of a from 2/3 is a measure of the
error. To be more specific, we can apply Eq. (B7),

here

I3/2 +I3/2

I3/2 +I ]/2 +I3/2 +I j /2

thus

—=—(BR +BR ) =BR"",
2

BR SR
+spin Pspin

4 I3/2 I3/2
6——(10—n )

Q I3/2+I ]/2+I3/2 I ]/2

(B5)

(B6)

Using the values from Ref. 10, 1+3(L,)/2(S, ) ~1.25.
As an example, consider Fe/Cu(001), where a —=0.73 and
(L, ) /(S, ) =0.1: here the % error would be 10%. For
Ni and Co the error would probably be higher: to be
conservative, a value of 20% can be used as a rule of
thumb.

Thus the approximate analysis procedure using
branching ratios, based upon on atomic, single-electron
picture and assuming strong orbital quenching, can give
the same value of p, ;„as the sum-rule approach, to
within 20% or better. This can be done without explicit
knowledge of (L, ) and without cross normalization be-
tween spectra. Finally, it is necessary to note that both of
these models are grounded in localized atomic or ionic
pictures. Band dispersion and multielectronic efFects ulti-
mately must be included for full analysis.
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