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Monte Carlo simulations of the clean and disordered contact process in three dimensions

Thomas Vojta
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

(Received 26 September 2012; published 30 November 2012)

The absorbing-state transition in the three-dimensional contact process with and without quenched randomness
is investigated by means of Monte Carlo simulations. In the clean case, a reweighting technique is combined
with a careful extrapolation of the data to infinite time to determine with high accuracy the critical behavior
in the three-dimensional directed percolation universality class. In the presence of quenched spatial disorder,
our data demonstrate that the absorbing-state transition is governed by an unconventional infinite-randomness
critical point featuring activated dynamical scaling. The critical behavior of this transition does not depend on the
disorder strength, i.e., it is universal. Close to the disordered critical point, the dynamics is characterized by the
nonuniversal power laws typical of a Griffiths phase. We compare our findings to the results of other numerical
methods, and we relate them to a general classification of phase transitions in disordered systems based on the
rare region dimensionality.

DOI: 10.1103/PhysRevE.86.051137 PACS number(s): 05.70.Ln, 64.60.Ht, 02.50.Ey

I. INTRODUCTION

The macroscopic behavior of many-particle systems far
from equilibrium can abruptly change when an external
parameter is changed. The resulting nonequilibrium phase
transitions separate different nonequilibrium steady states.
They are characterized by strong fluctuations and cooperative
phenomena over large distances and times, analogous to
the behavior at equilibrium phase transitions. Examples of
nonequilibrium phase transitions can be found in catalytic
reactions, growing interfaces, turbulence, and traffic jams, as
well as in the dynamics of epidemics and other biological
populations (see, e.g., Refs. [1–8]).

A well-studied class of nonequilibrium phase transitions
are the absorbing-state transitions between active, fluctuating
steady states and inactive, absorbing states in which fluctu-
ations cease completely. The generic universality class for
absorbing-state transitions is the directed percolation (DP)
class [9]. Janssen and Grassberger [10,11] conjectured that all
absorbing-state transitions with a scalar order parameter and
short-range interactions belong to this class, provided they do
not feature extra symmetries or conservation laws. Additional
symmetries or conservation laws can lead to other universality
classes such as the parity conserving class or Z2-symmetric
directed percolation (see, e.g., Refs. [4,5]).

Although absorbing-state transitions are ubiquitous in
theory and computer simulations, experimental observations
of their universality classes were lacking for a long time
[12]. A full verification of the DP universality class was
recently achieved in the transition between two turbulent
states in a liquid crystal [13]. Other absorbing-state transitions
were found in periodically driven suspensions [14,15] and in
superconducting vortices [16].

In many experimental systems, one can expect impurities
and defects to play an important role. Indeed, it has been
suggested [12] that such quenched spatial disorder is one
of the key reasons for the surprising rarity of the DP
universality class in experiments. The influence of disorder
on absorbing-state transitions is therefore a prime problem
in the field. According to the Harris criterion [17], a clean
critical point is stable against the introduction of weak spatial

disorder if its correlation length critical exponent ν⊥ fulfills
the inequality dν⊥ > 2, where d is the space dimensionality.
The values of ν⊥ in the clean DP universality class are
approximately 1.1 in one dimension, 0.73 in two dimensions,
and 0.58 in three dimensions [4]. The Harris criterion is
thus violated, and spatial disorder is expected to change the
critical behavior. This heuristic result was confirmed by a
field-theoretic renormalization-group study [18] which found
runaway flow towards large disorder. Early Monte Carlo
simulations [19–25] demonstrated unusually slow dynamics
but could not resolve the ultimate fate of the transition.

In recent years, a comprehensive understanding of the
one-dimensional disordered contact process has been achieved
by a combination of analytical and numerical approaches.
A strong-disorder renormalization-group (SDRG) analysis
[26,27] established that the critical point is of exotic infinite-
randomness type and characterized by activated (exponential)
dynamical scaling. It belongs to the same universality class
as the random transverse-field Ising chain [28,29], at least for
sufficiently strong disorder. These predictions were confirmed
by large-scale Monte Carlo simulations [30] that also provided
evidence for the critical behavior being universal, i.e., indepen-
dent of the disorder strength. In higher dimensions, the SDRG
cannot be solved analytically. However, by using a numerical
implementation of the SDRG [31], the infinite-randomness
scenario was found to be valid in two dimensions, in agreement
with Monte Carlo simulations of the contact process on diluted
lattices [32,33].1

Here, we extend our Monte Carlo simulations of the contact
process on diluted lattices to three space dimensions. Using
large lattices of up to 9993 sites and long times up to 108,
we provide strong evidence for the nonequilibrium phase
transition of the disordered contact process being governed by

1Somewhat surprisingly, the contact process on a two-dimensional
random Voronoi triangulation [56] appears to show the clean DP
critical behavior, in contradiction to the Harris criterion. A similar
result was also obtained for an Ising model on a Voronoi triangulation
[57]. The reasons for these contradictions are not understood so far;
possibly the Voronoi triangulation implements rather weak disorder.
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an infinite-randomness critical point. We determine the critical
exponents and find them to be universal, i.e., independent of
disorder strength. In contrast, the dynamics in the Griffiths
region between the clean and disordered critical points is
characterized by nonuniversal power laws. As a by-product
of our simulations, we also obtain high-precision estimates
for the critical exponents of the clean contact process in three
dimensions.

The paper is organized as follows. The contact process on
a diluted lattice is introduced in Sec. II. We briefly summarize
the scaling theories for conventional and infinite-randomness
critical points in Sec. III. In Sec. IV, we describe our simulation
method and present the results. We conclude in Sec. V.

II. DEFINITION OF THE CONTACT PROCESS

The contact process [34] can be viewed as a model for
the spreading of an epidemic in space. Consider a hypercubic
d-dimensional lattice of Ld sites. Each site can be in one of two
states, either active (infected) or inactive (healthy). The time
evolution of the contact process is a continuous-time Markov
process during which infected sites heal spontaneously at a rate
μ, while healthy sites become infected by their neighbors at a
rate λn/(2d). Here, n is the number of sick nearest neighbors
of the given site. The infection rate λ and the healing rate μ

(which can be set to unity) are the external control parameters
that govern the behavior of the system.

