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Annealed Disorder, Rare Regions, and Local Moments: A Novel Mechanism
for Metal-Insulator Transitions

D. Belitz,1 T. R. Kirkpatrick,2 and Thomas Vojta1,3
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3Institut für Physik, TU Chemnitz, D-09107 Chemnitz, Germany
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It is shown that, for noninteracting electron systems, annealed magnetic disorder leads to a new mecha-
nism, and a new universality class, for a metal-insulator transition. The transition is driven by a vanishing
of the thermodynamic density susceptibility rather than by localization effects. The critical behavior in
d � 2 1 e dimensions is determined, and the underlying physics is discussed. It is further argued that
annealed magnetic disorder, in addition to underlying quenched disorder, describes local magnetic mo-
ments in electronic systems.

PACS numbers: 71.30.+h, 64.60.Ak

Metal-insulator transitions (MITs) remain a fascinating
and only incompletely understood phenomenon [1]. Con-
ceptually, one distinguishes between Anderson transitions
in models of noninteracting electrons and Mott-Hubbard
transitions of clean, interacting electrons. At the former,
the electronic charge diffusivity D is driven to zero by
quenched, or frozen-in, disorder, while the thermodynamic
properties do not show critical behavior. At the latter,
the thermodynamic density susceptibility ≠n�≠m vanishes
due to electron-electron interaction effects. In either case,
the conductivity s � �≠n�≠m�D vanishes at the MIT. In
many real systems both quenched disorder and interactions
are present, which makes a theoretical understanding of
the resulting Anderson-Mott transition very difficult. One
particular complication is provided by the presence of
magnetic local moments (LMs) in such systems. There
is much experimental evidence for LMs [2], and their for-
mation has been studied theoretically [3], but no existing
theory can describe their interplay with the transport prop-
erties near the MIT [1]. Another complication is the pos-
sible presence of annealed disorder, which is in thermal
equilibrium with the rest of the system and hence involves
disorder averaging of the partition function. This is in con-
trast to quenched disorder that requires an averaging of the
free energy, which is usually done by means of the replica
trick [4].

In this Letter we make two contributions to the MIT prob-
lem. (i) We show that annealed disorder leads to a MIT
that belongs to none of the previously studied classes. It is
driven by a vanishing ≠n�≠m and thus resembles a Mott-
Hubbard transition, even if no correlation effects are ex-
plicitly considered. (ii) We propose a mechanism by which
additional annealed disorder is generically self-generated
in quenched disordered systems, and we argue that a type
of LM can be described in terms of it. We further develop
a method for incorporating these “annealed LMs” into a
transport theory.

Let us start by considering Wegner’s nonlinear sigma-
model �NLsM� [5] for noninteracting electrons with non-

magnetic quenched disorder. The action reads

A �
21
2G

Z
dx tr���=Q�x����2 1 2H

Z
dx tr���VQ�x���� .

(1)

Here Q�x� is a matrix field that comprises two fermionic
degrees of freedom. Accordingly, Q carries two Matsubara
frequency indices n and m, and two replica indices a and
b to deal with the quenched disorder. The matrix elements
Q

ab
nm are spin-quaternion valued to allow for particle-hole

and spin degrees of freedom. It is convenient to expand
them in a basis tr ≠ si �r , i � 0, 1, 2, 3�, where t0 � s0
is the 2 3 2 unit matrix, and t1,2,3 � 2s1,2,3 � 2is1,2,3,
with sj the Pauli matrices. For simplicity, we will ignore
the particle-particle or Cooper channel, which amounts to
dropping t1 and t2 from the spin-quaternion basis [1]. Q
is subject to the constraints Q2�x� � 1, and trQ�x� � 0.
V

ab
nm � dnmdabVn �t0 ≠ s0� is a frequency matrix with

Vn � 2pTn being a bosonic Matsubara frequency and T
being the temperature. G is a measure of the disorder that
is proportional to the bare resistivity, and the frequency
coupling H is proportional to the bare density of states at
the Fermi level. tr denotes a trace over all discrete degrees
of freedom that are not shown explicitly.

The properties of this model are well known [1,5,6]. The
bare action describes diffusive electrons, with D � 1�GH
being the diffusion coefficient. Under renormalization, D
decreases with increasing disorder until a MIT is reached at
a critical disorder value. The critical behavior is known in
an e expansion about the lower critical dimension d � 2.
In the absence of the Cooper channel, the MIT appears
only at two-loop order at a critical disorder strength of
O�

p
e�. H, which determines the specific heat coefficient,

the spin susceptibility, and ≠n�≠m, is uncritical, which
makes this MIT an Anderson transition.

