
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Physics Faculty Research & Creative Works Physics 

01 Jun 1999 

First Order Transitions and Multicritical Points in Weak Itinerant First Order Transitions and Multicritical Points in Weak Itinerant 

Ferromagnets Ferromagnets 

Dietrich Belitz 

Theodore R. Kirkpatrick 

Thomas Vojta 
Missouri University of Science and Technology, vojtat@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
D. Belitz et al., "First Order Transitions and Multicritical Points in Weak Itinerant Ferromagnets," Physical 
Review Letters, vol. 82, no. 23, pp. 4707-4710, American Physical Society (APS), Jun 1999. 
The definitive version is available at https://doi.org/10.1103/PhysRevLett.82.4707 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Physics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work 
is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/phys_facwork
https://scholarsmine.mst.edu/phys
https://scholarsmine.mst.edu/phys_facwork?utm_source=scholarsmine.mst.edu%2Fphys_facwork%2F1119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarsmine.mst.edu%2Fphys_facwork%2F1119&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1103/PhysRevLett.82.4707
mailto:scholarsmine@mst.edu


VOLUME 82, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 7 JUNE 1999

First Order Transitions and Multicritical Points in Weak Itinerant Ferromagnets

D. Belitz* and T. R. Kirkpatrick†

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

Thomas Vojta
Institut für Physik, TU Chemnitz, D-09107 Chemnitz, Germany

(Received 4 January 1999)

It is shown that the phase transition in low-Tc clean itinerant ferromagnets is generically of first order,
due to correlation effects that lead to a nonanalytic term in the free energy. A tricritical point separates
the line of first order transitions from Heisenberg critical behavior at higher temperatures. Sufficiently
strong quenched disorder suppresses the first order transition via the appearance of a critical end point.
A semiquantitative discussion is given in terms of recent experiments on MnSi, and predictions for
other experiments are made. [S0031-9007(99)09305-9]

PACS numbers: 75.20.En, 64.60.Kw, 75.45.+ j

The thermal paramagnet-to-ferromagnet transition at
the Curie temperatureTC is usually regarded as a prime
example of a second order phase transition. For materials
with high TC this is well established both experimentally
and theoretically. Recently there has been a considerable
interest in the correspondingquantumphase transition of
itinerant electrons at zero temperature (T ­ 0), and in the
related finiteT properties of weak itinerant ferromagnets,
i.e., systems with a very lowTC. Experimentally, the
transition in the weak ferromagnet MnSi has been tuned
to different TC by applying hydrostatic pressure [1].
Interestingly, the transition at lowT was found to be
of first order, while at higher transition temperatures it
is of second order [2]. The tricritical temperature that
separates the two types of transitions was found to roughly
coincide with the location of a maximum in the magnetic
susceptibility in the paramagnetic phase. Theoretically, it
has been shown [3,4] that in aT ­ 0 itinerant electron
system, soft modes that are unrelated to the critical order
parameter (OP) or magnetization fluctuations couple to
the latter. This leads to an effective long-range interaction
between the OP fluctuations. In disordered systems, the
additional soft modes are the same “diffusons” that cause
the so-called weak-localization effects in paramagnetic
metals [5]. In clean systems there are analogous, albeit
weaker, effects that manifest themselves as corrections to
Fermi liquid theory [6]. A Gaussian theory is sufficient
to obtain the exact quantum critical behavior in the most
interesting dimension,d ­ 3, for clean as well as for
disordered systems (apart from logarithmic corrections in
the clean case) [3,4].

In this Letter, we show that at sufficiently low tem-
peratures the phase transition in itinerant ferromagnets is
genericallyof first order. This surprising result is shown
to be rooted in fundamental and universal many-body
physics underlying the transition, viz. long-wavelength
correlation effects, and, hence to be independent of the
band structure. This suggests that the behavior observed
in MnSi is generic, and should also be present in other

weak itinerant ferromagnets. We also make detailed pre-
dictions about how quenched disorder suppresses the first
order transition, which allows for decisive experimental
checks of our theory.

