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Dynamics and dislodgment from pore constrictions of a trapped
nonwetting droplet stimulated by seismic waves

Wen Deng1 and M. Bayani Cardenas1

Received 5 October 2012; revised 15 May 2013; accepted 27 May 2013; published 23 July 2013.

[1] Seismic waves affect fluid flow and transport processes in porous media. Therefore,
quantitative understanding of the role of seismic waves in subsurface hydrodynamics is
important for the development of practical applications and prediction of natural
phenomena. We present a theoretical fluid dynamics model to describe how low-frequency
elastic waves mobilize isolated droplets trapped in pores by capillary resistance. The ability
of the theoretical model to predict the critical mobilization amplitudes (Ac) and the
displacement dynamics of the nonwetting droplet are validated against computational fluid
dynamics (CFD) simulations. Our theory has the advantage of rapid calculation of Ac for
various scenarios. Both theory and CFD simulations show that the Ac increases with
increasing wave frequency. The theoretical and computational models agree well in the
low-frequency range both in terms of predicting the displacement history of the droplet and
its eventual dislodgment, but their results begin to diverge with increasing wave frequency
since the Hagen-Poiseuille flow approximation in the model becomes invalid. Relative to a
previous ‘‘viscous seismic model,’’ our model compares more favorably to experimental
observations. The model is thus appropriate for predicting trapped nonwetting droplet
dynamics in and dislodgement from pore constrictions by low-frequency elastic waves.

Citation: Deng, W., and M. B. Cardenas (2013), Dynamics and dislodgment from pore constrictions of a trapped nonwetting droplet
stimulated by seismic waves, Water Resour. Res., 49, 4206–4218, doi:10.1002/wrcr.20335.

1. Introduction

[2] Seismic waves generated by earthquakes have been
observed to cause dynamic changes in hydraulic behavior
of porous media. Specifically, elastic waves affect perme-
ability [Elkhoury et al., 2006, 2011; Geballe et al., 2011;
Liu and Manga, 2009; Manga et al., 2012; Wang and
Manga, 2010], release trapped colloidal particles by low-
frequency stress stimulation [Beckham et al., 2010; Rob-
erts and Abdel-Fattah, 2009; Thomas and Chrysikopoulos,
2007], and mobilize capillary trapped nonwetting droplets
and bubbles by the addition of seismic wave-induced ficti-
tious force to the background pressure gradient [Beresnev
et al., 2005; Iassonov and Beresnev, 2008; Li et al., 2005].

[3] The mobilization of nonwetting droplets and bubbles
has long been of practical interest. It can be one of the
underlying mechanisms for permeability changes observed
after earthquakes [Manga et al., 2012]. Moreover, the
phenomenon has potential applications in the remediation
of aquifers contaminated by nonaqueous phase liquids

[Roberts et al., 2001] and in enhanced oil recovery [Beres-
nev and Johnson, 1994; Dobronravov, 2002; Kouznetsov
et al., 1998; Nikolaevskiy et al., 1996; Poesio et al., 2002;
Roberts, 2005; Roberts et al., 2003]. On the other hand, a
negative consequence of droplet mobilization can be the
reduction of residually trapped CO2 in saline aquifers; re-
sidual trapping is one of the major CO2 trapping mecha-
nisms for geologic carbon sequestration. The mobilization
of CO2 may be particularly relevant in a CO2 injection sce-
nario since the injection itself may cause earthquakes
[Zoback and Gorelick, 2012].

[4] Iassonov and Beresnev [2003] established a yield
stress model to estimate the effect of low-frequency sound
on the flow of fluids in straight tubes with circular cross
sections. The straight-tube model does not accurately rep-
resent oil entrapment mechanics, and the model falls short
of explaining the capillary entrapment in realistic con-
stricted channels. Other studies of vibration-induced phe-
nomena have also considered the resonance of droplets.
Hilpert et al. [2000] and Hilpert [2007] sought to calcu-
late the resonant frequency of trapped oil ganglia under
the effect of elastic wave excitation. Resonant mobiliza-
tion could be a very efficient way to mobilize trapped
nonwetting residues with a low requirement in the input
seismic energy.

[5] Beresnev et al. [2005] recently presented a basic
mechanism for elastic wave stimulation in constricted
pores: they proposed that there is an ‘‘unplugging’’ thresh-
old whose exceedance would lead to flow of the nonwetting
ganglia past constrictions and that this threshold can be
exceeded by addition of a sufficiently large oscillatory ficti-
tious force to the external pressure gradient.
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[6] Li et al. [2005] showed evidence which supported
the suggested mobilization mechanism in a specially
designed two-dimensional (2-D) micromodel laboratory
experiment, and the mobilization mechanism was later
incorporated by Pride et al. [2008] into 2-D Lattice Boltz-
mann computer simulations. Others sought to analyze
trapped droplet dynamics and mobilization using computa-
tional fluid dynamics (CFD) modeling. Graham and Hig-
don [2000] and Beresnev et al. [2005] developed CFD
models to simulate the two-phase flow of wetting/nonwet-
ting fluids under vibrational action in one-dimensional si-
nusoidal axisymmetric channels. They were the first to
quantitatively demonstrate that vibrations can indeed
unplug the trapped nonwetting phase. However, although
CFD simulations are useful, they are inefficient since they
require enormous computational resources.

[7] In order to explain the physics of fluid entrapment
beyond that which can be explicitly revealed by computa-
tional models, Beresnev [2006] developed a physics-based
theory that could be used to calculate the mobilization con-
ditions. However, the theory assumed that the trapped drop-
let was completely lubricated by the water film; the
viscous resistance of the film was ignored. Beresnev and
Deng [2010] later improved this theory by considering vis-
cosity effects. Nonetheless, the model, hereafter referred to
as the ‘‘viscous seismic model,’’ still came with key simpli-
fications. It assumed a constant length for the bubble mov-
ing through a channel with a variable profile. This
assumption does not hold in real channels with convergent-
divergent geometry. The model also ignored the complex
pressure distribution along the annular film of water lining
the channel’s wall, although this pressure is a significant
component of the total force balance. Further, a constant
pressure gradient was assumed for the two-phase flow,
which has not been observed in single-pore laboratory
experiments or CFD simulations. Here, we pursue a theo-
retical model that is free from the above restrictions yet fast
in calculating the effect of elastic waves on trapped non-
wetting droplet in convergent-divergent pores.

2. Theoretical Fluid Dynamics Model

2.1. Problem Statement

[8] Our primary interest is the effect of vibrations or
seismic waves on the trapping of residual nonwetting fluid.
The acceleration amplitude and frequency of the vibration
are, therefore, the two properties of the seismic wave we
focus on.

[9] Nonwetting residues are trapped mainly due to the
capillary resistance. According to the Young-Laplace equa-
tion, interfacial tension � and contact angle � determine the
capillary pressure. When ganglia are trapped, the force due
to the background pressure gradient in the reservoirs is
unable to overcome the counteracting capillary resistance.
The capillary resistance in this paper is not the same as the
capillary pressure, which is the pressure difference between
the wetting and nonwetting phases. The capillary resistance
on the droplet is due to the convergent-divergent shape of
the pore and results in the imbalance of capillary pressure
between the upstream and downstream menisci ; the capil-
lary resistance is a capillary pressure difference. The back-
ground pressure gradient can be caused either by the

natural pressure distribution existing in the geologic reser-
voir or by injection of fluids such as in water flooding for
oil recovery/environmental remediation situations.

