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We investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-

diagonal disorder by means of large-scale Monte Carlo simulations. For weak disorder, we find the

transition to be in the same universality class as the superfluid-Mott insulator transition of the clean

system. The nature of the transition changes for stronger disorder. Beyond a critical disorder strength, we

find nonuniversal, disorder-dependent critical behavior. We compare our results to recent perturbative and

strong-disorder renormalization group predictions. We also discuss experimental implications as well as

extensions of our results to other systems.
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Bosonic many-particle systems can undergo quantum
phase transitions between superfluid and localized ground
states due to interactions and lattice effects. These
superfluid-insulator transitions occur in a wide variety of
experimental systems ranging from helium in porous
media, Josephson junction arrays, and granular supercon-
ductors to ultracold atomic gases [1–8]. In many of these
applications, the bosons are subject to quenched disorder
or randomness. Understanding the effects of disorder on
the superfluid-insulator transition and on the resulting
insulating phases is thus a prime question.

The case of one space dimension is especially interest-
ing because the superfluid phase is rather subtle and dis-
plays quasi-long-range order instead of true long-range
order. Moreover, the Anderson localization scenario for
noninteracting bosons suggests that disorder becomes
more important with decreasing dimensionality.

Giarmarchi and Schulz [9] studied the influence of weak
disorder on the interacting superfluid by means of a per-
turbative renormalization group analysis. They found the
superfluid-insulator transition to be of Kosterlitz-Thouless
(KT) type [10], with universal critical exponents and a
universal value of the Luttinger parameter g ¼ �

ffiffiffiffiffiffiffiffi
�s�

p
at

criticality (�s denotes the superfluid stiffness and � the
compressibility). This analysis was recently extended to
second order in the disorder strength, with unchanged
conclusion [11].

A different scenario emerges, however, from the real-
space strong-disorder renormalization group approach.
In a series of papers [12], Altman et al. studied one-
dimensional interacting lattice bosons in various types of
disorder. In all cases, they found that the superfluid-
insulator transition is characterized by KT-like scaling of
lengths and times, but it occurs at a nonuniversal, disorder-
dependent value of the Luttinger parameter. The transition
is thus in a different universality class than the weak-
disorder transition [9]. However, Monte Carlo simulations
[13] did not find any evidence in favor of the strong-
disorder critical point.

In view of these seemingly incompatible results, it is
important to determine whether or not both types of
superfluid-insulator critical points indeed exist in systems
of interacting disordered bosons in one dimension.
Moreover, it is important to study whether they can be
reached for realistic disorder strengths.
In this Letter, we employ large-scale Monte-Carlo simu-

lations to address these questions. We focus on the case of
off-diagonal disorder at large commensurate filling; other
types of disorder will be discussed in the conclusions. Our
results can be summarized as follows (see Fig. 1). For weak
disorder, we find a KT critical point in the universality
class of the clean (1þ 1)-dimensional XY model, with
universal exponents and a universal value of the
Luttinger parameter at the transition. This agrees with the
predictions of the perturbative renormalization group. If
the disorder strength is increased beyond a threshold value,
the nature of the transition changes. While the scaling of
length and time scales remains KT-like, the critical

FIG. 1 (color online). Critical Luttinger parameter g and ex-
ponent � [plotted as 1=ð2�Þ] of the superfluid-insulator transi-
tion as functions of the disorder strength 1� r. The critical
behavior appears universal for weak disorder while it becomes
disorder-dependent for strong disorder. The lines are guides to
the eye only.
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exponents and the Luttinger parameter become nonuniver-
sal, in agreement with the strong-disorder scenario [12]. In
the remainder of this Letter, we explain how these results
were obtained, we discuss their generality as well as impli-
cations for experiment.

