
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Mathematics and Statistics Faculty Research & 
Creative Works Mathematics and Statistics 

06 Jul 2021 

A Kinetic Model for Blood Biomarker Levels after Mild Traumatic A Kinetic Model for Blood Biomarker Levels after Mild Traumatic 

Brain Injury Brain Injury 

Sima Azizi 

Daniel B. Hier 

Blaine Allen 

Tayo Obafemi-Ajayi 

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/math_stat_facwork/1076 

Follow this and additional works at: https://scholarsmine.mst.edu/math_stat_facwork 

 Part of the Applied Statistics Commons, Biochemistry Commons, Biology Commons, Computer 

Engineering Commons, and the Trauma Commons 

Recommended Citation Recommended Citation 
S. Azizi et al., "A Kinetic Model for Blood Biomarker Levels after Mild Traumatic Brain Injury," Frontiers in 
Neurology, vol. 12, article no. 668606, Frontiers Media, Jul 2021. 
The definitive version is available at https://doi.org/10.3389/fneur.2021.668606 

This work is licensed under a Creative Commons Attribution 4.0 License. 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Mathematics and Statistics Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat
https://scholarsmine.mst.edu/math_stat_facwork/1076
https://scholarsmine.mst.edu/math_stat_facwork?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1240?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3389/fneur.2021.668606
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:scholarsmine@mst.edu


ORIGINAL RESEARCH
published: 06 July 2021

doi: 10.3389/fneur.2021.668606

Frontiers in Neurology | www.frontiersin.org 1 July 2021 | Volume 12 | Article 668606

Edited by:

Antonio Belli,

University of Birmingham,

United Kingdom

Reviewed by:

David W. Nelson,

Karolinska Institutet (KI), Sweden

Kimbra Kenney,

Uniformed Services University of the

Health Sciences, United States

*Correspondence:

Sima Azizi

sacc5@mst.edu

Specialty section:

This article was submitted to

Neurotrauma,

a section of the journal

Frontiers in Neurology

Received: 16 February 2021

Accepted: 09 June 2021

Published: 06 July 2021

Citation:

Azizi S, Hier DB, Allen B,

Obafemi-Ajayi T, Olbricht GR,

Thimgan MS and Wunsch DC II (2021)

A Kinetic Model for Blood Biomarker

Levels After Mild Traumatic Brain

Injury. Front. Neurol. 12:668606.

doi: 10.3389/fneur.2021.668606

A Kinetic Model for Blood Biomarker
Levels After Mild Traumatic Brain
Injury
Sima Azizi 1*, Daniel B. Hier 1, Blaine Allen 1, Tayo Obafemi-Ajayi 2, Gayla R. Olbricht 3,

Matthew S. Thimgan 4 and Donald C. Wunsch II 1,5

1 Applied Computational Intelligence Laboratory, Department of Electrical and Computer Engineering, Missouri University of

Science and Technology, Rolla, MO, United States, 2 Engineering Program, Missouri State University, Springfield, MO,

United States, 3Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO,

United States, 4Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, United States,
5 ECCS Division, National Science Foundation, Alexandria, VA, United States

Traumatic brain injury (TBI) imposes a significant economic and social burden. The

diagnosis and prognosis of mild TBI, also called concussion, is challenging. Concussions

are common among contact sport athletes. After a blow to the head, it is often difficult to

determine who has had a concussion, who should be withheld from play, if a concussed

athlete is ready to return to the field, and which concussed athlete will develop a

post-concussion syndrome. Biomarkers can be detected in the cerebrospinal fluid and

blood after traumatic brain injury and their levels may have prognostic value. Despite

significant investigation, questions remain as to the trajectories of blood biomarker levels

over time after mild TBI. Modeling the kinetic behavior of these biomarkers could be

informative. We propose a one-compartment kinetic model for S100B, UCH-L1, NF-L,

GFAP, and tau biomarker levels after mild TBI based on accepted pharmacokinetic

models for oral drug absorption. We approximated model parameters using previously

published studies. Since parameter estimates were approximate, we did uncertainty and

sensitivity analyses. Using estimated kinetic parameters for each biomarker, we applied

the model to an available post-concussion biomarker dataset of UCH-L1, GFAP, tau,

and NF-L biomarkers levels. We have demonstrated the feasibility of modeling blood

biomarker levels after mild TBI with a one compartment kinetic model. More work is

needed to better establish model parameters and to understand the implications of the

model for diagnostic use of these blood biomarkers for mild TBI.

Keywords: concussion, uncertainty analysis, mathematical modeling, sensitivity analysis, blood biomarkers,

kinetics, mild traumatic brain injury

INTRODUCTION

Traumatic brain injury (TBI) affects 1.7 million people in the United States each year (1), placing
a burden on the health care system and society. Mild traumatic brain injury (mTBI), also known
as concussion, constitutes 70–90% of patients visiting an Emergency Department (ED) for TBI
(2, 3). For athletes, concussive head injuries pose difficult challenges on the playing field and in the
ED (4). On the playing field, it is difficult to determine which injured athlete should be withheld
from play. In the ED, it is often difficult to determine which concussed patient needs a CT scan
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or other neuroimaging. Determining readiness to return to play
after concussion is difficult. The early identification of which
mTBI patients are at risk for post-concussion syndrome is
imprecise. Methods are lacking to assess accumulating damage
from repetitive head injuries. The prediction of chronic traumatic
encephalopathy as a sequelae of mTBI is problematic. These
questions have stimulated the investigation of fluid biomarkers
as predictors of mTBI outcome. Fluid biomarkers were first
detected in the cerebrospinal fluid (5) of patients with severe TBI.
With improved assay methods these biomarkers can be detected
reliably in the blood at the picogram per ml level in patients with
mild TBI (6, 7).