The steady states of the contact process can be easily under-
stood at a qualitative level. For λ � μ, healing dominates over
infection, and the epidemic eventually dies out completely.
The system therefore always ends up in the absorbing steady
state without any infected sites. This is the inactive phase. In
contrast, the density of infected sites remains nonzero in the
long-time limit if the infection rate λ is sufficiently large, i.e.,
the system is in the active phase. The nonequilibrium transition
between these two phases, which occurs at a critical infection
rate λ0

c , belongs to the DP universality class.
Quenched spatial disorder can be introduced into the

contact process in different ways, e.g., by making the infection
and healing rates random variables, or by using a random
lattice instead of a regular one. Here, we randomly dilute
the regular lattice by removing each site with probability p.2

In the context of an epidemic, a vacancy can be interpreted
as a site that is immune against the infection. For vacancy
concentrations p below the percolation threshold pc, the
lattice still has an infinite connected cluster of sites that
can support an active phase of the contact process. If the
vacancy concentration is above pc, an infinite cluster does not
exist. Instead, the lattice consists of disconnected finite-size
clusters. As the epidemic dies out on any finite cluster in
the long-time limit, an active phase is impossible for p > pc.
This leads to the phase diagram shown in Fig. 1. Specifically,
there are two different nonequilibrium phase transitions: (i)
the so-called generic transition for p < pc, driven by the
dynamic fluctuations of the contact process, and (ii) the lattice
percolation transition occurring at p = pc for sufficiently large

2We define p as the fraction of sites removed rather than the fraction
of sites present.
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FIG. 1. (Color online) Phase diagram of the contact process on a
site-diluted cubic lattice (inverse critical infection rate λ−1

c vs vacancy
concentration p). MCP marks the multicritical point. The black dots
show the actual simulation results; the lines are guides to the eye.

infection rates [35,36]. The two phase-transition lines meet at
a multicritical point.3

The central quantity of the contact process is the density of
infected sites at time t ,

ρ(t) = 1

Ld

∑
r

〈nr(t)〉. (1)

Here, nr(t) is the occupation of site r at time t , i.e., nr(t) = 1 if
the site is infected and nr(t) = 0 if it is healthy. 〈· · · 〉 denotes
the average over all realizations of the Markov process. The
order parameter of the absorbing-state phase transition is given
by the steady-state density

ρstat = lim
t→∞ ρ(t). (2)

III. SCALING THEORIES
OF ABSORBING-STATE TRANSITIONS

In this section, we summarize the scaling theories of the
nonequilibrium transitions in the clean and disordered contact
process to the extent necessary for analyzing our Monte Carlo
data. We contrast the cases of conventional power-law scaling
and activated scaling. More details can be found, for instance,
in Ref. [4] for the power-law case and in Refs. [37,38] for the
activated case.

A. Conventional critical points

The DP universality class is characterized by three inde-
pendent critical exponents, for example, β, ν⊥, and z. The
order-parameter exponent β describes how the steady-state
density varies as the infection rate λ approaches its critical
value λc from above,

ρstat ∼ (λ − λc)β ∼ �β. (3)

3In two space dimensions, the multicritical point was studied in
Ref. [58].
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Here, � = (λ − λc)/λc is the dimensionless distance from
criticality. The correlation length exponent ν⊥ describes the
divergence of the correlation length ξ⊥ at criticality,

ξ⊥ ∼ |�|−ν⊥ . (4)

The correlation time ξ‖ diverges like a power of the correlation
length,

ξ‖ ∼ ξz
⊥, (5)

which defines the dynamical exponent z. In terms of these
exponents, the scaling form of the density as a function of �,
time t , and system size L reads

ρ(�,t,L) = bβ/ν⊥ρ(�b−1/ν⊥ ,tbz,Lb). (6)

Here, b is an arbitrary dimensionless length scale factor.
If the time evolution starts at time zero from a single infected

site in an otherwise inactive lattice, one can ask what is the
probability that an active cluster survives at time t . In the DP
universality class, this survival probability Ps has the same
scaling form as the density,4

Ps(�,t,L) = bβ/ν⊥Ps(�b−1/ν⊥ ,tbz,Lb). (7)

The correlation (or pair connectedness) function C(r,t) =
〈nr(t) n0(0)〉 is given by the probability that site r is infected
at time t when the time evolution starts from a single infected
site at r = 0 and time 0. The scale dimension of C is 2β/ν⊥
because it involves a product of two densities, leading to the
scaling form5

C(�,r,t,L) = b2β/ν⊥C(�b−1/ν⊥ ,rb,tbz,Lb). (8)

The total number Ns of sites in the active cluster can be
calculated by integrating the correlation function over all
space, resulting in

Ns(�,t,L) = b2β/ν⊥−dNs(�b−1/ν⊥ ,tbz,Lb). (9)

The mean-square radius R of the active cluster has the
dimension of a length. Its scaling form therefore reads

R(�,t,L) = b−1R(�b−1/ν⊥ ,tbz,Lb). (10)

The functional dependencies of ρ, Ps , Ns , and R on the
parameters �, t , and L can be easily derived from the scaling
forms by setting the scale factor b to appropriate values.
This leads to the following time dependencies at the critical
point � = 0 and in the thermodynamic limit L → ∞. In the
long-time limit, the density of infected sites and the survival
probability obey the power laws

ρ(t) ∼ t−δ, Ps(t) ∼ t−δ, (11)

with δ = β/(ν⊥z). The mean-square radius and number of
infected sites of a cluster starting from a single seed site behave
as

R(t) ∼ t1/z, Ns(t) ∼ t	, (12)

4At general absorbing-state transitions, e.g., with several absorbing
states, the survival probability scales with an exponent β ′ which may
be different from β (see, e.g., [4]).

5This relation relies on hyperscaling; it is only valid below the upper
critical dimension d+

c , which is four for directed percolation.

where 	 = d/z − 2β/(ν⊥z) is the so-called critical initial slip
exponent. By taking the derivative of Eqs. (6), (7), and (9) with
respect to �, we also find that

∂ lnρ

∂�
∼ ∂ lnPs

∂�
∼ ∂ lnNs

∂�
∼ t1/(ν⊥z), (13)

which will be useful for measuring ν⊥.