The starting point is the disordered one-dimensional
quantum rotor Hamiltonian

H ¼ �X

j

Jj cosð�̂jþ1 � �̂jÞ þ 1

2

X

j

Ujðn̂j � �njÞ2; (1)

which represents, e.g., a chain of superfluid grains with
Josephson couplings Jj, charging energies Uj and offset

charges �nj. n̂j is the charge on grain j and �̂j is the phase of

the superfluid order parameter. This model has a superfluid
ground state if the Josephson couplings dominate. With
increasing charging energies it undergoes a quantum phase
transition to an insulating ground state. In addition to
Josephson junction arrays, the Hamiltonian (1) describes
a wide variety of other systems that undergo superfluid-
insulator transitions.

Within the strong-disorder approach [12], the type of
insulator depends on the symmetry properties of the offset
charge distribution. In contrast, these details were found
unimportant at the critical point. In the following, we
therefore focus on purely off-diagonal disorder, �nj ¼ 0.

In this case, the Hamiltonian (1) can be mapped onto a
classical (1þ 1)-dimensional XY model [14]

Hcl ¼�X

j;�

½Jsj cosð�jþ1;� ��j;�Þ þ Jtj cosð�j;�þ1 ��j;�Þ�;

(2)

where j and � index the lattice sites in the space and
timelike directions, respectively. The coupling constants
Jsj=T and Jtj=T are determined by the parameters of the

original Hamiltonian (1) with T being an effective ‘‘clas-
sical’’ temperature, not equal to the real physical tempera-
ture, which is zero. In the following, we fix Jsj and Jtj and

drive the XY model (2) through the transition by tuning T.
The interactions Jsj and/or Jtj are independent random

variables drawn from probability distributions PsðJsÞ and
PtðJtÞ. They depend on the space coordinate j only; this
means the disorder is columnar (perfectly correlated in
time direction).

To determine the critical behavior of the classical XY
model (2), we performed large-scale Monte-Carlo simula-
tions using the efficient Wolff cluster algorithm [15]. We
studied square lattices with linear sizes up to L ¼ 3200 and
averaged the results over large numbers (200 to 3000,
depending on L) of disorder realizations. Each sample
was equilibrated using 200 to 400 Monte Carlo sweeps,
i.e., total spin flips per site. (The actual equilibration times
both above and at the critical temperature Tc did not exceed
about 20 sweeps). During the measurement period of 5000
to 30 000 sweeps, we calculated observables such as

specific heat, magnetization, susceptibility, spin-wave
stiffness as well as correlation functions. In most simula-
tions, we employed a uniform Jsj ¼ 1 and drew the Jtj from

a binary probability distribution

PtðJtÞ ¼ c�ðJt � rÞ þ ð1� cÞ�ðJt � 1Þ: (3)

Here, c is the concentration of weak bonds which we fixed
at c ¼ 0:8. The disorder strength was tuned by changing
the value r of the weak bonds. In addition to the clean case
r ¼ 1 (which corresponds to the pure superfluid-Mott in-
sulator transition), we used r ¼ 0:85, 0.65, 0.45, 0.25, and
0.15. We also carried out test calculations with random Js.
All simulations were performed on the Pegasus Cluster at
Missouri S&T, using about 400 000 CPU hours.
We now turn to the results. To find Tc for each disorder

strength r, we analyzed the behavior of the correlation
length �s (in the spacelike direction indexed by j). It is
calculated, as usual, from the second moment of the
disorder-averaged correlation function. In the high-
temperature phase but close to the transition, �s is expected
to follow the form

�s ¼ A exp½BðT � TcÞ�1=2� (4)

both in the clean KT universality class [10] and in the
strong-disorder scenario [12]. A and B are nonuniversal
constants. For all disorder strength, our data follow this
prediction with high accuracy, see Fig. 2 for an example.
We extract Tc from fits of the data to (4) restricted to �s >
10 to be in the critical region but �s < L=10 to avoid finite-
size effects. In the clean case (r ¼ 1), we obtain Tc ¼
0:8924 in excellent agreement with high-precision values
in the literature [16,17].
In addition to the correlation length �s in the spacelike

direction, we also studied the correlation length �t in the

FIG. 2 (color online). Spatial correlation length �s vs. tem-
perature T for disorder strength r ¼ 0:85 and system sizes
L ¼ 200 to 3200. The solid line is a fit to the KT form (4).
Inset: Luttinger parameter g at Tc vs. system size L.
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timelike direction. We found �t / �s for all disorder
strengths which implies a dynamical exponent of z ¼ 1.