Neurofilament light chain (NF-L), tau, ubiquitin C-terminal
hydrolase-L1 (UCH-L1), S100B, and glial acidic fibrillary protein
(GFAP) have been investigated as biomarkers for mild TBI
(Table 1) (12, 13). After a concussion, neurons and astrocytes
are disrupted (7) and biomarkers are released into the brain
interstitial fluid (Figure 1). Although a precise relationship
between impact magnitude and the amount of biomarker
released has not been established, greater concussive forces
are likely associated with a larger release of biomarker (22).
Biomarker released into the brain interstitial fluid can reach
the blood through a variety of mechanisms. Biomarker in the
interstitial fluid exchanges freely with the cerebrospinal fluid
where it can drain to the blood via arachnoid granulations or via
lymphatic channels. Another route is direct entry into the blood
via a disrupted blood-brain barrier (Figure 1). Additionally,
biomarker can drain directly from the interstitial fluid to
the lymphatics via arterial intramural pathways or glymphatic
channels (23–32). The relative importance of each of these
drainage pathways is unknown.

The predictive power of blood biomarkers after mTBI is
under active investigation. Elevated levels of blood biomarkers
can discriminate between concussed individuals and healthy
controls (18, 33–35). Blood biomarkers have been investigated
as predictors of neuroimaging abnormalities (abnormal CT and
MRI scans) (9, 20, 35–38). Blood biomarkers have uncertain
value in predicting the late effects of TBI (39–42), in detecting
sub-concussive blows to the head (43–46), and in predicting
readiness for return to play (47). Questions remain as to the
preferred time to measure blood biomarkers, the preferred

TABLE 1 | Estimated kinetic parameters from literature review.

Biomarker Normal plasma

level pg/ml

t 1
2
hrs* Tmax hrs* References

S100B 45–80 1.5† 2 (8–16)

UCH-L1 10–40 8 8 (8, 12, 14, 16–18)

tau 1–5 10 8 (8, 12–14, 19)

GFAP 30–70 36 24 (8, 12–14, 18–20)

NF-L 6–20 500 240 (8, 12–14, 19, 21)

∗Value for t 1
2
and Tmax are mid-range estimates †S100B is eliminated by first order

kinetics. It may undergo redistribution to other compartments before renal elimination and

has a shorter half-life than creatinine (15).

biomarker for each intended use, and cut-off values that should
be used (48–53). Kinetic models of blood biomarker levels inform
answers to these questions.

After a concussion, the blood level of each biomarker rises and
falls over time according to its own distinct pattern (Figure 3).
S100B rises early and falls early; NF-L rises late and falls late.
Kinetics is the study of how the measured level of a substance
changes over time. A kinetic model uses a mathematical equation
to predict biomarker levels at different times. Only a few studies
have created kinetic models of blood biomarker levels after mTBI
(17, 54, 55). A one-compartmental kinetic model was utilized
(17) to model the kinetics of ubiquitin C-terminal hydrolase-
L1 (UCH-L1) levels in the cerebrospinal fluid and blood after
severe TBI. Ercole et al. (54) modeled S100B levels after TBI
with a hierarchical, Bayesian gamma variate kinetic equation.
Dadas et al. (55) used MATLAB R© to build a multi-compartment
pharmacokinetic model to predict blood biomarkers levels after
TBI and to model disruption of the blood barrier.

We propose a one-compartment kinetic model (Figure 2) to
predict blood levels of the biomarkers S100B, UCH-L1, NF-L,
GFAP, and tau after mTBI. The kinetic model provides estimates
of blood biomarker levels at different times. If biomarker levels
are known at specific times, an estimate of initial release of
biomarker at time of impact can be provided. Since precise model
parameters are not available, we approximated kinetic parameters
based on a review of published studies and used sensitivity
analysis and uncertainty analysis to assess the implications of
estimation errors on model accuracy. We applied the model to
an available dataset of post-concussion biomarker levels (56, 57).

METHODS

Kinetic Model
The proposed kinetic model is based on a standard one-
compartment model for the oral absorption of a drug from
the GI tract into the blood (58). In a one-compartment model,
ingested drug is absorbed from the GI tract into the blood by
first order kinetics. First order kinetics assumes that the amount
of drug entering the blood per unit time is the amount of drug
in the GI tract multiplied by a rate constant ka. Once in the
blood, the drug is eliminated by first order kinetics so that the
amount of drug eliminated per unit time is the amount of drug
in the blood multiplied by the elimination rate constant ke. Not
all of the drug in the GI tract enters the blood. The fraction
entering the blood is a unit-less ratio called bioavailability or
F. The model is considered one-compartment because drug that
enters the blood compartment stays there until elimination and
is not redistributed to other compartments such as the fat or
interstitial fluid. After ingestion of a drug there are two primary
kinetic phases, an absorption phase when absorption outpaces
elimination and an elimination phase when elimination outpaces
absorption. The kinetic parameter Tmax describes the time when
drug levels are at a peak. Tmax marks the end of the absorption
phase and the beginning of the elimination phase. The maximum
drug level at Tmax is called Cmax. Another important kinetic
parameter is the half-life or t 1

2
which is the time for blood levels
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FIGURE 1 | (A) Release of protein biomarkers (black dots) after head injury and entry into the blood via blood-brain barrier and the intramural periarterial drainage

pathway. (B) One-compartment kinetic model for blood biomarker levels after mTBI.