B. Infinite-randomness critical points

Infinite-randomness critical points feature extremely slow
dynamics, represented by an exponential (activated) relation
between correlation length and time,

ln(ξ‖/t0) ∼ ξ
ψ

⊥ , (14)

rather than the power-law dependence (5). It is characterized
by the so-called tunneling exponent ψ , and t0 is a nonuniversal
microscopic time scale. The exponential relation between time
and length scales implies that the dynamical exponent z is
formally infinite. In contrast to the dynamical scaling, the static
scaling relations remain of power-law type, i.e., Eqs. (3) and
(4) remain valid.

The scaling forms of disorder-averaged observables can
be obtained by simply substituting the variable combination
ln(t/t0)bψ for tbz in the arguments of the scaling functions:

ρ[�, ln(t/t0),L] = bβ/ν⊥ρ[�b−1/ν⊥ , ln(t/t0)bψ,Lb], (15)

Ps[�, ln(t/t0),L] = bβ/ν⊥Ps[�b−1/ν⊥ , ln(t/t0)bψ,Lb], (16)

N [�, ln(t/t0),L] = b2β/ν⊥−dN [�b−1/ν⊥ , ln(t/t0)bψ,Lb],

(17)

R[�, ln(t/t0),L] = b−1R[�b−1/ν⊥ , ln(t/t0)bψ,Lb]. (18)

Consequently, the critical time dependencies of the density
of active sites and the survival probability (in the thermody-
namic limit) are logarithmic,

ρ(t) ∼ [ln(t/t0)]−δ̄ , Ps(t) ∼ [ln(t/t0)]−δ̄ , (19)

with δ̄ = β/(ν⊥ψ). The radius and number of active sites in a
cluster starting from a single seed site vary as

R(t) ∼ [ln(t/t0)]1/ψ , Ns(t) ∼ [ln(t/t0)]	̄, (20)

with 	̄ = d/ψ − 2β/(ν⊥ψ). Taking the derivatives of
Eqs. (15)–(17) with respect to � yields

∂ lnρ

∂�
∼ ∂ lnPs

∂�
∼ ∂ lnNs

∂�
∼ [ln(t/t0)]1/(ν⊥ψ). (21)

C. Griffiths region

In the presence of spatial disorder, the contact process
displays unconventional behavior not just at the critical point
but also in its vicinity because rare active spatial regions
dominate the long-time dynamics. This phenomenon is an
example of the well-known Griffiths singularities [39] that
generally occur at phase transitions in disordered systems
(see Ref. [37] for a review). The Griffiths singularities in
the spatially disordered contact process can be understood
as follows [19].
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The inactive phase must be divided into two regions.
(i) If the infection rate is below the clean critical value, λ < λ0

c ,
the behavior is conventional. This means that the system
approaches the absorbing state exponentially fast. The decay
time increases with λ and diverges as |λ − λ0

c |−zν⊥ , where z

and ν⊥ are the exponents of the clean critical point [30,40].
(ii) If the infection rate is in the so-called Griffiths region (or
Griffiths phase) between the clean and dirty critical values,
λ0

c < λ < λc, the system is globally still in the inactive phase
(i.e., it eventually decays into the absorbing state). However, in
the thermodynamic limit, one can find arbitrarily large spatial
regions devoid of vacancies. These rare regions are locally
in the active phase. Although they cannot support a nonzero
steady-state density because they are of finite size, their time
decay is very slow as it requires a rare, exceptionally large
density fluctuation.

The contribution of the rare regions to the density of
infected sites can be expressed as the integral

ρ(t) ∼
∫

dLrL
d
r w(Lr ) exp[−t/τ (Lr )]. (22)

Here, w denotes the probability for finding a spatial region of
size Lr that does not contain any vacancies, and τ (Lr ) is the
lifetime of the contact process on such a rare region. Basic
combinatorics gives

w(Lr ) ∼ exp
(−p̃Ld

r

)
, (23)

with p̃ = − ln(1 − p) (up to preexponential factors). In the
Griffiths phase, the lifetime of a rare region depends exponen-
tially on its volume,

τ (Lr ) ∼ exp
(
aLd

r

)
, (24)

because a coordinated fluctuation of the entire region is
necessary to take it to the absorbing state [19,20,41]. The
constant a vanishes at the clean critical infection rate λ0

c and
increases with λ. Evaluating the integral (22) in saddle-point
approximation, we obtain a power-law time dependence for the
density. The survival probability Ps shows exactly the same
time dependence,

ρ(t) ∼ Ps(t) ∼ t−p̃/a = t−d/z′
, (25)

where z′ = da/p̃ is the nonuniversal dynamical exponent in
the Griffiths region. The behavior of z′ close to the dirty critical
point can be obtained from the SDRG analysis [27,29,31]. As
λ approaches λc, z′ diverges as

z′ ∼ |λ − λc|−ψν⊥ , (26)

where ψ and ν⊥ are the critical exponents of the infinite-
randomness critical point.

IV. MONTE CARLO SIMULATIONS

A. Simulation method

To perform Monte Carlo simulations of the contact pro-
cess on randomly diluted cubic lattices, we followed the
implementation described, for instance, by Dickman [42].
The algorithm starts at time t = 0 from some configuration
of infected and healthy sites and consists of a sequence of
events. During each event an infected site is randomly chosen
from a list of all Na infected sites; then a process is selected,

either infection of a neighbor with probability λ/(1 + λ) or
healing with probability 1/(1 + λ). For infection, one of the
six neighbor sites is chosen at random. The infection succeeds
if this neighbor is healthy (and not a vacancy site). The time is
then incremented by 1/Na .

Using this algorithm, we simulated systems with sizes of
up to 9993 sites and vacancy concentrations p = 0, 0.2, 0.3,
0.4, 0.5, and 0.6 and pc = 0.688 392 0 [43]. To cope with the
slow dynamics of the disordered contact process, we simulated
long times up to 108. All results were averaged over a large
number of disorder configurations; precise numbers will be
given below.