Now we add magnetic annealed disorder to the model.
Since our general results are independent of its origin,
we first proceed without specifying it. Annealed disorder
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implies that the Q in the resulting terms all carry the same
replica index [4]; otherwise, the functional form of the
resulting additional terms in the action can be taken from
Ref. [6]. We obtain two additional terms, viz.,

DA�1� �
TM1

8

X
a

Z
dx

3X
j�1

�tr����t3 ≠ sj�Qaa�x����2

2 tr���Qaa�x����2� , (2a)

and DA�2� � DA�2,s� 1 DA�2,t�, where

DA�2,j� �
TM

j
2

8

X
afib

X
nm

X
r�0,3

Z
dx �tr�tr ≠ si�Qab

nm �x��

3 �tr�ty
r ≠ si�Qba

mn �x�� , (2b)

with j � s for i � 0 (spin-singlet), and j � t for i �
1, 2, 3 (spin-triplet). DA�2� arises from the need to absorb
the scattering rate due to the annealed disorder in G. The
coupling constants M1, Ms

2 , and Mt
2 are related to the

strength of the magnetic annealed disorder. The factor of
T appears naturally in front of any annealed disorder term,
a crucial point that we will come back to later.

The action A 1 DA�1� 1 DA�2� can be analyzed by
standard means. Note that the mass terms in Eqs. (2a) and
(2b) are proportional to temperature, making them quite
different from conventional masses due to quenched disor-
der. In many respects, they are similar to electron-electron
interaction terms in a Q-field theory formalism [7]. We de-
note the renormalized coupling constants that correspond
to G, H, M1, and M

s,t
2 by g, h, m1, and m

s,t
2 , and de-

fine d
s,t
1,2 � m

s,t
1,2�h. The renormalization group (RG) flow

equations to one-loop order are

dg
dl

� 2eg 1 g2�ds
2 1 3dt

2 2 3d1� , (3a)

dh
dl

� 2hg�ds
2 1 3dt

2 2 3d1� , (3b)

dd1

dl
� 2g�24d2

1 1 d1�ds
2 1 3dt

2� 1 �ds
2 2 dt

2�2� ,

(3c)

dd
s
2

dl
� g�3d2

1 1 3d1�ds
2 2 2dt

2� 2 3dt
2�ds

2 2 dt
2�� ,

(3d)

dd
t
2

dl
� g�3d2

1 2 d1�2ds
2 1 dt

2� 2 �ds
2�2

2 2�dt
2�2 1 3ds

2dt
2� , (3e)

where l � lnb with b the RG length scale factor. Besides
unstable fixed points (FPs), there is a line of critical fixed
points (FPs) �g�, h�, d�

1 , d
s�
2 , dt�

2 � � �e�4d
�
2 , 0, 0, d�

2 , d�
2�

that corresponds to an MIT (all of these FPs belong to the
same universality class). Linearization about any of these
FPs yields one relevant eigenvalue lg � e 1 O�e2� that

determines the correlation length exponent n � 1�lg, one
marginal eigenvalue that corresponds to moving along the
line of FPs and two irrelevant eigenvalues equal to 2e 1

O�e2�. The anomalous dimension of h is k � 2e 1

O�e2�. In addition, the critical behavior of the single-
particle density of states (DOS) N at the Fermi level can
be obtained from the wave-function renormalization.
By choosing the critical exponent of the DOS b, the
correlation length exponent n, and the dynamical critical
exponent z � d 1 k as independent exponents, we find

n � 1�e 1 O�1�, b � e 1 O�e2� ,

z � 2 1 O�e2� . (4)

For the conductivity exponent we find s � ne � 1 1

O�e�, and ≠n�≠m, the spin susceptibility xs, and the spe-
cific heat coefficient g � CV�T , which we collectively
denote by x , all vanish with a critical exponent determined
by k. The diffusion coefficient, on the other hand, has no
anomalous dimension and thus is uncritical to one-loop
order, as can be seen from Eqs. (3a) and (3b). With t the
dimensionless distance from the critical point at T � 0,
and E the energy, we can summarize the critical behavior
of these quantities by the homogeneity laws

x�t,T � � bkx�tb1�n ,Tbz� , (5a)

N�t,T ,E� � b2b�nN�tb1�n ,Tbz ,Ebz� , (5b)

s�t,T � � b2s�ns�tb1�n ,Tbz� , (5c)

D�t,T � � b2�s�n1k�D�tb1�n ,Tbz� . (5d)

We conclude that the MIT is driven by the vanishing of
≠n�≠m, and therefore is qualitatively different from the
localization transition that is found in the absence of an-
nealed disorder. Indeed, by putting M1 � Ms

2 � Mt
2 � 0,

we find that all thermodynamic anomalies disappear, as
does the one-loop correction to g. At two-loop order, one
finds instead a MIT of Anderson type [1].