FIGURE 2 | Proposed approach.

to fall by 50% during the elimination phase after absorption has
ceased. In our model, the release of a biomarker into the brain
compartment is analogous to the ingestion of a drug into the GI
tract. For both models, F is the bioavailability (fraction of drug
or biomarker entering the blood), ka is the first order absorption
rate constant for entry into the blood, and ke is the first order rate
constant for elimination from the blood. Similarly, for both the

drug and biomarker model, Cp is the plasma concentration and
Vd is the volume of distribution (59). Model inputs include:

• D0, the amount of biomarker released into the brain at time
of impact t0. (The model assumes release is complete and
simultaneous at t0 with no timed or delayed release).

• Vd, the volume of distribution (we have approximated Vd as
total blood volume).
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Model parameters that depend upon the biomarker modeled
include:

• F, the fraction of biomarker entering the blood from the brain.
• ka, the first order rate constant for absorption of biomarker

into the blood from the brain compartment.
• ke, the first order rate constant for the elimination of

biomarker from the blood.

Model variables that vary as a function of time include:

• Dbl, the amount of biomarker in the blood at time t.
• Dbr , the amount of biomarker in the brain at time t.

The model output is the blood biomarker level Cp. In a one-
compartment model, the net change in the amount of biomarker
in the blood at time t is equal to inflow minus outflow (Equation
1). The difference between inflow and outflow is an ordinary
differential equation (Equation 2).

net = inflow− outflow (1)

inflow = F ∗ ka ∗ Dbr = F ∗ ka ∗ D0 ∗ e
−kat

outflow = ke ∗ Dbl

net =
dDbl

dt
= F ∗ ka ∗ D0 ∗ e

−kat − ke ∗ Dbl (2)

Solving Equation (2) for Dbl, the blood concentration Cp of a
biomarker at time t is modeled as a bi-exponential equation
(Equation 3):

Cp =
Dbl

Vd

Cp =
F ∗ D0 ∗ ka

Vd ∗ (ka − ke)
∗ (e−ket − e−kat) (3)

Estimation of Kinetic Parameters
We used published estimates of Tmax (time of maximum
concentration) and t 1

2
(half-life; Table 1) to estimate ka and ke for

each biomarker (Equations 4 and 5) based on the assumption of
first order kinetics (59). Values in Table 1 are mid range estimates
from reported values. If half-life or Tmax was not specifically
mentioned in a research report and a usable time-concentration
curve was available we used the method of Thelin et al. (8) to
estimate half-life as the time required for reported levels to drop
by 50% and Tmax as the time at which biomarker concentration
was at its peak.

t 1
2
=

0.693

ke
(4)

Tmax =
ln( ka

ke
)

ka − ke
(5)

Values for F (the fraction of biomarker released into the brain
that reaches the blood) are likely to vary by biomarker and are

FIGURE 3 | Kinetic profiles for five blood biomarkers with parameter values for

ka and ke from Table 2, a nominal total blood volume of Vd = 5, 000 ml, and a

stipulated biomarker release of biomarker D0 = 400, 000 pg. Kinetic profiles

based on Equation (3). The revised NF-L curve reflects a higher ka that

provides a better fit to the NF-L levels in the NCAA-CARE dataset.

TABLE 2 | Kinetic models with calculated parameters.

Biomarker Parameter Input

model ke∗ ka∗ F† Nominal D0 Nominal Vd

S100B 0.462 0.5 0.8 400,000 5,000

UCH-L1 0.0866 0.09 0.8 400,000 5,000

tau 0.0693 0.07 0.8 400,000 5,000

GFAP 0.0193 0.08 0.8 400,000 5,000

NF-L 0.0014 0.009 0.8 400,000 5,000

NF-L Revised 0.0014 0.2 0.8 400,000 5,000

∗Units for rate constants are hr−1.
†F is bioavailability and is a unit-less ratio. Estimates for F are not available in literature.

Value was stipulated to be 0.8. Actual values are likely to differ.

not available in the literature. Based on the impermeability of the
brain barrier to proteins, it was previously thought that F was low
(perhaps 0.01 to 0.05) formost biomarkers (55).We used a higher
estimate of 0.8 based on the high recovery of biomarker in the
blood and lymph after intra-brain and intra-ventricular injection
of biomarker in animals experiments (28, 60–62).