The order parameter susceptibility 	 can be analyzed
analogously. In the high-temperature phase close to the
transition, it is predicted to behave as

	 / �
2��
s / exp½DðT � TcÞ�1=2�: (5)

Here, � is the correlation function critical exponent and
D ¼ ð2� �ÞB. Figure 3 shows that the data for all disorder
strengths r follow this prediction with high accuracy. The
critical temperatures extracted from the corresponding fits
are listed in the legend of the figure. Their values have
small statistical errors ranging from about 3� 10�4 for the
weak disorder cases to 2� 10�3 for strong disorder. The
systematic errors due to corrections to the leading scaling
form (5) are somewhat larger. We estimate them from the
robustness of the fit against changing the fit interval. This
yields systematic errors ranging from about 5� 10�3 for
weak disorder to 2� 10�2 for strong disorder. Within
these errors the critical temperatures extracted from 	
agree well with those from the correlation lengths.

Equation (5) suggests a direct way to measure the expo-
nent �: if one plots lnð	=�2

sÞ vs. lnð�sÞ, the data should be
on a straight line with slope ��. Figure 4 presents this
analysis for different disorder strengths. In the clean case,
r ¼ 1, we find � ¼ 0:243 in good agreement with the
exact value 1=4 [10]. The weak-disorder curves (r ¼
0:85 and 0.65) are parallel to the clean one within their
statistical errors. Fits in the range 20< �s < L=10 give
exponents � close to 1=4. In contrast, the strong-disorder
curves (r ¼ 0:45, 0.25, 0.15) are less steep, resulting in
smaller �. They are also noisier which leads to larger error
bars. All � values are shown in Fig. 1. They provide
evidence for universal critical behavior (in the clean 2D
XY universality class) for weak disorder but nonuniversal
behavior for strong disorder.

In addition to simulations in the high-temperature phase,
we also studied the finite-size scaling properties of observ-
ables right at the critical temperature Tc. Let us first con-
sider the Luttinger parameter g ¼ �

ffiffiffiffiffiffiffiffi
�s�

p
. Under the

quantum-to-classical mapping [14], the compressibility �
of the quantum rotor Hamiltonian (1) maps onto the spin-
wave stiffness �t in the timelike direction of the classical
XY model (2). In our simulations, the Luttinger parameter
is thus given by

g ¼ ð�=TÞ ffiffiffiffiffiffiffiffiffiffi
�s�t

p
: (6)

The stiffnesses �s and �t are not calculated by actually
applying twisted boundary conditions during the simula-
tion but by using the relation given by Teitel and
Jayaprakash [18] (for a derivation see, e.g., Ref. [19]).
Within KT theory, the Luttinger parameter close to the

transition behaves as gðTÞ ¼ gðTcÞ þ aðTc � TÞ1=2, where
a is a constant and T � Tc. Together with (4), this suggests
the leading finite-size corrections to g at Tc to take the form

gðTc; LÞ ¼ gðTc;1Þ þ b= lnðLÞ; (7)

where b is another constant. Calculating the Luttinger
parameter at Tc for different system sizes and extrapolating
using (7) yields the infinite-system value gðTc;1Þ [20]. We
performed this analysis for all disorder strengths r and
found that the g vs. 1= lnðLÞ data indeed fall onto straight
lines (the inset of Fig. 2 shows an example). The resulting
extrapolated values are displayed in Fig. 1. For weak
disorder (r ¼ 0:85 and 0.65), the Luttinger parameters at
Tc agree with the clean value, g ¼ 2, within their error bars
(which are combinations of the statistical Monte-Carlo
error and the uncertainty in Tc). For stronger disorder (r ¼
0:45, 0.25, 0.15), gðTc;1Þ takes larger, disorder-dependent
values.

FIG. 4 (color online). lnð	=�2
sÞ vs. lnð�sÞ for several disorder

strengths and maximum system size L � 1500 (L ¼ 500 for r ¼
0:15). The solid lines are linear fits; their slopes give ��.