[10] The unplugging threshold gradient which needs to
be exceeded to free the ganglion is theoretically determined
only by the capillary resistance and is normally insensitive
to the viscous resistance of a fluid deforming due to shear
stress. If the ganglion is being mobilized under the
‘‘unplugging’’ threshold gradient, the passage of the gan-
glion through the pore throat can be very slow, and the vis-
cous resistance or the shear stress, which is proportional to
the radial velocity gradient, is so small that it can be
neglected. As long as the pressure gradient is greater than
this unplugging threshold, a Newtonian fluid will always be
unplugged no matter how slow the flow is. For clarity, we
define some basic terminology: ‘‘pore neck’’ is the con-
stricted portion of the pore, and the narrowest section of the
neck is the ‘‘pore throat.’’

[11] When a seismic wave passes through a porous me-
dium, an oscillatory fictitious force is added to the back-
ground pressure gradient which may cause the
counteracting trapping capillary resistance to be overcome.
The response of the nonwetting phase to the oscillatory
force, whose magnitude and direction are transient, is dif-
ferent to its response to a static pressure gradient. Since the
oscillatory motion of the ganglion is naturally transient, the
role of viscous resistance in the dissipation of energy can-
not be neglected. Viscosity controls how fast the ganglion
passes through the pore throat and, therefore, determines
whether the ganglion will be freed. A wetting film could
also deposit between the nonwetting core fluid and wall.
Further, the viscosity ratio of the nonwetting and wetting
fluids determines whether the film will behave as a lubricat-
ing fluid or a resisting fluid inducing drag. The viscosities
of both wetting and nonwetting fluids are thus important
parameters considered in the development of our model.
Moreover, both wetting and nonwetting fluids are assumed
to be incompressible and Newtonian. The yield stress of
the fluid is also assumed to be zero.

2.2. Model Geometry and Capillary Resistance

[12] Consider a nonwetting droplet trapped in a constricted
axisymmetric tube (Figure 1). The middle part of the tube is
sinusoidally shaped and is connected to straight tubes on the
left and right. The profile of the tube is given by

� xð Þ ¼

rmax ;

rmin

rmax ;

rmax

rmin
þ 1� rmax

rmin

� �
1þ cos �

x

L

� �� �� �
;

L1 � x < �L

�L � x < L

L � x < L2

8>><
>>:

ð1Þ

where rmin and rmax are the minimum and the maximum
radii of the tube, respectively, and 2L is the spatial wave-
length of the sinusoidally curved portion. L1 and L2 are the
entrance and exit of the tube, respectively.

[13] When the droplet is passing through the tube con-
striction, the curvature of the upstream meniscus is smaller
than that of the downstream meniscus at the neck. This cur-
vature difference causes the flow-resistive capillary resist-
ance, and the droplet may become stuck at the neck.
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According to the Young-Laplace equation for a straight
tube, the capillary pressure across a two-fluid interface is

Pc ¼
2�cos �

R
ð2Þ

where � is the wetting/nonwetting fluid interfacial tension,
� is the contact angle, and R is the radius of the tube. The
parameter cos�/R is the curvature of the wetting/nonwetting
interface. However, the interface curvature is affected by
the wall curvature if the tube is not straight. In this case,
the capillary pressures are given by

Pcu ¼
2�

Ru xu; �uð Þ
Pcd ¼

2�

Rd xd ; �dð Þ

8>><
>>: ð3Þ

Ru xu; �uð Þ ¼ � xuð Þ
cos arctan �

0
xuð Þ

� 	
þ �u

� 	
Rd xd ; �dð Þ ¼ � xdð Þ

cos arctan �
0

xdð Þ
� 	

� �d

� 	

8>>><
>>>:

ð4Þ

where Pcu and Pcd are the capillary pressures upstream and
downstream, Ru and Rd are the radii of curvature of the
upstream and downstream menisci, �u and �d are the con-
tact angles upstream and downstream, and �0(x) is the first
spatial derivative of wall profile �(x). As described above,
the capillary resistance is actually the capillary pressure
difference between the upstream and downstream menisci.
Therefore, the capillary resistance is given by

DPc ¼ 2�
1

Rd xd ; �dð Þ �
1

Ru xu; �uð Þ

� �
ð5Þ

2.3. Governing Equations and Theoretical
Development

[14] In order to describe the transient motion of a non-
wetting droplet responding to oscillatory forcing, we
employ the macroscopic momentum balance equation for

the droplet [Gauglitz and Radke, 1989]. The nonwetting
droplet itself is the moving-and-deforming control volume.
We assume that the flow is axisymmetric and that the flow
has only the longitudinal velocity component, which is
valid within the context of the lubrication approximation.
Thus, the axial component of the macroscopic momentum
balance equation is

�n

d

dt

Z
V

vnd V ¼ Fx þ Fp þ FaþPnuAu � PndAd ð6Þ

[15] The left-hand side specifies the momentum accumu-
lation term within the control volume V, �n is the density of
the nonwetting fluid, and vn is the cross-sectional mean ve-
locity of the nonwetting droplet. On the right-hand side, Fx,
Fp, Fa, PnuAu, and PndAd denote the viscous drag, the pres-
sure force along the wetting/nonwetting interface (or along
the tube wall if there is no film present), the oscillatory fic-
titious force, the entrance force due to pressure, and the
exit force due to pressure, respectively. Pnu and Pnd are the
pressures at the upstream and downstream menisci of the
nonwetting fluid, and Au and Ad are the cross-sectional
areas at the three phase contact positions for the upstream
and downstream menisci of the nonwetting fluid.

[16] To solve the momentum balance equation (6), we
express each term as a function of the position h, the three-
phase contact position at the downstream meniscus, and
then solve for h (Figure 1). In reservoirs, although turbu-
lence may develop due to high fluid velocity in the vicinity
of active wells, we can assume that the flow of the nonwet-
ting fluid elsewhere is laminar with small Reynolds num-
bers. Together with the small-slope assumption for the wall
of the tube, we can apply the classic lubrication approxima-
tion [Gauglitz and Radke, 1988, 1990]. The Hagen-
Poiseuille flow velocity profile is used to approximate the
flow of wetting and nonwetting fluids. If the wetting film
with a uniform thickness (tf) is present, the core-annular
flow velocity profile is used. By knowing the mean velocity
of the droplet at its downstream meniscus, which is dh/dt,
we can determine the entire flow velocity field in terms of
h. Furthermore, we can calculate both the viscous drag and
the pressure force along the wetting/nonwetting interface
by knowing the pressure field. The pressure field, in turn,
can be calculated based on the velocity field which is
assumed to follow Poiseuille flow.

[17] In the following discussion, we show how each term
in equation (6) can be expressed as a function of h.

2.3.1. Accumulation of Momentum Within the Control
Volume qn

d
dt

R
V vn d V

� 	
[18] The integration in the left-hand side of equation (6)

gives the total momentum change of the droplet with
respect to time. The volume of the droplet can be divided
into three portions: The tail hemisphere, the front hemi-
sphere, and the volume between the two hemispheres.
Therefore, we break apart the calculation of the total mo-
mentum accumulation term into these components.