We used Equation (3) to create five models, one for each of the
biomarkers, to estimate blood levels at time t after concussion
(Figure 3 and Table 2). Model parameters ka, ke, and F are
biomarker-dependent and we used estimates from Table 1. Vd

and D0 are concussion-dependent and vary by the individual
sustaining a concussion. As a simplification, we used a nominal
value of 5,000 ml for Vd, although total blood volume differs
by individual (63, 64). D0 is the unknown amount of biomarker
released into the brain at time of concussion and varies according
to the severity of the concussion. For Figure 3 we stipulated a
nominal release of 400,000 pg of biomarker at concussion.
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FIGURE 4 | Cumulative distribution functions (CDFs) of 1,000 samples

randomly drawn from lognormal probability distributions (described by

Equation 7) for the four model inputs and parameters (D0, Vd , ke, and ke). CFs

are shown for the GFAP kinetic model.

Sensitivity and Uncertainty Analysis
To assess the validity of our model, we performed both a
sensitivity analysis and uncertainty analysis to explore how
uncertainty about model inputs (D0, Vd, and t) and model
parameters (ke, and ka) influences the output (Cp). For the
sensitivity analysis (65), we calculated the partial correlation
coefficient between model inputs (Vd, D0, ka, and ke) and model
output (Cp) as a function of time (Figure 5). We used the partial
correlation coefficient to assess the linear relation between a
single model input and the model output after adjusting for the
effects of the other model inputs (66). We tested the significance
of the partial correlation coefficient (γ ) using a t-distribution
(Equation 6).

T = γ

√

N − 2− p

1− γ 2
∼ tN−2−p, (6)

where tN−2−p is the t distribution with the N − 2 − p degrees
of freedom, N is the sample size and p is the number of varied
input variables minus one (k − 1). The null hypothesis is that
partial correlation coefficient is equal to zero and is rejected if
the absolute value of the test statistic is higher than the 1 − α/2
percentile of a t-distribution with N-2-p degrees of freedom
(where α is the significance level). We created a probability
density function for each of the model inputs based on nominal
values from Table 1. Since our model inputs are constrained to
be positive, we chose a lognormal distribution for the probability
density function:

pi ∼ lognormal (log(pnom,i)−
σ 2
i

2
, σ 2

i ), (7)

where pnom,i is the nominal value of parameter i obtained from
Table 1 and σi is its associated variance. We created lognormal
probability density functions for each model input for each of the
five biomarkers (Figure 4). We assessed how uncertainty in the
model inputs or parameters propagated to uncertainty in model
output using Monte Carlo simulations. For each Monte Carlo
simulation we created a matrix of 1,000 rows× k columns, where
k was the number of inputs or parameters in the model that we
varied simultaneously and ranged between 1 and 5. Each row was
created by randomly sampling the values from the probability
distribution function for parameter of interest (Figure 4). Each
column reflected a different parameter or input.Cp was calculated
1,000 times (Equation 3). All other model inputs were set to their
nominal values.

Estimation of Biomarker Released
The biomarker data utilized for model validation is drawn from
the NCAA Concussion Assessment, Research, and Education
(CARE) study (67), which is available via the Federal Interagency
Traumatic Brain Injury Research (FITBIR) (68) data repository
to approved investigators [the data set was downloaded from
FITBIR (68) on August 22, 2019]. The study was established
by the National Collegiate Athletic Association and the US
Department of Defense. For a subset of concussed subjects, blood
biomarker data (NF-L, tau, UCH-L1, and GFAP) were obtained
at 6 h and at 24–48 h after injury, when asymptomatic, and at 7
days after return to play. Based on nominal values for our kinetic
model parameters F, ka, ke, and Vd, we derived values of Cp from
the available biomarker data and Equation (3) to estimate the
amount of biomarker released (D0) for each concussed subject
in the data set. Note that the data is only utilized for model
validation since the primary focus in this work is model design
and simulation.

RESULTS

Sensitivity Analysis
We calculated the partial correlation coefficient between the
model output Cp and the model parameters ke, ka and the
model inputs Vd and D0 over time. The partial correlation
coefficients for GFAP and NF-L are shown in Figure 5. The
partial correlation coefficient varies between−1 (strong negative
correlation) and +1 (strong positive correlation). The gray band
is the area where coefficients are not significantly different from
zero (obtained using the test statistic in Equation 6). For GFAP
(Figure 5A), at early time intervals (0–6 h), Cp is most correlated
with volume of distribution (Vd), initial biomarker release (D0)
and absorption rate (ka). At later time intervals (30–50 h)
GFAP level correlates most with volume of distribution, initial
biomarker release, and elimination rate (ke). Absorption rate
(ka) is more determinate of biomarker level early on whereas
elimination rate (ke) is more determinate in later time intervals
between 30 and 50 h. As expected, the correlation between
GFAP level and absorption rate is positive, the correlation
between GFAP level and elimination rate is negative. The same
pattern is true for the NF-L kinetic model (Figure 5B), except
that the timing differs. Due to lower absorption rate (ka)

Frontiers in Neurology | www.frontiersin.org 5 July 2021 | Volume 12 | Article 668606

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Azizi et al. Kinetic Modeling

FIGURE 5 | PCC of the model output with the input parameters ke and ka and the model inputs Vd and D0 plotted over time. (A) Correlations for GFAP model. (B)

Correlations for NF-L model. Partial correlations near +1.0 and −1.0 show strong correlations between input and output. Partial correlations near 0.0 show weak

correlations. Note that D0 correlates positively with Cp at all times, and that Vd correlates negatively with Cp at all times. Partial correlations with ke and ka depend on

time of measurement.