We carried out two different types of simulations. (i) The
majority of runs started from a single active site in an otherwise
inactive lattice (spreading runs); we monitored the survival
probability Ps(t), the number of sites Ns(t) of the active cluster,
and its radius R(t). (ii) For comparison, we also performed a
few runs that started from a completely active lattice during
which we observed the time evolution of the density ρ(t).

We employed two different high-quality, long-period ran-
dom number generators. Most simulations used LFSR113
proposed by L’Ecuyer [44]. We verified the validity of the
results by means of the 2005 version of Marsaglia’s KISS [45].
The total computational effort for the work described in this
paper was about 100 000 CPU days on the Pegasus cluster at
Missouri S&T.

Figure 1 gives an overview of the phase diagram resulting
from these simulations. As expected, the critical infection rate
λc increases with increasing impurity concentration.

B. Contact process on an undiluted lattice

The purpose of studying the clean three-dimensional
contact process is twofold—(i) to test our implementation
of the contact process and (ii) to compute highly accurate
estimates of the critical exponents in the three-dimensional DP
universality class. To reduce the numerical effort, we applied
the clever reweighting technique proposed in Ref. [42].

After a few test calculations aimed at bracketing the critical
point, we performed two large spreading runs (starting from
a single active site) at λ = 1.316 840 0. By reweighting with
a step �λ = 0.000 002 5, we generated data for λ between
1.316 815 0 and 1.316 865 0. The first run consisted of 4 ×
108 trials using the LFSR113 random number generator; the
second consisted of 5 × 108 trials using the KISS random
number generator. The maximum time of both runs was 5 ×
104. As the data of both runs agree within their statistical
error, we averaged their results. The system size, 8503 sites,
was chosen such that the active cluster stayed smaller than the
sample during the entire time evolution, eliminating finite-size
effects.

To find the location of the critical point and to measure
the critical exponents, we define effective (running) exponents
via the logarithmic derivatives of various observables. These
effective exponents are then extrapolated to t = ∞. The
finite-size scaling exponent β/ν⊥ (scale dimension of the order
parameter) can be determined from the relation between Ns

and Ps . Combining (11) and (12) yields Ns ∼ P
−	/δ
s with

	/δ = 3ν⊥/β − 2. Figure 2 shows the effective exponent
(d lnNs)/(d lnPs) as a function of t−y with y = 1/2. (The
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FIG. 2. (Color online) Effective critical exponent −	/δ =
(d lnNs)/(d lnPs) vs t−1/2. The critical curve is marked by dots,
and the dashed line is a linear extrapolation to t = ∞.

value 1/2 was chosen empirically to allow a linear extrap-
olation to t = ∞.) From this plot, we estimate the critical
infection rate to be

λ0
c = 1.316 835(1). (27)

We verified this value by performing an extra run directly at
λ = 1.316 835 using 4 × 108 trials on a system of size 9993

with a maximum time of 105.
Extrapolating the effective exponent to t = ∞, we obtain

	/δ = 0.1442(3)sys(2)ran, where the values in brackets repre-
sent estimates of the systematic and random errors of the last
digit. The systematic error stems from the uncertainties of λ0

c

and the extrapolation exponent y, while the random error is due
to the Monte Carlo noise. The resulting value of the finite-size
scaling exponent is β/ν⊥ = 1.3991(4). An estimate for this
exponent can also be obtained from the relation between Ns

and R. Extrapolating the effective exponent as above yields
the identical value β/ν⊥ = 1.3991(4).

To determine the exponents z, δ, and 	, we apply the
same type of analysis to the logarithmic derivatives of R,
Ps , and Ns with respect to time. The corresponding graphs
are shown in Fig. 3. Extrapolation to t = ∞ yields the
dynamical exponent 1/z = 0.5267(1)sys(1)ran as well as δ =
0.7367(5)sys(1)ran and 	 = 0.1062(2)sys(2)ran. These values
fulfill hyperscaling because 	 + 2δ − 3/z = −0.000 5(22), in
excellent agreement with the exact result of zero.

Finally, we measure the exponent combination 1/(ν⊥z)
by analyzing the time dependencies of (∂ lnPs)/(∂λ) and
(∂ ln Ns)/(∂λ) according to Eq. (13). Extrapolating the
effective exponent to t = ∞ as above yields 1/(ν⊥z) =
0.904 0(5)sys(5)ran. The correlation length and order-parameter
exponents can be calculated by combining this value with
our results for z and β/ν⊥ yielding ν⊥ = 0.582 6(9) and
β = 0.815(2).

In Table I, we compare our estimates for the critical
exponents with earlier results. The present estimates have
significantly higher precision than the values in the literature.
They are roughly compatible with Jensen’s values [48] within
their given errors (for 	, the difference is about twice the
given error, though). However, they are clearly not compatible

-0.75

-0.74

-0.73

-0.72

-0.71

-δ

0 0.02 0.04 0.06 0.08 0.1
t−1/2

0.095

0.100

0.105

0.110

0.115

θ

0.526

0.528

0.530

0.532

1/
z

λ (bottom to top)
λmin = 1.3168150
λmax= 1.3168650
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λc=1.316835

FIG. 3. (Color online) Effective critical exponents 1/z =
(d lnR)/(d lnt), δ = (d lnPs)/(d lnt), and 	 = (d lnNs)/(d lnt) vs
t−1/2. The critical curves are marked by dots, and the dashed lines are
linear extrapolations to t = ∞.

with the values given in Refs. [42,46] (for δ, the difference
is about ten times the given error, and for z it is about five
times the given error). We believe this discrepancy can be
traced back to the location of the critical point. According
to our data, the infection rate λ = 1.316 86(1), identified
as critical in Ref. [42] and also employed in Ref. [46],
is on the active side of the transition (it differs from our
estimate by about three times the given error). As the survival
probability decays more slowly in the active phase than at
criticality, this may be responsible for the low δ value and,
via the hyperscaling relation, for the high z value reported in
Ref. [42].