[19] To calculate the total momentum of the droplet, we
need to first know the mean velocity vn xð Þ of the nonwet-
ting fluid at any cross-section x. By noting that dh/dt is the
mean velocity of the downstream meniscus, the flow rate
Qn

core of the downstream meniscus can be given as

Figure 1. Geometry and spatial parameters of the prob-
lem. A nonwetting droplet is initially trapped in the con-
stricted tube. The middle part of the constricted tube is
sinusoidally shaped with a wavelength 2L. Two straight
tubes are connected to the left and right of the middle part
of the tube.
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Qcore
n ¼ � � hð Þ � tf

� 	2 dh

dt
ð7Þ

[20] Following volume conservation of the core fluid
with a uniformly thick film lining between the core fluid
and wall, Qn

core is also the flow rate of the core fluid at all
points, and vn xð Þ is thus given by

vn xð Þ ¼
� hð Þ � tf
� 	2

� xð Þ � tf
� 	2

dh

dt
ð8Þ

[21] The velocity is assumed to be uniform throughout
the hemispherical volume formed by the menisci : dh/dt for
the front and dx0/dt for the tail, the latter of which can be
calculated from equation (8), where x0 is the position of the
three-phase contact position at the upstream meniscus (Fig-
ure 1). Assuming that local slopes are small, the slope of
the interface �0(x) � 0. The accumulation term for the
downstream hemisphere momentum dMd/dt and the
upstream hemisphere momentum dMu/dt can thus be given
by

dMd

dt
¼

d 2
3��n � hð Þ � tf

� 	3 dh
dt

h i
dt

¼ 2

3
��n � hð Þ � tf
� 	3 d2h

dt2
ð9Þ

dMu

dt
¼

d 2
3��n � x0ð Þ � tf

� 	3 � hð Þ�tfð Þ2dh

� x0ð Þ�tfð Þ2dt

� �
dt

¼ 2

3
��n � hð Þ � tf
� 	2

� x0ð Þ � tf

� 	 d2h

dt2
ð10Þ

[22] We then substitute vn xð Þ into the accumulation of
the momentum of the volume between the two hemispheres
ð�n

d
dt

R h
x0

vndVÞ. The substitution of vn xð Þ leads to

�n

d

dt

Z h

x0

vndV ¼ ��n � hð Þ � tf
� 	2

h� x0ð Þ d
2h

dt2

þ ��n � hð Þ � tf
� 	2

1�
� hð Þ � tf

� 	2

� x0ð Þ � tf

� 	2

 !
dh

dt

� �2

ð11Þ

[23] Combining equations (9)–(11) together, we yield
the total momentum accumulation term of the droplet as

�n

d

dt

Z
V

vndV ¼ ��n � hð Þ � tf
� 	2�

h� x0 þ
2

3
� x0ð Þ þ � hð Þ � 2tf
� 	� �

d2h

dt2
þ ��n

� hð Þ � tf
� 	2

1�
� hð Þ � tf
� 	2

� x0ð Þ � tf

� 	2

 !
dh

dt

� �2

ð12Þ

where the volumes occupied by the front and tail menisci
are assumed to be that of a hemisphere for simplicity.
(However, we use the precise representation of this volume
in equation (47) when we calculate the total volume of the
droplet to satisfy volume conservation.)
2.3.2. Viscous Drag (Fx)

[24] A straight cylindrical core-annular flow has the ve-
locity profile [Middleman, 1995]

vcore
n rð Þ ¼ �rP

4�n

R2
1 � r2

� 	
� rP

4�w

R2
2 � R2

1

� 	
ð13Þ

for the nonwetting core

vfilm
w rð Þ ¼ � rP

4�w

R2
2 � r2

� 	
ð14Þ

for the wetting film/annulus where �n and �w are the
dynamic viscosities of the nonwetting and wetting fluids, R1

and R2 are the radii of the fluid/fluid interface and the pore
wall, respectively (i.e., R2�R1¼ tf), and dP is the external
pressure gradient. The core-annular flow velocity profile fol-
lows the Hagen-Poiseuille flow velocity profile when tf! 0.
If the oscillatory fictitious force ��a(t) (� is the density of
the fluid and a(t) is the acceleration of the vibrating tube),
which is conceptually similar to the gravitational body force
��g but applied instead in the horizontal direction (Figure 1),
is parallel to the flow and the external gradient dP, it is sim-
ply considered as additional forcing. Taking this into
account, the velocity profile can be generalized to

vcore
n rð Þ ¼ � �na tð Þ þ rPnð Þ

4�n

R2
1 � r2

� 	
� �wa tð Þ þ rPwð Þ

4�w

R2
2 � R2

1

� 	
ð15Þ

for the nonwetting core, and

vfilm
w rð Þ ¼ � �wa tð Þ þ rPwð Þ

4�w

R2
2 � r2

� 	
ð16Þ

for the wetting film, where �w is the density of the wetting
fluid. rPn and rPw are the pressure gradients within the
core and the film, respectively. To satisfy shear stress conti-
nuity at the wetting/nonwetting interface, �na tð Þ þ rPn

should be equal to �wa tð Þ þ rPw.
[25] By integrating equations (15) and (16) in the axisym-

metric tube following the lubrication approximation, we
obtain the flow rate for the core and the film (Qw

film) fluids

Qcore
n ¼ �� �na tð Þ þ rPnð Þ

8�n

� xð Þ � tf
� 	4

� � �wa tð Þ þ rPwð Þ
4�w

� xð Þ � tf

� 	2
�2 xð Þ � � xð Þ � tf

� 	2
� �

ð17Þ

Qfilm
w ¼ �� �wa tð Þ þ rPwð Þ

4�w

�

�2 xð Þ �2 xð Þ � � xð Þ � tf
� 	2

� �
�

�4 xð Þ � � xð Þ � tf Þ4
� �

2

0
@

1
A
ð18Þ

and the total flow rate

Q ¼ Qcore
n þ Qfilm

n

¼ � � �wa tð Þ þ rPwð Þ
8�w

�4 xð Þ � � xð Þ � tf

� 	4
� �

� � �na tð Þ þ rPnð Þ
8�n

� xð Þ � tf
� 	4 ð19Þ

[26] By simultaneously solving equations (7), (17), and
(19), we obtain the total flow rate in terms of h
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Q ¼ S hð Þ dh

dt
ð20Þ

where we define

S xð Þ ¼ �
�n

�w
�4 xð Þ � � xð Þ � tf

� 	4
� �

þ � xð Þ � tf
� 	4

2 �n

�w
�2 xð Þ � � xð Þ � tf

� 	2
� �

þ � xð Þ � tf

� 	2
ð21Þ

[27] The total force due to shear stress acting along the
wetting/nonwetting interface is given by the integration
below and utilizing the known velocity profile [Gauglitz
and Radke, 1989]

Fx ¼
Z h

x0

� i2� � xð Þ � tf

� 	
dx ð22Þ

where � i is the shear stress at the wetting/nonwetting inter-
face, which is determined by the velocity profile of equa-
tion (15) and the flow rate equation (17)