We now turn to a specific realization, via local magnetic
moments, of the annealed disorder that leads to the striking
effects discussed above. To explain the salient points, it
is easiest to initially consider a simpler field theory than
the Q-matrix theory studied above, and adapt a classical
line of reasoning from Ref. [8] to quantum field theories.
Accordingly, we consider a scalar quantum field f�x, t�
and an action

S�f� �
Z

dx �f≠tf 2 H �f, =f�� . (6)

Here x � �x, t� comprises position x and imaginary time
t,

R
dx �

R
dx

R
dt, H is a Hamiltonian density, and

we use units such that h̄ � kB � 1. We will assume that S
describes a phase transition from a disordered to an ordered
phase, and will use a magnetic language, referring to �f�
as “magnetization.” Suppose that H contains quenched
disorder of a random-mass type, and that we are in the
nonmagnetic phase, �f� � 0. The key idea is to not inte-
grate out the quenched disorder as a first step, as one does
in a conventional treatment [4], but rather to work with a
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particular disorder realization. Because of the quenched
disorder, there will be regions in space that energetically
favor local order, �f� fi 0, even though there is no global
order. Deep inside the disordered phase these regions will
be rare, but in an arbitrarily large system we will find ar-
bitrarily large rare regions with a finite probability. The
action S will then have static saddle-point solutions F�x�
which have a nonvanishing value of the magnetization only
in the rare regions. Let there be N such rare regions and
associated local blobs of magnetization or LMs. We can
then actually construct 2N such saddle points, which differ
only by the way the sign of the magnetization is distributed
among the LMs. Since the LMs are far apart, the energy
differences between these 2N saddle points will be small.
In expanding about the saddle points, we therefore have no
reason to prefer one of them over any of the others. Fur-
thermore, since the LMs are self-generated by the system,
albeit in response to the quenched potential, we assume
that they are in thermal equilibrium with all other degrees
of freedom as well as with each other. To calculate the par-
tition function Z it is therefore necessary to take into ac-
count fluctuations in the vicinity of each of the 2N saddle
points [9]:

Z 	
2NX
a�1

Z
,
D�w� exp�2S�F�a� 1 w�� . (7)

Here
R

, D�w� denotes an integration over small fluctua-
tions w in the vicinity of each of the saddle points. Notice
that this restriction to small fluctuations is necessary in
order to avoid double counting. Conversely, if we could
perform the integral over the fluctuations exactly, then
it would be sufficient to expand about one of the saddle
points. In practice, however, one is restricted to a pertur-
bative evaluation of the functional integral, and Eq. (7) is
a good approximation [11].

We now consider the thermodynamic limit. Then the
discrete set of 2N saddle points turns into a saddle-point
manifold M�F� that needs to be integrated over. By
splitting off the saddle-point part of the action, S�f� �
S�F� 1 DS�F, w�, we have

Z �
Z

D�F�P�F�
Z

D�w� exp�2DS�F, w�� , (8a)

with the probability distribution P given by

P�F� � S �F� exp

µ
2

1
T

Z
dxH �F, =F�

∂
. (8b)

Here S denotes the support of the saddle-point manifold
M . Notice the factor of 1�T in the exponent, which results
from the static nature of the saddle points [12].

In general, it is not possible to determine P�F� explic-
itly. However, if we perform the F integration by means
of a cumulant expansion, the most relevant term in the ef-
fective action will be the one that results from the term
quadratic in H �F� and the linear coupling between F

and w2 in DS. To obtain the most relevant term in the
effective theory for the fluctuations w, we thus can write,
with w . 0 a number [12],

Z	
Z

D�w�e2S�w�
Z

D�F� exp

µ
21
wT

Z
dx F2�x�

∂

3 exp

µZ
dx F�x�w2�x�

∂
. (9)

Equation (9) is the partition function one would obtain
by expanding perturbatively about just one of the saddle
points, with static, annealed disorder appearing in addi-
tion to the quenched disorder still contained in S�w�. The
annealed disorder is governed by a Gaussian distribution
whose variance is proportional to T . This property reflects
the fact that the annealed disorder, as classical degrees of
freedom in equilibrium with the rest of the system, must
come with a Boltzmann weight, and it is the reason for the
factors of T in Eqs. (2a) and (2b).