C. Contact process on a diluted lattice

The remainder of Sec. IV focuses on the contact process
on a diluted lattice. We tried to use the same reweighting
technique as in the clean case to save computer time. However,
these attempts were not successful. The reweighing method
of Ref. [42] considers a set of simulation runs (particular
realizations of the Markov process) at some infection rate
λ and reweighs their statistical probabilities according to a
slightly different λ′. This only works as long as the two
infection rates are sufficiently close such that their sets of
possible runs overlap significantly. This overlap decreases
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TABLE I. Critical infection rate and critical exponents of the
clean three-dimensional contact process. The upright numbers are
directly given in the respective papers; the italic ones were calculated
using scaling relations. The fractal dimension Df = 3 − β/ν⊥. (*)
The authors of Ref. [46] used the value of λc found in Ref. [42] as an
input.

Value This work Ref. [46] Ref. [42] Ref. [47] Ref. [48]

λ0
c 1.316 835(1) (*) 1.316 86(1) 1.316 83(2) 1.3168(1)

β/ν⊥ 1.3991(4) 1.395(4) 1.394(1) 1.392(5)
ν⊥ 0.5826(9) 0.580(3) 0.584(6)
β 0.815(2) 0.808(5) 0.78(1) 0.813(11)
δ 0.7367(6) 0.7263(11) 0.732(4)
	 0.1062(4) 0.110(1) 0.114(4)
z 1.8986(8) 1.916(5) 1.919(4) 1.901(5)
2/z 1.0534(4) 1.042(2) 1.052(3)
ν⊥z 1.106(2) 1.114(4) 1.11(1)
	z 0.2016(6) 0.216(3)
Df 1.6009(4) 1.56(3)

with increasing simulation time. In the presence of disorder,
particularly long simulation times are required because the
critical dynamics is logarithmically slow. Thus reweighting is
restricted to very narrow λ intervals (too narrow compared to
the range of infection rates we needed to explore to determine
the critical point). All results were thus obtained in the
conventional manner by performing a separate run for each λ

value.
Figure 4 gives an overview over spreading simulations

(starting from a single active seed site) for a vacancy
concentration p = 0.5. The data represent averages over at
least 5000 disorder configurations, with 128 trials starting
from random seed sites for each configuration. A system size
of 5003 sites ensured that the active cluster stayed smaller than
the sample for the entire simulation run. The figure shows that
the dynamics in the vicinity of the phase transition is very slow.
In particular, the time dependence of the survival probability
appears to be slower than a power law, in agreement with the
activated scaling scenario of Sec. III B. Moreover, the data
show indications of Griffiths singularities, i.e., nonuniversal
power-law behavior somewhat below the critical infection rate.
We also note that the number of sites in the active cluster Ns

decreases with time at the transition, in contrast to the clean
case and to the diluted case in two dimensions [33]. This
implies a negative exponent 	̄.

To find the precise location of the critical point within the
activated scaling scenario, one might be tempted to search
for power-law relations between lnt and observables such as
Ps and Ns (either by plotting lnPs and lnNs vs lnlnt or by
analyzing the corresponding effective exponents). However,
this method is highly unreliable as the unknown microscopic
time scale t0 in (19) and (20) provides a correction to scaling
via ln(t/t0) = lnt − lnt0. This strongly influences the results
because the simulations cover only a moderate range in lnt .
(In the two-dimensional simulations, Ref. [33], it was found
that neglecting t0 could change the apparent value of δ̄ from
its correct value of 1.9 to 3.)

To circumvent this problem, we follow the method devised
in Ref. [33]. It is based on the observation that t0 has the same

10-4

10-3

10-2

10-1

P
s

101 102 103 104 105

t

0.03

0.1

0.3

1

3

N
s

2.685
2.6906
2.695
2.7
2.705
2.71
2.72
2.8

λ (bottom to top)
2.3
2.4
2.5
2.6
2.64
2.67
2.68

FIG. 4. (Color online) Survival probability Ps and number of
active sites Ns vs time t for impurity concentration p = 0.5 and
several infection rates λ. The critical curve at λc = 2.6906 is marked
by dots.

value in the scaling forms of all quantities because it is related
to the energy scale 0 of the underlying SDRG. Consequently,
if one analyzes the relation between Ns and Ps or other such
combinations of observables, the critical point corresponds to
power-law behavior (independent of the value of t0) as long as
all other corrections to scaling are small.

We performed long spreading runs with a maximum time of
5 × 107, system size 5003, and vacancy concentration p = 0.5
for several infection rates λ close to the phase transition.
The resulting plot of Ns vs Ps is shown in Fig. 5. The
data are averages over 105 to 106 disorder configurations
with 1000 trials starting from random seed sites for each
configuration. The figure shows that the relation between
Ns and Ps indeed approaches a power law in the long-time
(small Ps) limit. The figure also indicates that the crossover to
the asymptotic behavior is very slow. The asymptotic power
law is only reached when Ps falls well below 10−3 which
corresponds to times larger than 104, implying that long
simulations are required to determine the critical behavior.
Moreover, the mean-square radius of the active cluster at the
crossover time is approximately 25, implying a total diameter
of about 100. This means that simulations of systems with
less than 1003 sites will never reach the asymptotic critical
behavior.

051137-6



MONTE CARLO SIMULATIONS OF THE CLEAN AND . . . PHYSICAL REVIEW E 86, 051137 (2012)

10-4 10-3 10-2

Ps

0.05

0.07

0.1

0.2

0.3

0.5

0.7

N
s λ (bottom to top)

λmin = 2.6894
λmax= 2.6918
Δλ   = 0.0004

λc=2.69060

FIG. 5. (Color online) Ns vs Ps for vacancy concentration p =
0.5 and several infection rates λ close to the critical point.

D. Critical exponents

To find the critical infection rate λc and to measure the
finite-size scaling exponent β/ν⊥ (the scale dimension of the
order parameter), we define the effective (running) exponent
(d lnNs)/(d lnPs) = −	̄/δ̄. It is related to the finite-size
scaling exponent via 	̄/δ̄ = 3ν⊥/β − 2 [see Eqs. (19) and
(20)]. To avoid the uncertainties stemming from the unknown
microscopic time scale t0, we extrapolate this effective expo-
nent to Ps = 0 rather than t = ∞. Figure 6 shows the effective
exponent as a function of P

ȳ
s with ȳ = 1/2. (The value 1/2 was

again chosen empirically to permit an approximately linear
extrapolation of the data with Ps � 10−3. Because of the slow
crossover to the asymptotic regime, the value of ȳ is much
more uncertain than that of y in the clean case; see Fig. 2.)