Let us start by deriving the functional form of the free
energy of a bulk itinerant ferromagnet at finiteT , and in
the presence of quenched disorder that we parametrize by
G ­ 1yeFt, whereeF is the Fermi energy, andt is the
elastic mean-free time. The general Landau expansion of
the free energyF as a function of the magnetic momentm
in an approximation that neglects OP fluctuations is

F ­ tm2 1 u4m4 1 u6m6 1 . . . . (1a)

The coefficientst, u4, u6, etc. in this expansion can have
nontrivial properties and contain important physics. A
derivation from a microscopic theory shows that they are
given as frequency-momentum integrals over correlation
functions in a “reference system” that depends on the
nature of the underlying microscopic model [7]. If the
critical magnetization fluctuations are the only soft modes
in the system, then they are simply numbers. However, if
in the process of deriving the Landau functional some other
soft modes have been integrated out, then the coefficients
will, in general, not exist, since they are represented as
diverging integrals over the soft modes. In Refs. [3,4]
it was shown that in an itinerant electron system atT ­
0 there are indeed such soft modes. In the disordered
case, these are the diffusons mentioned above, with a
dispersion relationv , k2, and they lead to coefficients
whose divergent parts have the form

u2m ~
Z L

0
dk k2

Z
dv

1
sv 1 k2d2m

. (1b)

HereL is a momentum cutoff, and all prefactors in the inte-
grals have been omitted. In the clean case, the relevant soft
modes are particle-hole excitations in the spin-triplet chan-
nel with a ballistic dispersion relation,v , k. The result-
ing integrals are still divergent, although not as strongly as
in the disordered case. It was shown in Refs. [3,4] that
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these divergent terms in the Landau expansion can be un-
derstood as an illegal expansion of a nonanalytic term in
the free energy of the form

fsmd ­ m4
Z L

0
dk k2

Z `

0
dv

s21dx

fsv 1 kxd2 1 m2g2 .

(2)

In the disordered case, wherex ­ 2, this follows explicitly
from Eq. (3.6’) of Ref. [3]. In the clean case, an analogous
treatment yields the same expression withx ­ 1. Notice
the different sign of the dirty case compared to the clean
one, which we will come back to below. Equation (2)
yieldsfsmd ~ m5y2 andfsmd ~ m4 lnm in the disordered
and clean cases, respectively. In either case, the resulting
singularity is protected by the magnetization, which gives
the soft modes a mass. The leading effect ofT fi 0 is
adequately represented by replacingv ! v 1 T . In ad-
dition, in the presence of disorder the ballistic modes in the
clean case obtain a mass proportional to1yt, so the appro-
priate generalization of Eq. (2) for the clean case (x ­ 1)
to finite temperature and disorder is obtained by the re-
placementv ! v 1 T 1 1yt. Doing the integrals, and
adding the usual terms of orderm2 and m4, we obtain a
free energy of the form

F ­ tm2 1 GsNFGtdm4fm2 1 saT d2g23y4

1 ym4 lnfm2 1 sT 1 bGd2g 1 um4 1 Osm6d ,
(3)

whereGt is an effective spin-triplet interaction amplitude
[3] made dimensionless by means of a density of states
at the Fermi level,NF . If we measureF, m, and T in
terms of a microscopic energy, e.g.,eF , then t, y, and
u are all dimensionless.y is quadratic inGt [4]. t ­
1 2 NFU is the dimensionless distance from the critical
point. It depends on the physical spin-triplet interaction
amplitudeU, with NFU ø 1 in a ferromagnetic or nearly
ferromagnetic system, whileGt above is an effective
interaction amplitude withNFGt , 1. Gt is expected to be
relatively larger in strongly correlated systems. Finally,a

andb are parameters that measure the relative strengths of
the temperature and the disorder dependence, respectively,
in the two nonanalytic terms. They are numbers of order
unity, and likeu andy they are nonuniversal. Equation (3)
provides a functional form of the free energy that correctly
describes the leading nonanalyticm-dependence for both
clean and disordered systems, as well as the leading
temperature cutoff for either term and the leading disorder
cutoff for the clean nonanalyticity.

The sign ofy merits some attention. Perturbation theory
to second order inGt yields y . 0 [4,8]. Further,y .

0 indicates a decrease of the effective Stoner coupling
constantI due to correlation effects:I is a homogeneous
spin susceptibility,y . 0 means that this susceptibility
increases as the wave number increases from zero [8],
and correlation effects decrease with increasing wave
number. It is well known that correlation effects, in
general, decreaseI [9], andy . 0 is consistent with that.

Reference [4] has given some possible mechanisms fory

to be negative at least in some materials, and shown that in
this case the ferromagnetic transition is always of second
order. However, the generic case isy . 0, which we will
now discuss.