� i ¼ �
4�n �� tf

� 	
vn

2 �n

�w
�2 � �� tf

� 	2
� �

þ �� tf
� 	2

ð23Þ

[28] Substitution of � i and equation (8) for vn into equa-
tion (22) leads to

Fx ¼ �8��n � hð Þ � tf
� 	2

int 1 hð Þ dh

dt
ð24Þ

where int1(x) is defined by

int 1 xð Þ ¼
Z x

x0

1

2 �n

�w
�2 	ð Þ � � 	ð Þ � tf

� 	2
� �

þ � 	ð Þ � tf

� 	2
d	

ð25Þ

2.3.3. Pressure Force Along the Wall (Fp)
[29] In order to determine the total force due to the pres-

sure along the wetting/nonwetting fluid interface, we need
to firstly find the pressure distribution P(x). We can calcu-
late the pressure distribution by using the pressure gradient
rP which can be calculated from equation (17). Qn

core is
proportional to the sum of the pressure gradient and body
force, according to equation (17). Further, by assuming that
the film is considerably thin we can neglect the second
term of equation (17) and it, therefore, becomes clear that
Qn

core is also proportional to (�� tf)
4. In order to satisfy

volume conservation, the Qn
core is uniform through x at any

given time, but changes with time. Thus, the sum of the
pressure gradient and body force is inversely proportional
to (�� tf)

4, and we therefore obtain

rPn ¼ �
c � � hð Þ � tf
� 	2

� xð Þ � tf
� 	4 � �na tð Þ ð26Þ

where c is a coefficient ; (�(h)� tf)
2 is used in equation (26)

for the convenience of calculation. When the integral of
rP from tail to front is added to Pnu, one should get the
pressure downstream Pnd if the flow is perfectly described

by two-phase Hagen-Poiseuille flow just like in a cylindri-
cal tube. In order to get the total pressure drop across the
droplet correct, we introduce c as a correction term for our
case of a constricted pore; we show later how it is calcu-
lated. In equation (26), a(t) is given by

a tð Þ ¼ �A � sin 2�ftð Þ ð27Þ

where A is the acceleration amplitude and f is the frequency
of the seismic wave.

[30] By integrating equation (26), we get the pressure
distribution

P xð Þ ¼ Pnu � c � � hð Þ � tf
� 	2

Z x

x0

1

� 	ð Þ � tf
� 	4 d	 � �na tð Þ x� x0ð Þ

ð28Þ

[31] Substituting x¼ h into equation (28), we obtain

pnd ¼ Pnu � c � � hð Þ � tf
� 	2

Z h

x0

1

� 	ð Þ � tf
� 	4d	 � �na tð Þ h� x0ð Þ

ð29Þ

[32] Therefore, the coefficient c can be calculated from
equation (29)

c ¼ Pnu � Pnd � �na tð Þ h� x0ð Þ
int 2 hð Þ � hð Þ � tf

� 	2 ð30Þ

where int2(x) is defined by

int 2 xð Þ ¼
Z x

x0

1

� 	ð Þ � tf

� 	4d	 ð31Þ

[33] Note that the coefficient c needs to be calculated
during each time step in numerical computations, so that
the pressure distribution stays consistent with the exit pres-
sure, that is, equation (29) is satisfied.

[34] The pressure force along the wetting/nonwetting
interface is normal to the interface. As the radial compo-
nent can be cancelled due to the tube’s axisymmetric geom-
etry, the resultant force is directed only axially. Thus, the
resultant pressure force can be calculated by integrating
equation (28) along the wetting/nonwetting interface [Gau-
glitz and Radke, 1989] leading to

Fp ¼
Z h

x0

P xð Þ2� � xð Þ � tf

� 	
�
0

xð Þdx

¼ �Pnu � hð Þ � tf
� 	2

� � x0ð Þ � tf

� 	2
� �

� 2�c�
int 3 hð Þ � hð Þ � tf

� 	2 � ��na tð Þ h� x0ð Þ � hð Þ � tf

� 	2

þ��na tð Þint 4 hð Þ

ð32Þ

where we define int3(x) and int4(x) as

int 3 xð Þ ¼
Z x

x0

int 2 	ð Þ � 	ð Þ � tf

� 	
�
0
	ð Þd	 ð33Þ

int 4 xð Þ ¼
Z x

x0

� 	ð Þ � tf

� 	2

d	 ð34Þ
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2.3.4. Oscillatory Fictitious Force (Fa)
[35] According to Beresnev [2006], the oscillatory ficti-

tious force in the nonwetting fluid is given by

Fa ¼
Z

V
��na tð Þdv ¼ ���na tð Þint 4 hð Þ ð35Þ

[36] We use the same expression of int4(x) here.
2.3.5. Entrance and Exit Forces Due to Pressure
(PnuAu, PndAd)

[37] Assume that the external pressure difference exerted
on the entrance and exit of the tube is fixed. We define Pw1

and Pw2 as the pressures exerted on the entrance and exit of
the tube for the wetting fluid (not for the nonwetting fluid),
respectively, then

DPe ¼ Pw1 � Pw2 ¼ constant ð36Þ

[38] Applying the Hagen-Poiseuille flow assumption,
similar as in equation (17) with tf¼ 0, we can obtain
the single-phase flow rate with oscillatory force for
the wetting phase existing upstream and downstream
of the nonwetting droplet, where no nonwetting fluid
exists

Qw ¼ �
�wa tð Þ þ rPwð Þ

8�w

�4 xð Þ ð37Þ

where Qw is equal to the total flow rate Q according to
volume conservation. Therefore,

rPw xð Þ ¼ ��wa tð Þ � 8�wQ

�4 xð Þ
ð38Þ

[39] According to equation (3) for the capillary pressure,
we can calculate Pnu and Pnd as

Pnu ¼
Z x0

L1

rPwdxþ Pw1 þ
2�

R x0; �uð Þ ð39Þ

Pnd ¼ �
Z L2

h
rPwdxþ Pw2 þ

2�

R h; �dð Þ ð40Þ

where L1 and L2 are the positions of the tube entrance and
exit (Figure 1).

[40] Using equations (20), (38), (39), (40), and the cross-
sectional areas Au and Ad yield

PnuAu ¼ � � x0ð Þ � tf

� 	2�

Pwu � �wa tð Þ x0 � L1ð Þ � 8�w

�
S hð Þ dh

dt

Z x0

Li

1

�4 xð Þ
dxþ 2�

Ru x0; �uð Þ

� �

ð41Þ

PndAd ¼ �ð�ðhÞ � tf Þ2�

Pwd þ �wa tð Þ L2 � hð Þ þ 8�w

�
s hð Þ dh

dt

Z L2

h

1

�4 xð Þ
dxþ 2�

Rd h; �dð Þ

� �
ð42Þ

2.3.6. Final Governing Equation for Comprehensive
Momentum Balance

[41] Substituting each term from equations (12), (24),
(32), (35), (41), and (42) back into equation (6) results in

�n h� x0 þ
2

3
� x0ð Þ þ � hð Þ � 2tf

� 	� �
d2h

dt2

þ�n 1�
� hð Þ � tf
� 	2

� x0ð Þ � tf
� 	2

 !
d2h

dt2

� �
þ 8�nint 1 hð Þ dh

dt
¼

DPe � DPc �
8�w

�
S hð Þ dh

dt

Z x0

L1

1

�4 xð Þ
dxþ

Z L2

h

1

�4 xð Þ
dx

� �
�2c � int 3 hð Þ þ �nA � sin 2�ftð Þ
h� x0ð Þ þ �wA � sin 2�ftð Þ x0 � L1 þ L2 � hð Þ

ð43Þ

which describes the displacement dynamics of the down-
stream meniscus subject to seismic stimulation. A dimen-
sionless form of governing equation (43) is given in
Appendix A.