From Fig. 6, we conclude that λc = 2.690 6(3) for a vacancy
concentration of p = 0.5. Extrapolating the effective exponent
to Ps = 0 yields 	̄/δ̄ = −0.42(3) where the error estimate
largely stems from the uncertainty in λc (and the related
uncertainty in ȳ.) The statistical error is much smaller. The

0 0.01 0.02 0.03 0.04 0.05 0.06
Ps

1/2

0.25

0.3

0.35

0.4

0.45

0.5

N
s-

P
s 

ex
po

ne
nt

 −
θ/

δ

λ (top to bottom)
λmin = 2.6894
λmax= 2.6918
Δλ   = 0.0004

λc=2.6906

− 
−

FIG. 6. (Color online) Effective critical exponent −	̄/δ̄ =
(d lnNs)/(d lnPs) vs P 1/2

s calculated from the data in Fig. 5. The
critical curve is marked by dots, and the dashed line is a linear
extrapolation to Ps = 0.
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FIG. 7. (Color online) Effective critical exponents δ̄ =

−(d lnPs)/[d lnln(t/t0)] and 	̄ = (d lnNs)/[d lnln(t/t0)] vs P 1/2
s

for p = 0.5 and t0 = 1. The critical curves are marked by dots, and
the dashed lines are linear extrapolations to Ps = 0.

resulting finite-size scaling exponent is β/ν⊥ = 1.90(4). An
estimate for this exponent can also be obtained from analyzing
the dependence of Ns on R in a similar fashion. The data show
additional curvature (corrections to scaling), thus giving the
less precise value β/ν⊥ = 1.85(15).

We now apply the same type of analysis to the
logarithmic derivatives of Ps , Ns , and R with respect to
ln(t/t0) to determine the values of the exponents δ̄, 	̄,
and ψ . This requires a value for the microscopic time
scale t0. Since an incorrect t0 would produce additional
corrections to scaling, we estimated its value by minimizing
the time dependence (Ps dependence) of the effective
exponents δ̄ and 	̄. This yields t0 ≈ 1.0(4). Figure 7
shows the resulting effective exponents δ̄ and 	̄ as a function
of P

1/2
s for vacancy concentration p = 0.5. Extrapolating the

data at the critical infection rate λc = 2.6906 to Ps = 0 (i.e.,
t = ∞) gives the values δ̄ = 5.0(2) and 	̄ = −2.1(2). Again,
the error estimate is dominated by the uncertainty in λc (and the
resulting uncertainties in ȳ and t0). The tunneling exponent ψ

can be determined by combining the value of β/ν⊥ with either
δ̄ or 	̄. We find ψ = 0.38(3). Alternatively, ψ can be obtained
from the dependence of R on ln(t/t0). As these data show
additional corrections to scaling, the extrapolation to t = ∞
is difficult and leads to the less precise estimate ψ = 0.41(5).

To find the critical exponents ν⊥ and β, we now study the
dependence of (∂ lnPs)/(∂λ) and (∂ lnNs)/(∂λ) on ln(t/t0)
according to Eq. (21). This yields the exponent combination
1/ν⊥ψ = 2.7(3). Combining this with the value for ψ , we
obtain ν⊥ = 1.0(2). This analysis is hampered by the rather
large uncertainties in ψ and t0. A better estimate can be
obtained by considering the dependence of (∂ lnPs)/(∂λ) and
(∂ lnNs)/(∂λ) on Ps , which takes the form

∂ lnPs

∂λ
∼ ∂ lnNs

∂λ
∼ P −1/β

s . (28)
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TABLE II. Critical exponents of the disordered three-dimensional
contact process compared to results of the SDRG calculation [49].
The upright numbers are directly given in Ref. [49]; the italic ones
were calculated using scaling relations. The fractal dimension Df =
3 − β/ν⊥.

Value This work Ref. [49]

β/ν⊥ 1.90(4) 1.84(2)
ν⊥ 0.98(6) 0.99(2)
β 1.87(7) 1.82(4)
Df 1.10(4) 1.16(2)

ψ 0.38(3) 0.46(2)
ν⊥ψ 0.37(4) 0.45(3)
δ̄ 5.0(2) 4.0(2)
	̄ −2.1(2) −1.5(1)

Extrapolating the effective exponents to Ps = 0 as before, we
obtain the values 1/β = 0.53(2) and 0.55(3) from the Ps and
Ns data, respectively. Our final estimate of the order-parameter
exponent is thus β = 1.87(7). Combined with the finite-size
scaling exponent, this yields ν⊥ = 0.98(6).

In Table II, we compare our estimates for the critical ex-
ponents with results of a numerical SDRG calculation [49] of
the random transverse-field Ising model with up to 1283 sites.
This model is expected to be in the same universality class as
the disordered contact process. All static exponents (above the
dividing line in the table) agree within their error bars (though
just barely in the case of β/ν⊥). In contrast, the tunneling
exponent ψ and the other exponents characterizing the time
dependencies (below the dividing line) do not agree. This
suggests that the uncertainties in determining the microscopic
time scale t0 and, correspondingly, the microscopic energy
scale 0 of the SDRG calculation may be responsible for the
disagreement because t0 and 0 do not influence the static
exponents. We note, however, that our raw data do not seem
to be compatible with the values for δ̄ and 	̄ calculated from
the results of Ref. [49] even if we allow t0 to vary (unless
one assumes a crossover from our δ̄ = 5 to δ̄ = 4 and from
	̄ = 2 to 	̄ = 1.5 at times t � 108 beyond the range of our
simulations). This can be seen in Fig. 8 where we compare our
data to the functions Ps ∼ ln(t/t0)−4 and Ns ∼ ln(t/t0)−1.5

with ln(t0) = 0, 1, 2, 3, and 4. We will return to this question
in the concluding section.