We first consider the caseT ­ 0. The transition in
the clean system,G ­ 0, is then of first order, since
m4 lnm , 0 for small m. Upon disordering the system,
G . 0, the negative term is no longer the leading one at
t ­ 0. For small values ofG, the transition remains first
order. However, forG exceeding a valueGce the first
order transition occurs only att , 0, and it is preempted
by a second order transition. Since the negative term is
only the third term in anm expansion ofF, the multicritical
point where the nature of the transition changes is a critical
end point (CEP) [10]. The phase diagram in theG-t plane
is shown in Fig. 1. ForGce , G , Gc, the second order
transition att ­ 0 is followed by a second transition, the
second one being of first order, to a state with a larger
magnetization. The line of first order transitions ends in
a critical point (CP) at a disorder valueGc, where the two
minima in the free energy merge.

Before we considerT . 0, let us discuss this result
and the validity of our conclusions. To facilitate an ana-
lytic discussion, we putb ­ 0. We then haveF ­
tm2 1 GsNFGtdm5y2 1 2ym4 lnm 1 um4. At G ­ 0,
there is a first order transition att ­ y expf2s1 1 uyydg,
and the magnetization at the transition has a valuem ­
expf2s1 1 uyydy2g. Notice that the nonanalytic term is
the leading one in F after the tm2 term, and that we
know the functional form ofF exactly up to Osm4d.
As long asuyy ¿ 1, m is exponentially small at the
transition. For smally, our Landau expansion is there-
fore controlled in the sense that terms ofOsm6d and
higher would have to have exponentially large coeffi-
cients in order to change our results. ForG . Gce ­
s4yy3NFGtd expf2s1 1 3uy4ydg, the first order transition
is preempted by a second order one. At the CEP, the mag-
netic moment has the valuem ­ expf2s2y3 1 uy2ydg ­
e21y6 msG ­ 0d. Allowing for b ­ Os1d fi 0, and re-
peating the calculation numerically, leads only to minor
quantitative changes of these results.

FIG. 1. Phase diagram atT ­ 0 for u ­ 1, y ­ 0.5, NFGt ­
0.5, a ­ b ­ 1, showing a second order transition (dashed
line), and a first order transition (solid line).
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At T . 0, the free energy is an analytic function ofm,
but for smallT the coefficients in anm expansion become
very large. Our remarks about the validity of our truncated
Landau expansion therefore still apply; i.e., at0 , kBT ø
eF , our theory contains the most important terms to every
order in an expansion in powers ofm2. Let us first consider
the clean system,G ­ 0. There is a tricritical point (TCP)
atTtc ­ exps2uy2yd, with a first order transition forT ,

Ttc, and a line of Heisenberg critical points forT . Ttc.
To describe the (conventional) tricritical behavior ind ­ 3
our mean-field theory is sufficient (apart from logarithmic
corrections) [11]; for the critical behavior atT . Ttc it is
of course not.

For the suppression of the first order transition by disor-
der atT . 0 we find two different possibilities, depending
on the value of the parametera. For smalla (a & 1.5
with our choice of the remaining parameters, Fig. 2), the
TCP is replaced by a CEP forG larger than someGtce ,

Gce. At G ­ Gce, the CEP reachesT ­ 0, and for larger
values ofG the transition is of second order for allT . At
smallT , it is followed by a first order transition. The line
of first order transitions ends in a critical point, and disap-
pears only forG ­ Gc. For larger values ofa (Fig. 3),
the TCP persists for a range of disorder larger thanGce.
The first order transition first gets preempted in a tempera-
ture window between two CEPs. AtG ­ Gce, the lower
CEP reachesT ­ 0, while the TCP at higher temperature
survives. With further increasing disorder, two CPs appear
in the ordered phase, and the remaining CEP gets replaced
by a TCP. Finally, the two TCPs merge, and the remaining
CP reachesT ­ 0, eliminating the last temperature regions
with first order transitions. Notice that the interesting fea-
tures of these phase diagrams do not depend on the loga-
rithm in Eq. (3); similar features are obtained in standard
phenomenological Landau expansions with a negative co-
efficient of the third term [12]. We stress again, however,
that in our case the expansion is controlled, and that we
have a definite physical mechanism for the appearance of
a negative term, in contrast to purely phenomenological
theories.