2.4. Numerical Solution Procedure for the Theoretical
Model

[42] The momentum balance equation (43) describing
the dynamics of the downstream meniscus of a trapped
droplet is a second-order nonlinear ordinary differential
equation. A fourth-order Runge-Kutta method is used to
numerically solve the initial value problem. The initial con-
dition is such that the nonwetting droplet of certain mass is
initially trapped in a stable configuration. Its downstream
meniscus is, therefore, slightly upstream of the throat of the
constriction and is stationary. The initial conditions are
given by

h ¼ " at t ¼ 0 ð44Þ

x0 ¼ 
 at t ¼ 0 ð45Þ

dh

dt
¼ 0 at t ¼ 0 ð46Þ

where " and 
 are the initial position of the downstream
and upstream menisci, respectively.

[43] Since the nonwetting droplet is incompressible,
there is also an implicit constraint of volume conservation.
To apply it, we need to maintain the volume of the droplet
constant. The calculation of the total volume of the droplet
is given by

V ¼ � 2Ru þ duð Þ Ru � duð Þ2

3
þ � 2Rd þ ddð Þ Rd � ddð Þ2

3

þ �
Z h

x0

� xð Þ � tf
� 	2

dx ð47Þ

du ¼ cu � x0 ¼ � x0ð Þtan arctan �
0

x0ð Þ
� �

þ �u

� �
ð48Þ

dd ¼ cd � h ¼ � hð Þtan arctan �
0

hð Þ
� �

þ �d

� �
ð49Þ
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which can be obtained by adding the volumes formed by
both upstream and downstream menisci and performing
volume integration from x0 to h. In equations (48) and (49),
the cu and cd are the centers of the upstream and down-
stream spherical menisci (Figure 1).

[44] At each numerical time step, we solve equation (43)
to calculate h first, and then use the bisection method to
determine x0 by numerical iterations of the volume conser-
vation equation (47). Then, we substitute x0 into equation
(43) for the succeeding calculation.

2.5. Computational Fluid Dynamics Simulations

[45] The finite-volume method is used to directly
solve the Navier-Stokes equations for two fluids by
using the CFD software FLUENT for a comparison
with our theoretical model. The two-phase flow in our
CFD simulations is described by the incompressible
Navier-Stokes equations

�
@

@t
~v þ �r � ~v~vð Þ ¼ �rPþ �r � r~v þr~vT

� 	
þ~F

r �~v ¼ 0

(
ð50Þ

where~v is the velocity vector ; � is the density of fluid; � is
the viscosity of fluid; P is the static pressure; ~F is the gen-
eral body force that includes the volume surface tension
~F vol , and oscillatory fictitious force ��a(t) in our
simulations.

[46] The volume of fluid (VOF) method [Hirt and Nich-
ols, 1981] is used to describe two-phase flow. When solv-
ing the flow within each phase, there is no difference
between two-phase and single-phase modeling. However,
when tracking the interface between multiple phases, the
volume fraction equation is used in the VOF model. The
volume fraction equation reads as [Fluent, 2009]

1

�q

@

@t
�q�q

� �
þr � �q�q~vq

� �
¼ S�q þ

Xn

p¼1
_mpq � _mqp

� 	� �
ð51Þ

where �q is the volume fraction of qth fluid; _mqp is the
mass transfer from phase q to phase p ; and _mpq is the mass
transfer from phase p to phase q. Both _mqp and _mpq are
zero in our simulations; there is no mass transfer between
nonwetting and wetting fluids and they are immiscible. S�q

is the source term of qth fluid, �q is the density of qth fluid,
and~vq is the velocity of qth fluid. The volume fraction �q

is defined as follows:
[47] �q¼ 0: The mesh cell is empty (of the qth fluid).
[48] �q¼ 1: The mesh cell is full (of the qth fluid).
[49] 0<�q < 1: The mesh cell contains the interface

between the qth fluid and one or more other fluids.
[50]

Pn
q¼1 �q ¼ 1: The mesh cell must be filled with ei-

ther a single fluid phase or a combination of phases.
[51] The fluid properties at the interface are given by

� ¼
X

�q�q

� ¼
X

�q�q

(
ð52Þ

which are volume-fraction-averaged for an n-phase
system.

[52] The continuum surface force (CSF) model proposed
by Brackbill et al. [1992] is used to calculate the curvature
of the interface and volume surface tension. In the CSF
model, the volume surface force has the following form

~F vol ¼ �kr�q ð53Þ

where the curvature � is defined as

k ¼ r �~n ð54Þ

where~n is the unit normal vector of the interface

~n ¼ r�q

jr�qj
ð55Þ

[53] The numerical solution used the following
approaches and settings available in FLUENT: The pres-
sure based solver, pressure-implicit with splitting of opera-
tors (PISO) for pressure-velocity coupling, least squares
cell based for gradient spatial discretization, PRESTO! for
pressure spatial discretization, second-order upwind for
momentum spatial discretization, Geo-Reconstruct for vol-
ume fraction spatial discretization, and first-order explicit
scheme for temporal discretization.

[54] The pore geometry and the initially trapped droplet
shape are as in Figure 1. The rmax and rmin of the profile
equation (1) are 2 and 0.5 mm, respectively. The semiwa-
velength L is 10 mm for the divergent and convergent part,
which is connected to straight tubes upstream and down-
stream (Figure 1). The total length of the pore is Lp¼ 40
mm. The " is �0.5 mm and 
 is �15 mm. Therefore, the
initial length of the droplet is ln¼ 14.5 mm. The fluid prop-
erties are: �¼ 0.05 N/m, �w¼ 0.001 Pa�s, �n¼ 0.01 Pa�s,
�n¼ 1000 kg/m3, and �w¼ 1000 kg/m3.

[55] We incorporate two different wettability cases: (1)
0� contact angle and (2) 10� contact angle. We assume the
nonwetting droplet has been entrapped for a considerably
long time and the stable film adsorbed on the mineral wall
is nanometers thin [Gaebel et al., 2009]. To resolve this,
the thin film in the CFD simulations requires an extremely
fine numerical mesh and a very long computational time
that would render a systematic comparison unfeasible. The
film is, therefore, neglected in our comparison of the theo-
retical model with CFD simulations. Very high-frequency
seismic waves in rocks attenuate fast, and only low fre-
quencies are of practical interest for most reservoir and aq-
uifer scenarios. Therefore, we pick relatively low seismic
frequencies of 10, 20, 50, and 100 Hz.

3. Results and Discussions

3.1. Comparison With CFD Simulations

[56] The solution of equation (43) is the displacement
history of the front meniscus. In order to further analyze
the mobilization of trapped droplets, we also present the
results for the critical mobilization amplitude Ac at different
seismic frequencies and compare it to the results of CFD
simulations. To do this, we solve equation (43) for various
A and then define Ac as the amplitude of particular acceler-
ation by a seismic wave at which the trapped droplet
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becomes freed. In addition to frequencies of 10, 20, 50, and
100 Hz for CFD simulations, we also calculated Ac at fre-
quencies of 5, 15, and 40 Hz by using the theoretical model
to make the plot of Ac abundant for the theoretical model.

[57] The Ac values we calculated expectedly increased
with increasing frequency. Both the theoretical and CFD
models show this behavior. When vibration is applied, the
general rule is that Ac also increases with the frequency in
the absence of resonance [Beresnev, 2006; Beresnev and
Deng, 2010]. When the direction of the oscillatory fictitious
force is the same as the flow direction (positive direction),
the vibration facilitates the flow; when the oscillatory force
reverses direction (negative direction), it resists the flow. It
is, therefore, necessary that the vibration stimulates the
flow sufficiently within the limited time when flow is in the
positive direction in order to free the trapped droplet. This
time is controlled by the vibration frequency, thus explain-
ing the larger Ac required at the higher frequency. This de-
pendence on frequency for the seismic mobilization is also
consistent with what have been observed in the study of
mud volcano dynamics by Rudolph and Manga [2012]. In
their study, they found that short seismic waves were less
effective at influencing mud volcano eruptions than long
seismic waves.