E. Universality of the critical behavior

So far, all results on the disordered contact process were for
a vacancy concentration p = 0.5. We now address the question
of whether or not the critical behavior is universal, i.e., inde-
pendent of the disorder strength. The SDRG underlying the
infinite-randomness scenario becomes exact only for infinitely
strong disorder (infinitely broad disorder distributions). There-
fore, it cannot decide the fate of a weakly disordered system.
However, Janssen’s perturbative renormalization group [18],
which is controlled for weak disorder, shows runaway flow
towards large disorder strength. Furthermore, Hoyos [50]
showed that within an improved SDRG scheme, the disorder
always increases under renormalization, even if it is weak
initially. These arguments support a universal scenario in
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FIG. 8. (Color online) Time dependence of Ps and Ns for impurity
concentration p = 0.5 and several λ close to the transition compared
to the predictions of the numerical SDRG of Ref. [49]. The dashed
lines represent the functions Ps ∼ ln (t/t0)−4 and Ns ∼ ln (t/t0)−1.5

with ln (t0) = 0, 1, 2, 3, 4 (bottom to top) and arbitrary prefactor.

which the critical behavior is independent of the disorder
strength.

To study the question of universality numerically, we
performed simulations for vacancy concentrations p = 0.2,
0.3, 0.4, and 0.6 in addition to the value 0.5. Repeating the
complete analysis as discussed in the previous subsections for
all values of p would have been prohibitively expensive in
terms of computer time. We therefore focused on finding the
finite-size scaling exponent from Ns vs Ps plots analogous
to Fig. 5, using somewhat shorter runs. The maximum time
was at least 3 × 106 for all vacancy concentrations, and the
data are averages over at least 107 trials using systems of 5003

or 7203 sites. The resulting critical curves are presented in
the upper panel of Fig. 9. In the low-Ps (long-time) limit, all
curves appear to be parallel, implying that 	̄/δ̄ and with it
the finite-size scaling exponent β/ν⊥ takes the same value
for all vacancy concentrations. The figure also suggests that
the weak-disorder curves (in particular p = 0.2) have not
fully crossed over to the asymptotic critical behavior. This is
confirmed in the lower panel of Fig. 9 which presents a log-log
plot of Ps vs t at criticality. While the stronger-disorder curves
(p = 0.5, 0.6) start to deviate from the clean critical power law
at t ≈ 103 to 104 (in agreement with the estimate discussed at
the end of Sec. IV C), the p = 0.2 curve deviates appreciably
only after t ≈ 106. (Note that these long crossover times also
imply huge system sizes to reach the asymptotic regime. For
p = 0.2, the mean-square radius of the active cloud at the
crossover time of 106 is about 200.)
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FIG. 9. (Color online) Upper panel: Ns vs Ps at criticality for
several vacancy concentrations p. Lower panel: Ps vs t at criticality,
demonstrating the crossover from the clean to the dirty critical
behavior. The dashed line represents a power law with the clean
critical exponent δ = 0.7366 and arbitrary prefactor.

Our simulations thus show no indications of nonuniversal,
continuously varying critical exponents. However, we cannot
rigorously exclude that the exponents change for very weak
disorder, because the extremely large crossover times between
the clean and the dirty critical behavior prevent us from
reaching the asymptotic regime in these cases.

F. Griffiths region

In order to investigate the Griffiths region λ0
c < λ < λc, we

have also performed detailed simulations for infection rates λ

below but close to the critical rate λc. Figure 10 presents the
resulting survival probability Ps as a function of time t for
vacancy concentration p = 0.5. The data are averages over
at least 10 000 disorder configurations with 1000 trials per
configuration. The system size is 3003 sites. For all infection
rates shown, the long-time decay of the survival probability
obeys (over several orders of magnitude in Ps and/or t) the
nonuniversal power law predicted by the rare region arguments
of Sec. III C.

The Griffiths dynamical exponent z′ can be found by fitting
the long-time decay to Eq. (25). The resulting values, shown
in the inset of Fig. 10, demonstrate that z′ diverges as λ

approaches the critical value λc = 2.6906. Fitting z′ to the ex-
pected power law (26) gives a value for the combination ν⊥ψ .
The fit is not of particularly high quality, but the resulting value,
ν⊥ψ = 0.42(6), is in reasonable agreement with the value
determined at criticality.

101 102 103 104 105

t
10-6

10-5

10-4

10-3

10-2

10-1

P
s

2.5 2.6 2.7
λ

0

1

2

3

4

z’

λ (bottom to top)
2.50
2.55
2.60
2.62
2.64
2.66
2.68
2.6906

FIG. 10. (Color online) Ps vs t for several infection rates λ in the
Griffiths region λ0

c < λ < λc (vacancy concentration p = 0.5). The
dashed lines are power-law fits of the long-time behavior to Eq. (25).
Inset: resulting Griffiths dynamical exponent z′ as a function of λ.
The solid line is a fit to Eq. (26).

G. Contact process at the lattice percolation threshold

This subsection is devoted to the nonequilibrium phase
transition of the diluted contact process across the lattice
percolation threshold pc. In the phase diagram shown in Fig. 1,
this transition is marked by the vertical line at pc between
λ−1

c = 0 and the multicritical point.
The contact process on a diluted lattice close to the per-

colation threshold can be understood by combining classical
percolation theory with the properties of the supercritical
contact process on finite-size clusters [35,36]. Although its
behavior follows the activated scaling scenario described in
Sec. III B, the critical exponents of the percolation transition
differ from those of the generic transition discussed in
the preceding sections. Interestingly, they are completely
determined by the values of the classical lattice percolation
exponents βc and νc which are known numerically with high
accuracy [51].

According to Refs. [35,36], the order-parameter exponent β
and the correlation length exponent ν⊥ of the nonequilibrium
phase transition are identical to the corresponding lattice ex-
ponents, β = βc = 0.417 and ν⊥ = νc = 0.875. The tunneling
exponent ψ is given by the fractal dimension Dc of the critical
lattice percolation cluster, ψ = Dc = 3 − βc/νc = 2.523. As
a result, the critical exponent δ̄ takes a very small value,
δ̄ = β/(ν⊥ψ) = 0.188.