FIGURE 6 | Monte Carlo simulations to investigate relationship of joint uncertainty in D0, Vd , ke, and ka on model output for the GFAP model. One thousand runs are

shown. (A–E) Scatter plots of model output by input and parameter at 5 h. (F–J) Scatter plots of model output by input and parameter at 50 h. Model output (Cp)

correlates positively with biomarker release D0 and negatively with Vd . Uncertainty in estimates of ka and ke have a smaller influences on model output. The positive

correlation of ka with Cp is most apparent at 5 h and the negative correlation of ke with Cp is most apparent at 50 h.

and lower elimination rate (ke) the partial correlation curves
are shifted to the right suggesting that absorption rate is an
important determinate of blood biomarker levels for longer after
a concussion and that elimination rate becomes an important
determinate of blood biomarker levels later after a concussion
(compared to GFAP). The partial correlation coefficients are also
calculated for two other biomarkers of tau and UCH-L1. Due to
the similarity between the pattern of GFAP with tau and UCH-
L1, their partial correlation coefficient curves over time are not
included in Figure 5.

Model Uncertainty Due to Joint
Uncertainty in ke, ka, Vd, and D0
Since the exact values for some of the model inputs and
parameters are uncertain, we created a probability distribution
based on the nominal value of the model inputs and parameters.
We described the probability distribution of volume of
distribution, absorption rate, and elimination rate as a lognormal
distribution (Equation 7). The nominal value for model inputs
and parameters were set to the values in Table 2. The cumulative
distribution functions of the model inputs are shown in Figure 4.
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We varied the initial biomarker release (D0) over a larger
range (σ = 0.3), while other inputs such as Vd, ka, and
ke varied with a smaller standard deviation of (σ = 0.1).
The cumulative distribution functions in Figure 4 are shown
for the GFAP kinetic model. Similar cumulative distribution
functions were calculated for each biomarker. To examine model
uncertainty due to joint uncertainty in ke, ka, Vd, and D0,
we performed a Monte Carlo simulations with 1, 000 random
samples taken from the cumulative function distributions of the
two model inputs and two model parameters (Figure 4). Results
for the GFAP kinetic model are shown in Figures 6A,F. Scatter
plots in Figures 6B–E,G–J demonstrate the relation between
the output (Cp) and the model inputs at two different times
(Figures 6A,F). The first row corresponds to t = 5 h and the
second row corresponds to t = 50 h. The red dashed lines
are the smoothed LOESS fits (69) identify linear, nonlinear and
correlations between the model outputs and inputs. For GFAP, a
positive linear correlation is observed between the model output
and the initial blood biomarker released at time-points t = 5 h and
t = 50 h. A negative correlation is found between model output
and total blood volume. The correlation between the model
output and absorption and elimination constants are smaller
when compared to the model inputs of biomarker released and
volume of distribution, suggesting that these model parameters
have less influence on predicted biomarker levels than the model
inputs D0 and Vd. Further, the relation between these two model
parameters and the output varies with time. For instance, there
is little relation between model output and elimination rate at t
= 5 h (Figure 6D). However, a negative correlation is observed
at t = 50 h. Similarly, there is little relation between absorption
rate and the model output at t = 50 h, and a positive correlation
is observed at t = 5 h.

Model Uncertainty Due to Uncertainty
About ka and ke
We used a Monte Carlo simulation to explore the propagation
of uncertainty about ka and ke to the model output. We varied
ka and ke over their lognormal distribution values (standard
deviation set to σ = 0.2 while setting the other models inputs
to their nominal values (Table 2). At each time point, model
output was evaluated using 1, 000 random values for ka or ke.
The confidence bands are defined as the ±2δ uncertainty of
the model output (δ is the standard deviation of the model
output, Figure 7). The upper row shows the confidence bands
for ka and the lower row shows the confidence bands for ke. The
confidence bands of the NF-L biomarker model are extended for
a longer period of the time (t = 700 h) because elimination
of this biomarker is slower. For all biomarkers, model output
uncertainty due to uncertainty in ka occurs during the absorption
phase (rising levels) and output uncertainty for ke occurs during
the elimination phase (falling levels; Figure 7).

Model Uncertainty Due to Uncertainty
About t
There is often uncertainty as to the exact timing of blood
samples after mTBI. Even if the exact timing of blood

samples is known it may not be possible to draw the
6 h sample at exactly 6 or 48 h sample at exactly 48
h. Since timing of blood samples can be uncertain or
imprecise, we considered two scenarios: a 6-h sample drawn
at 6 ± 3 h and a 36 h sample drawn at 36 ± 12 h.
Using a Monte Carlo simulation and a nominal D0 =
400,000 pg we calculated the distribution of Cp at 6 and
36 h (Figure 8). As shown, variations from the designated
time of measurement has significant effects on measured
biomarker levels, with the exception of the 6-h measurement of
NF-L (Figure 8).