[58] We additionally analyze the case of ‘‘zero fre-
quency’’ as the lower limit. In reality, there is no ‘‘zero-
frequency’’ seismic wave, so the ‘‘zero frequency’’ case
simply represents no vibration. In this case, only a static
acceleration is applied to the fluids, like the gravitational
acceleration. The Ac value for the ‘‘zero frequency’’ case
can be calculated from the Young-Laplace equation based
on the mobilization concept [Beresnev et al., 2005]. Any
seismic stimulation with its acceleration amplitude less
than this value should cause no mobilization of the droplet,
no matter what the frequency is [Beresnev, 2006]. For this
reason, the acceleration amplitude calculated from the
static criterion can be called the ‘‘threshold’’ mobilization

acceleration At. For example, for the droplet trapped by the
capillary resistance DPc¼ 2� (1/Rd(", 0)� 1/Ru(
,
0))¼ 146 Pa for the perfect wetting case (0� contact angle),
the threshold capillary resistance for the pore is Pt¼ 2� (1/
rmin� 1/rmax)¼ 150 Pa when the front meniscus hits the
narrowest position at the throat. The threshold acceleration
amplitude turns out to be At¼ (DPt�DPe)/�Lp¼ 0.1 m/s2

(DPe is the entrapment pressure) (Figure 2).
[59] The Ac calculated with our theoretical model agrees

well with the CFD simulations within the frequency range
0–50 Hz for the 0� contact angle case and the frequency
range 0–20 Hz for the 10� contact angle case (Figure 2).
However, they gradually deviate from the CFD-simulated
values as the frequency increases for both cases. One factor
leading to this behavior is the assumption of fully devel-
oped Hagen-Poiseuille flow profile in the theoretical model.
The time scale for the transient Hagen-Poiseuille flow to
fully develop in a straight tube is [Pozrikidis, 2009]

� ¼ �r2

�
ð56Þ

where r is the radius of the tube and � is the viscosity of
the fluid. In our case, taking the fluid properties �¼ 1000
kg/m3, �¼ 0.01 Pa�s, and r¼ 0.5 mm (when the front is in
the pore throat), the time scale � is 0.025 s (or 1/� is 40
Hz). Therefore, flow at the frequency higher than approxi-
mately 40 Hz does not have a chance to fully develop. The
theoretical flow rate calculation which assumes fully devel-
oped flow leads to overestimation when the frequency is
higher than 1/� which can be taken as a characteristic fre-
quency, and the corresponding acceleration amplitude of
vibration to facilitate the flow is less than it has to be.
Hence, the model underestimates Ac at the frequencies
higher than roughly 40 Hz. We can clearly observe this
trend in Figure 2. However, higher-frequency seismic
waves attenuate much faster through reservoirs and are less
likely to have any effect on the trapped nonwetting fluids.

Figure 2. Comparison of the theoretical model to CFD simulations in the prediction of critical mobili-
zation amplitude with contact angles 0� and 10�. The fluid properties are �¼ 0.05 N/m, �w¼ 0.001 Pa�s,
�n¼ 0.01 Pa�s, �n¼ 1000 kg/m3, and �w¼ 1000 kg/m3.

DENG AND CARDENAS: SEISMIC MOBILIZATION OF TRAPPED DROPLETS

4213



If only the lower-frequency waves (e.g., below 40 Hz) are
considered, the theoretical model results agree very well
with the CFD simulations.

[60] The nonzero contact angle results show larger error
in comparison with CFD results than the zero-angle case
(Figure 2). This is likely because of our assumption of a
spherical shape for the meniscus. We assumed that both
front and tail menisci retain their spherical shapes when the
droplet is moving. However, in the CFD simulations, we
observed changes in the shape of the menisci and apparent
contact angles (see supporting information): The front me-
niscus was more convex than spherical and the tail menis-
cus was flatter. These shape changes result in an
underestimation of the capillary resistance by assuming
spherical front and tail menisci in the theoretical model.
This shape change effect is similar to the dynamic contact
angle effect that the advancing contact angle is less than
the static contact angle and the receding contact angle is
greater than the static contact angle. Ideally, this shape
change effect can be minimized by adding an artificial con-
tact angle correction as an apparent contact angle. Unfortu-
nately, there is no well-vetted model for this apparent
contact angle. The nonzero angle case may have a larger
error when a constant value of contact angle is assumed
instead of adding an apparent contact angle.

[61] It should be noted that the theoretical model, albeit
solved numerically, is much more computationally efficient
than the direct CFD approach in the prediction of the mobi-
lization amplitudes. The Ac at each frequency is typically
obtained after trying less than ten different amplitude val-
ues in order to bracket (and eventually converge to) Ac. For
the CFD simulations, it takes days to weeks of computing
time on a workstation to obtain a single value for Ac. On
the other hand, the theoretical model only takes minutes of
computing time to obtain the Ac at each frequency. More-
over, for the CFD simulations, the lower the vibration fre-
quency is, the longer is the computational time needed to
follow the mobilization because of the longer vibrational
period and because the droplet is usually mobilized only af-
ter several periods.

[62] Figure 3 presents the history of the response of the
trapped droplet (see supporting information for the anima-
tions) to seismic stimulation calculated from the theoretical
model and the CFD simulation at the frequency 0–50 Hz
for 0� contact angle. The droplet oscillates at the same fre-
quency as the seismic frequency. The displacement of the
droplet gradually accumulates, usually for several periods
of vibration, before the droplet is finally freed. At this
stage, the theoretical calculations agree very well with the
CFD simulation results at the frequency 0, 10, and 20 Hz
(Figures 3a–3c and supporting information). The front
slowly passes through the pore throat (0 at the vertical axis
where the radius of tube reaches its minimum). Once the
front has progressed a certain distance beyond the throat,
there is a jump in the displacement, that is, a Haines jump
[Gauglitz and Radke, 1989], as the droplet is mobilized
(see supporting information). After the tail meniscus has
passed through the throat, there is a second jump. The theo-
retical model is identical to the CFD simulation in these
details but with minor differences in the exact times of
droplet movement. The differences are mainly due to the
Haines jump. The velocity predicted by the theoretical

model during the Haines jump is greater than the CFD sim-
ulation (see the slope 1 of two curves drawn in Figure 3b).
After the Haines jump, the velocity of the front meniscus
recovers to a quasi steady state. At this stage, the velocity
predicted by the theoretical model is close to the CFD sim-
ulation (see the slope 2 in Figure 3b). When the second
jump occurs, it again leads to a difference in the velocity
prediction between the theoretical model and the CFD sim-
ulation (see the slope 3 in Figure 3b). A potential explana-
tion can be the effect of the nonspherical shape of droplet
menisci as we discussed above. During a Haines jump, the
meniscus shape effect has to be more pronounced in order
to resist the dramatic velocity change. Since the meniscus
shape effect results in an underestimation of capillary re-
sistance, the velocity predicted by the theoretical model
during the Haines jump and the second jump is greater than
the CFD simulations. Therefore, minor differences in exact
times of droplet movement exist in Figures 3a–3c but the
periods of vibration before the Haines jumps are the same
between the theoretical model and the CFD simulation in
Figures 3b and 3c. However, as expected, the theoretical
model deviates from the CFD simulation when the fre-
quency (50 Hz) is higher than the characteristic frequency
(40 Hz). While it takes �60 vibration periods to mobilize
the droplet in CFD simulation (see supporting information),
the mobilization occurs after �10 vibration periods of stim-
ulation according to the theoretical model (Figure 3d).