We performed spreading simulation runs (starting from a
single active site) at pc = 0.688 392 0 [43] and λ = 6.0 to
a maximum time of 5 × 105. Because of the small value of
δ̄, these simulations are particularly time consuming. The
resulting survival probability Ps (averaged over 230 disorder
configurations with 200 trials per configuration) is presented
in Fig. 11. The data are in agreement with the qualitative
predictions of Refs. [35,36]: a rapid initial decay towards a
quasistationary state, followed by a slow logarithmic time
dependence due to the successive dying out of the contact
process on larger and larger lattice percolation clusters. The
figure shows that the long-time behavior of our data is
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FIG. 11. (Color online) Ps vs ln (t) for p = pc = 0.688 392 0 and
λ = 6.0. The dashed line represents the expected logarithmic long-
time decay Ps ∼ [ln (t)]−δ̄ with δ̄ = 0.188 and arbitrary prefactor.

compatible with the predicted exponent value δ̄ = 0.188.
However, we found it impossible to calculate a precise value
of δ̄ directly from the simulation data because the long-time
decay is extremely slow.

V. SUMMARY AND CONCLUSIONS

To summarize, we performed large-scale Monte Carlo
simulations of the contact process on site-diluted cubic lattices.
We determined the infection rate–dilution phase diagram.
It features two different nonequilibrium phase transitions:
(i) the generic transition that occurs for dilutions below the
percolation threshold of the lattice and is driven by the dynamic
fluctuations of the contact process, and (ii) the transition
across the percolation threshold which is driven by the lattice
geometry.

Our simulation results show that the generic transition
is controlled by an infinite-randomness critical point for all
dilutions investigated. It gives rise to ultraslow activated (expo-
nential) dynamical scaling instead of the power-law dynamical
scaling at conventional critical points. The corresponding
logarithmic time dependencies of various observables at
criticality required long simulation times and thus a huge
numerical effort (in total about 100 000 CPU days on
the Pegasus cluster at Missouri S&T). We determined the
complete critical behavior of the generic transition and found
it to be universal, i.e., independent of the disorder strength
(dilution).

The critical exponents are listed in Table II, together
with results of a numerical SDRG calculation [49] of the
three-dimensional random transverse-field Ising model which
is predicted to be in the same universality class. We were able
to calculate reasonably accurate estimates for the static critical
exponents including the finite-size scaling exponent β/ν⊥,
the order-parameter exponent β, and the spatial correlation
length exponent ν⊥. The correlation length exponent satisfies
the inequality dν⊥ > 2, as is expected in a disordered system
[52]. Our values for the static exponents agree with the
corresponding numerical SDRG results of Ref. [49] within the
given errors. In contrast, our result for the tunneling exponent

ψ as well as δ̄ and 	̄ do not agree with the values quoted
in Ref. [49]. Estimates of ψ , δ̄, and 	̄ depend sensitively
on the microscopic time scale t0 or, correspondingly, on
the microscopic energy scale 0 in the numerical SDRG
calculation, while the static exponents are independent of it.
This suggests that uncertainties in the value of t0 or 0 may be
responsible for the disagreement. However, even if we allow
the value of t0 to vary, our Ps and Ns data do not seem to be
compatible with the values of δ̄ and 	̄ predicted by Ref. [49].

The differences between our results and the numerical
SDRG calculation could either imply a real difference in
universality class, or they could mean that one or both sets
of results represent effective rather than true asymptotic
exponents. A full resolution of this question will likely
require much more extensive simulations together with a
careful analysis of finite-size effects and, in particular, of the
microscopic time or energy scale in the infinite-randomness
scenario.

In addition to the generic transition, we briefly studied
the nonequilibrium transition across the lattice percolation
threshold. The Monte Carlo results support the predictions of
the theory developed in Refs. [35,36]: the dynamical critical
behavior is of activated type with critical exponents that are
combinations of the classical lattice percolation exponents.
Our simulations also allowed us to find with reasonable
accuracy the location of the multicritical point separating the
generic transition from the percolation transition (see Fig. 1).
However, as the dynamics is expected to be even slower than
that of the generic transition, finding the true multicritical
behavior appears to be beyond our current computational
resources.

We also obtained high-precision estimates for the critical
behavior of the three-dimensional DP universality class by
performing simulations of the clean contact process in three
dimensions. We employed the reweighting technique proposed
by Dickman [42] to save computer time. By using large lattices
of up to 9993 sites and long times of up to 5 × 104, we were able
to compute the critical exponents with unprecedented accuracy
(see Table I). As the dynamics of the clean contact process is
much faster than that of the disordered contact process, this
part of the work took only a small fraction (about 5000 CPU
days) of the overall computer time.

Let us now put our results into broader perspective. Our
results for the critical behavior of the disordered contact
process in three dimensions are in agreement with a gen-
eral classification [37,53] of phase transitions in quenched
disordered systems according to the effective dimensionality
deff of the defects and the lower critical dimension d−

c of the
problem. (A) If deff < d−

c , the critical point is of conventional
power-law type and accompanied by exponentially weak
Griffiths singularities. In class (B), which contains systems
with deff = d−

c , the critical behavior is controlled by an infinite-
randomness fixed point with activated scaling, accompanied
by strong power-law Griffiths singularities. (C) For deff > d−

c ,
the rare regions can undergo the phase transition independently
from the bulk system. This leads to a destruction of the sharp
phase transition by smearing [54]. For the contact process
with vacancies (point defects), deff = d−

c = 0 leading to class
B. In contrast, the contact process with extended (line or plane)
defects belongs to class C [40,55].
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We conclude by noting that the exotic critical behavior
of the disordered contact process (in one, two, and three
dimensions) may be responsible for the striking absence
of directed percolation scaling in at least some of the
experiments [12]. In view of the increased experimental
activities in the area of absorbing-state transitions [13–16],
we hope that our theoretical results will help guiding the
data analysis in further experiments. However, it must be
pointed out that the extremely slow dynamics and narrow
critical region will prove to be a challenge for the verification
of the activated scaling scenario not just in simulations but
also in experiments. Finally, we emphasize that our results

are of importance beyond absorbing-state transitions. The
strong-disorder renormalization group predicts our transition
to belong to a broad universality class that also includes, e.g.,
the three-dimensional random transverse-field Ising model
[28,29,38]. Consequently, the critical behavior found here
should be valid for other systems in this universality class as
well.
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