Model Uncertainty Due to Uncertainty
About Vd
Since most of the blood biomarkers for mild TBI stay in the
blood compartment until renal elimination, it is reasonable
to equate the volume of distribution (Vd) to the total blood
volume. Although total blood volume varies by height, weight,
and sex, Feldschuh and Enson (64) corrections for total
blood volume are not routinely made. We did 1,000 runs of
Monte Carlo simulations on blood levels for the biomarker
GFAP at 6 h using the mean total blood volume ± standard
deviation for healthy men and women (64) and the nominal
kinetic parameters for the tau kinetic model (Table 2). The
failure to account for the total blood volume of subjects
(Figure 9) introduces considerable variability into modeled
biomarker level.

Kinetic Modeling on Actual Biomarker Data
We used available biomarker data from the NCAA-CARE study
(33) to estimate initial biomarker release (D0) in the concussed
subjects. The data set had values for GFAP, UCH-L1, NF-
L, and tau blood biomarkers at four specific time-points for
356 concussed subjects including subjects with more than one
concussion. Date stamps included: <6 h post-injury, 24–48 post-
injury, when asymptomatic, and 7 days after return to play.
Subjects with missing date stamps were excluded yielding a
smaller subset for analysis. The total number of mTBI subjects
with date stamps available were n = 220 for GFAP, n =

216 for tau, n = 220 for NF-L, and n = 123 for UCH-
L1. The blood levels available to us were date stamped but not
time stamped, so estimates of sampling times were necessarily
approximate. We used Equation (3) to estimate D0 based on Cp

at the four available time points. A least-square error method was
used to estimate D0 by minimizing the error between the four
blood biomarker measurements and the fitted curve specified in
Equation (3). The estimated biomarker released for each subject
was substituted into Equation (3) to generate time-concentration
curves for all available subjects (Figure 10). Figure 11 shows
measured blood level (Cp) along the y-axis vs. model estimated
biomarker level (Cp) along the x-axis at 6 h (Top row) and
24–48 h (Bottom row). Visual inspection of Figures 10, 11

shows that kinetic profiles follow the general idealized kinetic
profile shown in Figure 3. However, a minority of the subjects
show higher peak values for Cmax compared to the others,
suggesting that the distribution of kinetic profiles was bimodal.
Additional statistical testing has shown bimodality (submitted
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FIGURE 7 | Uncertainty propagated in the model output caused by variation of two input parameters ka and ke. The uncertainty bands are the 2δ uncertainty of the

model output (δ is the standard deviation of the model output). Variations in ka and ke are derived from the lognormal probability distributions (defined by Equation 7),

the standard deviation is 0.2 (Top) Model output uncertainty due to ka. (Bottom) Model output uncertainty due to ke. Peak of each curve corresponds to Cmax at

Tmax . Curve up to Tmax is absorption phase and curve after Tmax is elimination phase. Uncertainty in ka dominates absorption phase whereas uncertainty in ke
dominates the elimination phase for all biomarkers. Time intervals of greatest uncertainty depend on the specific values of ke and ka. Note that the x-axis has been

expanded or compressed depending on the half-life of the biomarker. Confidence limits provide insight as to when the uncertainty about ka or ke causes greatest

uncertainty about biomarker level Cp.

FIGURE 8 | Monte Carlo simulations to investigate the effect of uncertainty in time on the blood biomarker levels (Cp). Simulations were conducted by setting the

model parameters to the nominal values in Table 1 and the initial biomarker released to D0 = 400, 000 pg. (Top) Histograms of blood biomarker levels at 6 h, with

time varying in a range of (3, 12). (Bottom) Histograms for blood biomarker levels at 36 h, with time varying in the range of (35, 56). Note that at 36 h, biomarker levels

of GFAP and NF-L are still rising while levels of tau and UCH-L1 are falling.

for publication). Estimated levels of NF-L, especially at 6 h, fall
below measured levels (Figure 11) suggesting an error in model
parameters for NF-L. Based on our prior sensitivity analysis
(Figure 5) we suspected our approximation of ka was too low
and that actual absorption of NF-L was occurring more rapidly
than implied by the model. We re-ran the model for NF-L with
a shorter Tmax of 24 h and a larger ka of 0.2 hr−1, resulting in a
better qualitative fit of the estimated Cp to compared to measured
Cp (Figure 12).

DISCUSSION

Biomarkers (biological markers) belong to a broad category
of medical signs that are objective indicators of a patient’s
medical state and that can be measured accurately and
reproducibly (70). The intent of obtaining blood biomarkers
after mild TBI (concussion) is to address diagnostic questions
(Did the subject have a concussion? How severe was the
concussion? Should the subject have a CT scan or MRI
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FIGURE 9 | Monte Carlo simulations to investigate the effect of uncertainty in total blood volume on the blood biomarker level (Cp). Simulations set the model

parameters to the nominal values in Table 1 and a biomarker release of 400, 000 pg. Normal probability distributions with nominal values of 4,750 and 5, 320 ml were

used for women and men, respectively. (Top) Histograms for GFAP blood biomarker levels at 6 h for women. (Bottom) Histograms of tau blood biomarker levels at 6

h for men. Means and standard deviations for blood volumes from published estimates (64).