[63] The vibration of the droplet before it passes through
the pore actually has a phase lag compared to the oscilla-
tory fictitious force. The phase lags are 0.60�, 0.65�, and
0.75� for the 10, 20, and 50 Hz cases, respectively. The
theoretical model can capture these phase lags exactly the
same as CFD simulations.

[64] The Reynolds numbers in our simulations vary
from 1 to 80 during the mobilization process. The higher
Reynolds numbers are attributed to the second jump after
the tail meniscus passes through the pore throat. Most of
the time during the mobilization process, the Reynolds
numbers are less than �10. In this study, the Reynolds
number is calculated with the mean velocity and the ra-
dius at the pore throat as characteristic velocity and
length, respectively. The viscosity and density of the non-
wetting fluid are used.

3.2. Comparison With Experiments

[65] We also compare theoretical model calculations to
the experimental results reported by Beresnev et al.
[2011] as well as the previous ‘‘viscous seismic model’’ of
Beresnev and Deng [2010]. The experiments of Beresnev
et al. [2011] are the only available laboratory examples
directly showing the mobilization of trapped droplets in
constricted capillary tubes. In the experiments, a sinusoi-
dally shaped glass tube was manufactured, and one wave-
length of this tube was connected to straight sections on
both ends (Figure 1). The rmin and rmax of the sinusoidal
part were 0.12 and 4.23 mm, and the wavelength was 24.2
mm (the corresponding L in our model is 12.1 mm). The
total length of the tube was 114.2 mm with 45 mm straight
tubes extending upstream and downstream. The sus-
pended nonwetting fluid had a viscosity �n of 0.44 � 10�3

Pa�s, and the viscosity �w of the wetting fluid was 0.001
Pa�s. Both fluids had the same density of 998 kg/m3 which
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eliminated buoyancy effects. The interfacial tension was
0.016 N/m. The nonwetting ganglion was initially sub-
jected to the entrapment pressure drop DPe along the tube,
which was smaller than the threshold DPt required for the
mobilization, and the flow, therefore, was initially
‘‘plugged.’’ The trapped ganglia were mobilized by the
application of vibrations at four different frequencies. The

Ac for various cases were recorded. The experimental
entrapment and threshold pressure drops, ganglion lengths
ln, critical mobilization amplitude Ac, and the frequencies
can be found in Beresnev et al. [2011, Table 1]. Noting
the l and Ath in Beresnev et al. [2011, Table 1] are ln and
Ac, respectively, in our study.

[66] The theoretical model cannot simultaneously match
the experimentally measured threshold pressure drops and
ganglion lengths given in Beresnev et al. [2011, Table 1].
According to Young-Laplace equation, the maximum front
and tail menisci capillary pressure drop (maximum capil-
lary resistance), which is equal to the threshold pressure
drop, is usually reached when the front meniscus resides at
the narrowest position of the constriction (pore throat).
Therefore, for a given pore geometry and threshold pres-
sure drop, by knowing the radius of the front meniscus at
the pore throat, we can calculate the corresponding radius
of the tail meniscus by solving the Young-Laplace equa-
tion. Subsequently, we can calculate the position of the tail
meniscus and the volume of the trapped ganglion. How-
ever, given the corresponding entrapment pressure drops,

Figure 3. Comparison of theoretical model and CFD simulation calculated transient displacement h of
the downstream meniscus with 0� contact angle and different seismic frequency: (a) 0 Hz with accelera-
tion amplitude 0.1 m/s2; (b) 10 Hz with acceleration amplitude 0.8 m/s2; (c) 20 Hz with acceleration am-
plitude 1.5 m/s2; and (d) 50 Hz with acceleration amplitude 4.0 m/s2. The acceleration amplitudes in this
comparison are from Figure 2. The fluid properties are: �¼ 0.05 N/m, �w¼ 0.001 Pa�s, �n¼ 0.01 Pa�s,
�n¼ 1000 kg/m3, and �w¼ 1000 kg/m3.

Table 1. Comparison Between Experimental Work and Theoreti-
cal Solutions in Method (1)a

5 Hz 5 Hz 7.4 Hz 7.4 Hz 10 Hz 14.2 Hz

DPe (Pa) 171 227 206 237 203 183
DPth (Pa) 246 246 257 248 248 257
ln

lab (mm) 11.8 11.8 6.4 8.9 8.5 7.9
ln

model (mm) 3.7 4.2 6.9 4.5 4.2 6.8
Ac

lab (m/s2) 0.9 0.7 1.6 0.6 1.3 3.2
Ac

model (m/s2) 0.8 0.3 0.6 0.2 0.6 1

aThe superscripts ‘‘lab’’ and ‘‘model’’ denote the values measured by
laboratory experiments [Beresnev et al., 2011] and calculated by our theo-
retical model, respectively.
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we cannot theoretically get the same lengths of trapped
ganglion as reported in Beresnev et al. [2011, Table 1] by
calculating the volume of the trapped ganglia. Therefore,
the documented threshold pressure drops and ganglion
lengths from the experiments, as reported, appear to be not
internally consistent and suggest some level of error in the
measurements. In light of this, we use two methods to ac-
complish our comparison: (1) we assume that the entrap-
ment and threshold pressure drops are correct in the
experiment, but allow deviation in the exact length of the
trapped ganglion; (2) we assume that the entrapment pres-
sure drop and the length are correct in the experiment, but
allow deviation in the threshold pressure drop. In method
(1), therefore, we first put the front meniscus at the throat
of the pore, and then calculate the radius of the tail menis-
cus and its position to match the experimentally measured
threshold pressure drop from Beresnev et al. [2011, Table
1] by solving equation (3). Then, in the theoretical model,
we set the experimentally measured entrapment pressure
drop from Beresnev et al. [2011, Table 1] and calculate the
equilibrium position and length of the ganglion as summar-
ized in Table 1. The lengths of the trapped ganglia are
within a factor of 1–3 of the experimental measurements.
In method (2), we take the experimental length of the gan-
glion from Beresnev et al. [2011, Table 1] and entrap the
ganglion at the experimental entrapment pressure drop
from Beresnev et al. [2011, Table 1]. Then, we gradually
increase the external pressure drop until the ganglion is
mobilized and thus obtain the threshold pressure drop as
summarized in Table 2. Our comparisons showed a maxi-
mum 5% difference with the experimental measurements.
The comparison of ln

lab and ln
model in Table 1 and DPth

lab

and DPth
model in Table 2 indicates some internal inconsis-

tencies in the experimental results.
[67] Using CFD simulations following method (2), we

also modeled two cases for further comparison with the
theoretical model ; the cases considered are the lowest fre-
quency case ‘‘5 Hz, 171 Pa’’ and the highest frequency
case ‘‘14.2 Hz, 183 Pa.’’ Figure 4 shows the comparison
of the mobilization accelerations predicted by experi-
ments of Beresnev et al. [2011], our theoretical model fol-
lowing methods (1) and (2), CFD simulations following
method (2), and the viscous seismic model. In the case ‘‘5
Hz, 171 Pa,’’ the Ac calculated by CFD simulation and
theoretical model following method (2) are exactly the
same, while the Ac calculated by CFD simulation slightly
deviates from theoretical model for the high-frequency