We now turn to a discussion of the available experi-
mental information on this subject. MnSi has a low
TC (ø30 K) under ambient pressure, andTc can be
driven to zero by a hydrostatic pressurepc ø 15 kbar.

kBTyeF ø 1 always, andT is low enough to suppress
phase breaking processes, so the quantum critical behavior
is easily accessible experimentally. This system has been
studied in detail by Pfleidereret al. [1] These authors
found from susceptibility measurements that the transition
turns first order at aTc of about 12 K. The line of second
order transitions was found to scale with pressure asTc ~

spc 2 pd3y4, while in the first order regime the transition
temperature varies asT1 ~ sp 2 pcd1y2. The scaling of
Tc with pressure was explained by a scaling analysis
based on the self-consistently renormalized (SCR) theory
of Moriya and Kawabata [13], assuming a dynamical
exponentz ­ 3. The first order transition at lowT was
attributed in Ref. [1] to a sharp structure in the density of
states at the Fermi level.

Let us look at the experiment in the light of the above
discussion. In Ref. [4] it was shown that the quantum
phase transition ind ­ 3 is indeed correctly described
by SCR theory, apart from logarithmic corrections that
would be very difficult to detect experimentally, and
that the dynamical critical exponent ind ­ 3 is z ­ 3.
The analysis of Ref. [1] was therefore adequate, and, in
particular, the quantum-to-classical crossover exponentf,
which determines the behavior of the critical temperature
as a function oft through the relationTc ~ tf, has a
value f ­ 3y4. If one makes the plausible assumption
that t depends linearly on the hydrostatic pressure, at
least for smallt, then this is in agreement with both the
experimental finding and the analysis in Ref. [1]. As for
the pressure dependence ofT1, one of the temperature
scales in the problem is the Fermi liquid temperature
scale [4], which arises from a quadraticT -dependence
of t. Since the first order transition is determined by
the condition tsT1d ­ const, we immediately getT1 ~
p

pc 2 p, where we again assume a linear relation
betweenp andt.

We finally discuss the observation [1] that the tricritical
temperature roughly coincides with a minimum of the
inverse magnetic susceptibilityx21 in the paramagnetic
phase. Ind dimensions, the leadingT -dependence of the
paramagnetic susceptibility is of the form [8]

xy2NF ­ 1 1 2ỹdT2Td23 2 ũdT2. (4)

FIG. 2. Phase diagrams foru ­ b ­ 1, y ­ a ­ NFGt ­ 0.5 showing first (solid) and second (dashed) order transitions.
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FIG. 3. Same as Fig. 2, but fora ­ 2.

In d ­ 3, the nonanalyticity is of the formT2 lnT . A
calculation ofỹ3 to second order inGt revealed [8] that
to that orderỹ3 ­ 0, in agreement with prior results from
Fermi liquid theory [14]. Reference [8] also discussed
that there are reasons to believe that theexact value
of ỹ3 ­ 0 may be nonzero. If we assume that this
is the case, then we obtain a minimum inx21 at
a temperatureTmin ­ exps2ũ3y2ỹ3 2 1y2d. Since the
nonanalyticities inF and x are manifestations of the
same singularity, one expectsũ3 ø u andỹ3 ø y, so that
Tmin ø Ttc. While this provides a possible explanation
for the observation, we stress the speculative nature of
the above considerations due to the theoretical uncertainty
about a nonanalyticT dependence ofx in d ­ 3.

Our theory thus provides us with a complete explana-
tion for the nature of the transitions observed in MnSi,
and, in particular, for the existence of a first order tran-
sition at lowT , which in Ref. [1] was attributed to a band
structure feature characteristic of MnSi. While this feature
may well be sufficient to make the transition in MnSi of
first order, the present theory leads to the surprising pre-
diction that the first order transition isgeneric, and thus
should be present in other weak itinerant ferromagnets as
well. Our theory further predicts in detail how the first
order transition will be suppressed by quenched disorder.
Observations of such a suppression, or lack thereof, would
be very interesting for corroborating or refuting the theory.
Semiquantitatively, the theory predicts that theT region
that shows a first order transition will be largest for
strongly correlated systems. Conversely, since the de-
pendence of the tricritical temperature on the system pa-
rameters is exponential, in some, or even many, systems
the first order transition may take place only at very low
temperatures. This may explain why in ZrZn2 no first
order transition has been observed [1], although the ex-
periment does not seem to rule out a weakly first order
transition [15].
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