FIG. 3 (color online). Susceptibility 	 vs. temperature T for
several disorder strengths. The maximum system sizes are at
least L ¼ 1500. The solid lines are fits to the KT form (5). The
resulting estimates of Tc are listed in the legend.
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Finally, we turn to the finite-size behavior of the suscep-
tibility at Tc. According to finite-size scaling, the leading
size-dependence should be of the form

	ðTc; LÞ � L2��; (8)

which provides another way to measure �. Figure 5 shows
plots of lnð	=L2Þ vs. lnðLÞ for all disorder strengths r. For
weak disorder (r ¼ 0:85 and 0.65), the resulting values of
the exponent � are again close to the clean value 1=4. For
larger disorder (r ¼ 0:45, 0.25, and 0.15), we find disorder-
dependent values that roughly agree with those extracted in
the high-temperature phase (Fig. 4).

In summary, we used large-scale Monte Carlo simula-
tions to investigate the superfluid-insulator quantum phase
transition of one-dimensional bosons with off-diagonal
disorder. For weak disorder, our data provide evidence
for a KT critical point in the universality class of the clean
(1þ 1)-dimensional classical XY model, with universal
critical exponents � ¼ 1=4 and z ¼ 1 as well as a univer-
sal value g ¼ 2 of the critical Luttinger parameter. These
results agree with the Harris criterion [21] which predicts
weak disorder to be an irrelevant perturbation at the clean
KT transition. For stronger disorder, the universality class
of the transition changes. It is still of KT-type [�s and 	
follow (4) and (5)] but the critical exponent � and the
critical Luttinger parameter become disorder-dependent
(nonuniversal) [22]. This agrees with the strong-disorder
scenario [12].

The important question of whether the boundary
between the weak and strong disorder regimes is sharp or
just a crossover cannot be finally decided by means of our
current numerical capabilities. The data in Fig. 1 would be
compatible with both scenarios within their error bars.

Earlier Monte Carlo simulations [13] did not observe the
strong-disorder regime. We believe that the binary disorder
used in Ref. [13] (equivalent to disorder in Js with c ¼ 0:5

and r ¼ 0:33 in our model) may not have been sufficiently
strong. In particular, c ¼ 0:5 is much less favorable for the
formation of rare regions than our c ¼ 0:8. To test this
hypothesis, we performed a few simulation using c ¼ 0:5
and r ¼ 0:33. They resulted in critical behavior compatible
with the clean 2D XY universality class, in agreement with
Ref. [13] (see also [23]).
It is interesting to ask whether the different critical

behaviors in the weak and strong-disorder regimes are
accompanied by qualitative differences in the bulk phases.
In particular, are there two different insulating phases or
are the weak and strong-disorder regimes continuously
connected? A detailed analysis of the insulating phase(s)
will also shed light on the mechanism that destroys the
superfluid stiffness above Tc. Is it due to the proliferation
of single quantum phase slips as at a clean KT transition or
due to the formation of phase slip ‘‘dipoles’’ as suggested
in Ref. [12]? Simulations to address these questions are
under way.
All our explicit results are for off-diagonal disorder and

large commensurate filling. They do not directly apply to
the generic dirty-boson problem with diagonal disorder
considered in Ref. [9] (see also [24]). Note, however, that
the critical behavior does not depend on the disorder type
within the strong-disorder scenario [12]. Simulating the
generic case would require a different approach (such as
the link-current formulation [14]) because the mapping
onto a classical XY model is not valid for diagonal
disorder.
Finally, we turn to the experimental accessibility of the

weak- and strong-disorder regimes. Our results show that
the transition between them occurs at a moderate disorder
strengths. We therefore expect both regimes to be acces-
sible in principle in experiments on systems such as ultra-
cold atoms or Josephson junction chains (see also
Ref. [25]).
We acknowledge discussions with Ehud Altman, David

Pekker, Nikolay Prokof’ev, Gil Refael, and Zoran
Ristivojevic. This work has been supported by the NSF
under Grants No. DMR-0906566 and No. DMR-1205803.
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