FIGURE 10 | Time-concentration curves for concussed subjects with available biomarker data as estimated by the kinetic models. Each curve represents one subject

in the data. Note resemblance of displayed curves to nominal time-concentration curves shown in Figure 3.

scan?) or prognostic questions (Can the athlete return to play
immediately? When can the withheld athlete return to play?
Will the athlete develop post-concussion syndrome?) Ideally

the blood biomarker level is a useful surrogate for the brain
injury that occurred with concussion. Furthermore, if it could
be known, the amount of biomarker released with concussion
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FIGURE 11 | Model estimated biomarker level at 6 and 24–48 h vs. actual biomarker level for each subject using available data set. (Top) x-axis corresponds to

estimated Cp at 6 h and y-axis corresponds to measured Cp at 6 h. (Bottom) x-axis corresponds to estimated Cp at 24–48 h and y-axis corresponds to measured Cp

at 24–48 h. Note that estimated levels for NF-L at 6 h are especially below measured levels.

FIGURE 12 | NF-L kinetic modeling utilizing modified kinetic parameters of Tmax = 24 h and ka = 0.2 hr−1. (A) Time concentration curves estimated by the revised

kinetic parameters for NF-L biomarker. (B,C) Model estimated biomarker level vs. measured biomarker level at 6 and 24–48 h for revised kinetic parameters of NF-L.

(B) x-axis corresponds to model estimated Cp at 6 h and Y-axis corresponds to measured Cp at 6 h. (C) x-axis corresponds to model estimated Cp at 24–48 h and

y-axis corresponds to measured Cp at 24–48 h.

should be a better measure of severity than a blood biomarker
level at a single time-point. A single biomarker level is of
limited value. Because blood biomarker levels are changing
over time (Figure 3) a blood biomarker level can only be
interpreted in the context of its time of measurement. Unlike
a blood biomarker level Cp which is variable, the amount
of biomarker released at the time of impact is fixed and
time constant. If D0 could be known or estimated, it would
be a time-independent correlate to the severity of traumatic
brain injury.

Kinetic modeling offers an approach to understanding the
complexities and uncertainties in the use of single blood
biomarker levels for the diagnosis of mild TBI. For each of five

commonly investigated biomarkers for mTBI, we created a one-
compartment kinetic model to predict blood biomarker levels
at a given time t (Figure 3). In general, the kinetic profiles are
aligned with suggested kinetic profiles in the published literature
(8, 12, 16, 17, 71, 71, 72).

An important limitation of current blood biomarker testing is
that blood sampling is frequently not done at standardized times.
We used uncertainty analysis to assess the effects of uncertainty
about the time of blood sampling (Figure 8). The results suggest
that precise timing of blood samples is important to obtaining
levels of Cp that reflect D0 after mild traumatic injury. If blood
sampling cannot be done at standardized times, adjustment of
measured blood biomarker levels for off-standard times may be
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helpful, especially whenmeasured biomarker levels are applied to
established cut-offs.

Similarly, blood biomarker levels after traumatic brain injury
are not currently corrected for individual differences in renal
function or total blood volume. Impaired renal function could
decrease clearance of blood biomarkers and be reflected in
declines in ke (55). Both the sensitivity analysis for ke (Figure 5)
and the uncertainty analysis for ke (Figure 7, lower band) suggest
that changes in ke could elevate biomarker levels after mTBI.
Although blood biomarker levels are not routinely corrected
for individual differences in total blood volume (a surrogate for
Vd), our sensitivity analysis (Figure 5) and uncertainty analysis
(Figure 9) again suggest that variations in total blood volume
could significantly change measured levels of biomarker after
mTBI. These findings raise the question as to whether corrections
in measured Cp after mTBI should be made for renal impairment
or blood volume.

A limitation of our kinetic models (Table 2) is the
approximate values for ka and ke. Sensitivity analysis suggests
that the model output may be relatively insensitive to errors in
our estimates of ke and ka except at certain time measurement
points that vary by biomarker (Figure 5). Uncertainty analysis
(Figure 7) largely confirms the findings of the sensitivity analysis.
The model parameters ka and ke are important but the model
may be relatively resistant to small errors (<30%) in estimates of
ka and ke (Figure 7). Literature estimates of Tmax and half-life for
NF-L are especially sparse and unreliable (Table 1). Modeling of
levels of NF-L using available data suggested our initial estimates
of Tmax were too high and our estimate of ka was too low
(Figure 11). Figure 12 shows that revising upward the value of
ka improves model fit with measured available biomarker data.

The kinetic models demonstrate the different concentration-
time profiles for each biomarker (Figure 7). These kinetic profiles
have implications for selecting the preferred sampling times to
obtain the most instructive biomarker levels. In general, it would
appear desirable to time blood sampling close to time Tmax when
Cp is at its maximum Cmax. Since Tmax differs by biomarker
(Table 1), preferred sampling time differs by biomarker. Early
times should be best for S100B. In the 6–48 h window, UCH-
L1 and tau peak earlier than GFAP. Later times seem best for
sampling NF-L (Figure 7). These suggestions require empirical
verification. More precise kinetic studies of blood biomarker
levels after mild TBI (with more frequent and carefully timed
and spaced sampling intervals) could provide better estimates of
Tmax, half-life, ka, and ke and allow more accurate estimations of
best sampling times and best cut points.