case ‘‘14.2 Hz, 183 Pa.’’ The theoretical model, especially
when applied with method (2), agrees better with the
experiment (Figure 4) than the viscous model in five out
of six cases. The errors are from 0% to 70%. Moreover, in
relation to the viscous seismic model, the new theory has
the additional advantage of satisfying volume conserva-
tion instead of assuming a constant length for the moving
ganglion. The latter assumption is only strictly valid when
the slope of the tube profile is very gentle such that the
displacement of the ganglion will not result in a signifi-
cant change in its length. Furthermore, the new model
comprehensively represents the momentum balance for
the nonwetting phase. Thus, the new model expectedly
performs much better than the viscous seismic model in
most cases, although the governing equation (43) that
needs to be solved is more complex than the correspond-
ing equation of the viscous seismic model. However, as
the comparison with the CFD simulation shows, the new
theory still systematically underestimates Ac as the vibra-
tion frequency increases.

4. Summary and Conclusions

[68] We developed a new theoretical model that
describes the response of two-phase flow to oscillatory
forcing created by a seismic wave passing a porous me-
dium. The development follows a comprehensive analysis
of momentum balance and volume conservation in a
moving-boundary control volume representing a droplet
trapped behind a pore constriction. The final result is a
comprehensive force balance equation whose solution
gives the displacement of the front meniscus of the trapped
droplet ; the equation is a second-order nonlinear ordinary
differential equation which needs to be numerically solved.
The model can, therefore, be used not only to predict the
location of the front but also to investigate whether the
droplet completely passes through the trapping pore con-
striction and becomes dislodged. The droplet mobilization
predicted by the model was validated by favorable

Table 2. Comparison Between Experimental Work and Theoreti-
cal Solutions in Method (2)a

5 Hz 5 Hz 7.4 Hz 7.4 Hz 10 Hz 14.2 Hz

DPe (Pa) 171 227 206 237 203 183
DPth

lab (Pa) 246 246 257 248 248 257
DPth

model (Pa) 259 259 255 258 258 257
ln (mm) 11.8 11.8 6.4 8.9 8.5 7.9
Ac

lab (m/s2) 0.9 0.7 1.6 0.6 1.3 3.2
Ac

model (m/s2) 0.9 0.4 0.6 0.3 0.7 1

aThe superscripts ‘‘lab’’ and ‘‘model’’ denote the values measured by
laboratory experiments [Beresnev et al., 2011] and calculated by our theo-
retical model, respectively.

Figure 4. Comparison of the critical mobilization ampli-
tudes calculated by: experiments of Beresnev et al. [2011],
the theoretical model with methods (1) and (2), the CFD
calculation with method (2) and viscous seismic model of
Beresnev and Deng [2010]. The comparison is made for
different frequency and pressure.
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comparison against complete CFD simulations and previ-
ously available experimental data.

[69] The model was also used to determine at which
seismic wave amplitude, for a given frequency, the drop-
let becomes dislodged. Comparison of the critical mobili-
zation amplitudes calculated by the theoretical model with
results of two-phase CFD simulations demonstrates accu-
rate performance of our theoretical model in the low-
frequency range below a characteristic frequency. This
characteristic frequency can be approximated by the time
it takes for Hagen-Poiseuille flow to fully develop. The
theoretical model agrees better with the CFD simulations
for the case of 0� contact angle than for a nonzero one,
possibly due to the apparent contact angle effect. Good
agreement of the droplet displacement history between
the model and the CFD simulation (for droplets exposed
to lower stimulation frequencies) highlights the accuracy
of the theory in terms of describing the complex seismi-
cally induced two-phase flow. By comparing to experi-
mental data, our new theory shows better prediction of the
critical mobilization amplitude than a previous ‘‘viscous
seismic model.’’

[70] Our model simplifying the two-phase flow prob-
lem is computationally much more efficient than a com-
plete solution of the Navier-Stokes equations done
through a CFD simulation. For example, it takes days to
weeks to find a single mobilization amplitude for a
droplet by trial and error, especially at low frequencies,
in CFD simulations. On the other hand, this only takes
minutes with the theoretical model which is also solved
numerically.

[71] To conclude, we developed a new comprehen-
sive theoretical model that is effective and robust in
describing the dynamics of droplets subject to the pas-
sage of seismic waves in constricted tubes. This model
can be effectively used to predict the dislodgement of
trapped droplets and can potentially be used to explain
seismically induced permeability change in reservoirs
and aquifers.

Appendix A

[72] The dimensionless form of the governing equation
(43) is

ap h� � x�0 þ
2

3
�� x�0
� 	
þ �� h�ð Þ � 2t�f

� �� �
d2h�

dt�2

þa� 1�
�� h�ð Þ � t�f
� �2

�� x0ð Þ � t�f
� �2

0
B@

1
CA dh�

dt�

� �2

þ 8a� � Oh�

int1� h�ð Þ dh�

dt�
¼ DP�e � 2

1

R�d h�; �dð Þ �
1

R�u x�0; �u

� 	
 !

� 8 � Oh

�
S� h�ð Þ dh�

dt�Z x�0

L�1

1

�
�4 x�ð Þ

dx
�þ
Z L

�
2

h�

1

�
�4 x�ð Þ

dx
�

0
@

1
A� 2c� � int 3� h�ð Þ

þa�A� � sin 2�f �t�ð Þ h� � x�0
� 	

þ
A� � sin 2�f �t�ð Þ x�0 � L�1 � L�2 � h�

� 	

ðA1Þ

where the dimensionless variables and parameters are

x� ¼ x

rmin
; h� ¼ h

rmin
; x�0 ¼

xo

rmin
; t�f ¼

tf

rmin
; L�1 ¼

L1

rmin
;

L�2 ¼
L2

rmin
; �� x�ð Þ ¼ � xð Þ

rmin
;R�d h�; �dð Þ ¼ Rd h; �dð Þ

rmin
;

R�u x�0
� 	

¼
Ru x0;�dð Þ

rmin
; int 1� h�ð Þ ¼ int 1 hð Þ

1

rmin

;

int 3� h�ð Þ ¼ int 3 hð Þ
1

rmin

; S� h�ð Þ ¼ s hð Þ
r2

min

; c� ¼ c

�
; t� ¼ t

ð�wr3
min =�Þ

1=2
;

DP�e ¼
DPe
�

rmin
;
;A� ¼ A

�
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; f � ¼ f

�
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min

� �1=2
;

Oh¼ �w

�w�rminð Þ1=2
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�n

�w

; a� ¼
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�w

[73] The important dimensionless parameters in equation
(A1) are: the Ohnesorge number Oh which relates the vis-
cous forces to inertial and surface tension forces, the den-
sity ratio a�, the viscosity ratio a�, the entrapment pressure
drop DPe

�
, the acceleration amplitude A

�
, the seismic fre-

quency f
�
, and the tube geometry �

�
(x
�
). In our theoretical

model and CFD simulation comparison, the Oh is 0.0063,
the a� is 1, and the a� is 10. In the experimental work of
Beresnev et al. [2011] and our comparison, the Oh is 0.023,
the a� is 1, and the a� is 0.44.
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