Let us now explain how these arguments can be applied
to the Q-field theory of interacting electrons to arrive at
the action, Eqs. (1), (2a), and (2b). The magnetization is
proportional to the expectation value �tr�t3 ≠ si�Q�x�� [7],
and, in the presence of quenched disorder that favors the
formation of magnetic LMs, the exact fermionic theory that
underlies the NLsM [7] allows for saddle-point solutions
where these components of Q are locally nonzero and
play the role of the field F above. This is in addition
to a globally nonzero �tr�t0 ≠ s0�Q�x�� which reflects a
nonvanishing DOS. By following the above reasoning for
a scalar field, and going through the derivation of the sigma
model again, one obtains Eqs. (1), (2a), and (2b).

We conclude with several remarks. First, we emphasize
that we have studied a simplified model, neglecting both
the Cooper channel and the electron-electron interaction.
The latter point requires some clarification. In order to gen-
erate the annealed disorder from LMs, some interaction is
necessary, (i) for local magnetic order to develop, and
(ii) in order for our canonical averaging over the saddle
points to make physical sense. A truly noninteracting sys-
tem would not sample all of these field configurations. Put
differently, interactions make the energy barriers between
the saddle points, which are infinite in a noninteracting sys-
tem, finite and thus allow for an equilibration of the saddle-
point degrees of freedom [9,11]. We have simplified our
model by assuming points (i) and (ii) above to be the only
effect of the interactions. Of course, if the annealed dis-
order were due to some other mechanism, then our re-
sults would also apply to strictly noninteracting electrons.
Clearly, one can study generalizations of our model. In
addition to adding an explicit interaction term, one can re-
store the Cooper channel, which will make the FP we found
compete with the ordinary localization FP that also occurs
at one-loop order. In systems with time reversal symme-
try, one then expects the MIT studied here to get preempted
by a localization transition if the bare dimensionless mass
M2�H is smaller than a number of O�1�. It would also be
interesting to consider the present model to two-loop or-
der to see whether the diffusion coefficient will still not
be renormalized (apart from the “diffuson” localization
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contributions that will appear at that order) and whether
the line of FPs gives way to a more conventional FP struc-
ture. These questions will be considered in the future.

Second, we point out that the strong effects of annealed
disorder we found are characteristic of quantum statistical
mechanics. In a classical scalar field theory, the leading
term in the action, generated upon integrating out annealed
disorder, is of the form [see Eq. (9)] 2

R
dx w4�x�. It

thus has the same form as the ordinary w4 term and is
in general not very interesting (although it can lead, e.g.,
to a first order phase transition). In a quantum system, on
the other hand, integrating out the annealed disorder yields
2

R
dx

R
dt dt0 w2�x, t�w2�x, t0�, which has a different

time structure than the usual w4 term. It is the extra time
integral that makes the annealed disorder term more rele-
vant than in the classical case.

Third, we come back to the fact that the variance of the
Gaussian distribution for the annealed disorder is linear in
T . If one used a Gaussian distribution with a temperature
independent width, one would encounter factors of 1�T in
perturbation theory that force one to scale the annealed dis-
order strength with T to obtain a meaningful theory. An-
nealed disorder with an unbounded distribution and a finite
variance at T � 0 is unphysical, since it allows the system
to lower its energy arbitrarily far by digging itself a deeper
and deeper trough. The necessity of the factor of T was re-
alized in Ref. [10], but its origin was not recognized [13].

Finally, let us explain why annealed disorder leads to
a critical ≠n�≠m, while quenched disorder without elec-
tron-electron interactions does not. To see this, we realize
that annealed disorder essentially means potential troughs
that are somewhat flexible, i.e., they adjust in response to
the electrons. Let the sytem be in equilibrium at some
value of the chemical potential m, and change m slightly.
Then the flexible potential will adjust, and as a result fewer
electrons will have to flow out of or into the grand canon-
ical reservoir than would be the case in the absence of an-
nealed disorder. This explains why there is a correction to
≠n�≠m in perturbation theory. Furthermore, the diffusive
dynamics of the electrons lead to this correction being a
frequency-momentum integral over diffusion propagators,
which is logarithmically singular in 2D. In d � 2 1 e

this leads to a critical ≠n�≠m, as happens with other quan-
tities that are singular in perturbation theory in 2D. This is
the only known mechanism for a critical ≠n�≠m at a MIT
in low-dimensional systems [14]. The recent observation
of a critical ≠n�≠m at a 2D MIT [15] is therefore very
interesting in this context, even though our current theory
does not describe a MIT in d � 2.

This work was initiated at the Aspen Center for Physics,
and supported by the NSF under Grants No. DMR-98-
70597 and No. DMR–96–32978, and by the DFG under
Grant No. SFB 393/C2.
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