One important feature of the proposed kinetic models
is to work backward from measured levels of biomarker
levels Cp to the amount of biomarker released at impact D0

(Equation 3). Sensitivity analysis by partial correlation (Figure 5)
and uncertainty analysis using Monte Carlo simulations
(Figures 6B,G) show a strong correlations between measured
levels of Cp and the estimation ofD0 at all time intervals. This is a
desirable characteristic of the kinetic models and suggests that the
models can approximateD0 at a variety of different time intervals
if t and Cp are known. We considered the problem of whether a
blood biomarker level at a given time t could be used to estimate

the initial amount of biomarker released at impact (Figure 11).
Our thinking is that the amount of biomarker released is a
more reliable indicator of brain injury than is a single biomarker
level at a single time-point. Although we have demonstrated the
feasibility of this approach, further work is needed to explore
its utility.

Models can be wrong in at least two ways: their predictions
can be wrong or their underlying assumptions can be wrong (73).
Our model has several underlying assumptions that could prove
wrong. We have assumed that the release of biomarker at impact
is momentaneous. In fact, the release of biomarker could occur
more slowly over minutes or hours suggesting a delayed release
of timed-releasemodel would bemore appropriate. Furthermore,
studies of biomarker levels after mild traumatic injury have
not excluded the possibility of either continuing synthesis of
biomarker or upregulation of biomarker synthesis.

We have assumed that blood biomarker levels could be
modeled as a one-compartment model (with biomarker entering
the blood compartment from the brain and exiting the blood
by renal elimination), However, for S100B in particular, the
assumptions of the one-compartment model are likely violated
as S100B has significant extra-cerebral sources and may be
redistributed to the fat and other soft tissues prior to renal
elimination (8, 9).

We have assumed that the absorption rate constant ka is
constant over time. Since absorption from the brain likely reflects
multiple pathways (perivascular, glymphatic, direct breach of the
blood brain barrier, absorption from CSF from blood, etc.), the
absorption rate constant ka could vary over time and likely varies
from individual to individual.

Other limitations of this study deserve mention. Our estimate
of F, the absorption rate fraction, is especially prone to error
since reliable data for estimating F from simultaneous studies
of blood and interstitial fluid levels are unavailable to us. Our
estimates of the absorption rate constant ka and the elimination
rate constant ke would have been better if formal kinetic studies
of biomarker levels with carefully time sampling were available. A
further limitation is that we were not able to recommend specific
sampling times and optimal cut points for each blood biomarker.
Preferred sampling time depends primarily on knowing the
maximum biomarker level Cmax at time Tmax (or on working
backward to Cmax from an accurate measure Cp at time t
combined with an accurate kinetic model). In the absence of
highly accurate kinetic estimates of ka and ke, we are reluctant to
recommend a preferred sampling time for each blood biomarker.
However, we suggest that preferred sampling times are likely
at or close to their Tmax. Kinetic modeling could assist in
the selection of biomarker cut points for diagnostic testing.
However, the cut point chosen will depend upon the proposed
use (e.g., discrimination between concussed and non-concussed
subjects, identification of concussed subjects with abnormal
neuroimaging, identification of subjects with risk of prolonged
return to play, etc.).

We have begun to explore the predictive power of a kinetic
model by comparing actual and predicted blood biomarker
levels in an actual available data set (Figure 11). Although the
kinetic model fits the general pattern of blood biomarker levels
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after mTBI based on the real data (Figure 10), the lack of
exact time-points for blood biomarker measurements has limited
our ability to do an exact goodness of fit determination. At
present we conclude that our model fits the NCAA-CARE dataset
qualitatively (Figure 11).We have already commented above that
our initial approximation for ka for NF-L was likely too low
(Figure 12). Modification of model parameters could improve
goodness of fit (Figure 12).

Like McCrea et al. (33), we noted that the biomarker levels
after mild TBI in the NCAA-CARE dataset were heteroscedastic
and likely not normal. We elected not to log transform the
data to persevere its bi-modality which potentially reflected two
distinct populations after mild TBI. Further investigation of the
heteroscedasticity of blood biomarker levels after mild TBI is
needed but is beyond the scope of this paper.

Several improvements in the proposed model are possible.
One improvement would be to add in corrections for subject age,
height, weight, and renal function. Our current model is based on
increases in biomarker levels due to mTBI and does not consider
the baseline levels of these biomarkers in control subjects. The
model could be improved by adding back in corrections for
baseline levels of biomarkers.

In conclusion, we have demonstrated the feasibility of creating
a one-compartment kinetic model of blood biomarker levels
after mild traumatic brain injury. The one-compartment kinetic
model fits well the observed levels of tau, UCH-L1, and GFAP
after mild traumatic brain injury. The accuracy of the key kinetic
parameters of the kinetic model (ka, ke, and F) could be improved
by carefully executed kinetic studies. S100B and NF-L pose
special challenges to modeling. S100B is likely absorbed into the
blood from multiple compartments and may be redistributed
to other compartments prior to elimination. Hence, S100B may
be a poor candidate for a one-compartment kinetic model. The
paucity of kinetic data on NF-L added to the possibility of late
release or NF-L or the upregulation of NF-L synthesis, suggests
that a different model may be needed for NF-L biomarker
levels. Additional careful kinetic studies of biomarker levels could
resolve the issue as to whether release at impact is momentaneous

or stage-released. Accurate kinetic models of blood biomarker
levels have the potential to improve the selection of optimal
sampling times and optimal cut points for the blood biomarkers
used in the diagnosis of mild TBI.
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