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PACS. 64.60Ak – Renormalization-group, fractal, and percolation studies of phase transitions.
PACS. 75.10Jm – Quantized spin models.
PACS. 75.40−s – Critical-point effects, specific heats, short-range order.

Abstract. – The quantum ferromagnetic transition of itinerant electrons is considered. It is
shown that the Landau-Ginzburg-Wilson theory described by Hertz and others breaks down due
to a singular coupling between fluctuations of the conserved order parameter. This coupling
induces an effective long-range interaction between the spins of the form 1/r2d−1. It leads
to unusual scaling behavior at the quantum critical point in 1 < d ≤ 3 dimensions, which is
determined exactly.

One of the most obvious examples of a quantum phase transition is the ferromagnetic
transition of itinerant electrons at zero temperature T as a function of the exchange coupling
between the electron spins. Hertz [1] derived a Landau-Ginzburg-Wilson (LGW) functional
for this case in analogy to Wilson’s treatment of classical phase transitions, and analyzed it by
means of renormalization group methods. He found that the critical behavior in dimensions
d = 3, 2 is mean-field like, since the dynamical critical exponent z decreases the upper critical
dimension d+

c compared to the classical case. In a quest for nontrivial critical behavior, Hertz
studied a model with a magnetization confined to d < 3 dimensions, while the coefficients in
the LGW functional are those of a 3-d Fermi gas. For this model he concluded that d+

c = 1,
and performed a 1− ε expansion to calculate critical exponents in d < 1. Despite the artificial
nature of his model, there is a general belief that the qualitative features of Hertz’s analysis,
in particular the fact that there is mean-field–like critical behavior for all d > 1, apply to real
itinerant quantum ferromagnets as well.

In this letter we show that this belief is mistaken, since the LGW approach breaks down due
to the presence of soft modes in addition to the order parameter fluctuations, viz spin-triplet
particle-hole excitations that are integrated out in the derivation of the LGW functional. These
soft modes lead to singular vertices in the LGW functional, invalidating the LGW philosophy
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of deriving an effective local field theory in terms of the order parameter only (1). In Hertz’s
original model this does not change the critical behavior in d > 1, but it invalidates his 1− ε
expansion. More importantly, in a more realistic model the same effect leads to nontrivial
critical behavior for 1 < d ≤ 3, which we determine exactly.

Our results for realistic quantum magnets can be summarized as follows. The magnetization,
m, at T = 0 in a magnetic field H is given by the equation of state

tm+ vmd + um3 = H , (1)

where t is the dimensionless distance from the critical point, and u and v are finite numbers.
From (1) one obtains the critical exponents β and δ, defined by m ∼ tβ and m ∼ H1/δ,
respectively, at T = 0. For β and δ, and for the correlation length exponent ν, the order
parameter susceptibility exponent η, and the dynamical exponent z, we find

β = ν = 1/(d− 1), η = 3− d, δ = z = d (1 < d < 3), (2)

and β = ν = 1/2, η = 0, δ = z = 3 for d > 3. These exponents “lock into” mean-field values
at d = 3, but have nontrivial values for d < 3. In d = 3, there are logarithmic corrections to
power law scaling. Equation (1) applies to T = 0. At finite temperature, we find homogeneity
laws for m, and for the magnetic susceptibility, χm,

m(t, T,H) = b−β/νm(tb1/ν , T bφ/ν , Hbδβ/ν) , (3a)

χm(t, T,H) = bγ/νχm(tb1/ν , T bφ/ν , Hbδβ/ν) , (3b)

where b is an arbitrary scale factor. The exponent γ, defined by χm ∼ t−γ at T = H = 0,
and the crossover exponent φ that describes the crossover from the quantum to the classical
Heisenberg fixed point (FP) are given by

γ = β(δ − 1) = 1 , φ = ν , (4)

for all d > 1. Notice that the temperature dependence of the magnetization is not given by
the dynamical exponent. However, z controls the temperature dependence of the specific-
heat coefficient, γV = cV /T , which has a scale dimension of zero for all d, and logarithmic
corrections to scaling for all d < 3 (2),

γV (t, T,H) = Θ(3− d) ln b+ γV (tb1/ν , T bz, Hbδβ/ν) . (5)

Equations (1)-(5) represent the exact critical behavior of itinerant quantum Heisenberg ferro-
magnets for all d > 1 with the exception of d = 3, where additional logarithmic corrections to
scaling appear. We are able to obtain the critical behavior exactly, yet it is not mean-field like.
The exactness is due to the fact that we work above the upper critical dimension d+

c = 1. The
nontrivial exponents are due to a singular coupling between the critical modes which leads,
e.g., to the unusual term ∼ v in (1). Experimentally, we predict that for 3-d magnets with
a very low Tc there is a crossover from essentially mean-field quantum behavior to classical
Heisenberg behavior. In d = 2, where there is no classical transition, we predict that with
decreasing T , long-range order will develop, and the quantum phase transition at T = 0 will
display the nontrivial critical behavior shown above.

(1) We use the term “LGW theory” in the narrow sense, in which it is usually used in the literature,
of an effective field theory in terms of the order parameter field only.

(2) Wegner [2] has shown how “resonance” conditions between critical exponents lead to logarithmic
corrections to scaling. Their appearance for a whole range of dimensionalities in (5) is a consequence
of the exact relation z = d.
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We now sketch the derivation of these results. A more complete account of the technical
details will be given elsewhere [3]. We consider a d-dimensional continuum model of interacting
electrons, and pay particular attention to the particle-hole spin-triplet contribution [4] to the
interaction term in the action, St

int, whose (repulsive) coupling constant we denote by J .
Writing only the latter explicitly, and denoting the spin density by ns, the action reads

S = S0 + St
int = S0 + (J/2)

∫
dx ns(x) · ns(x) , (6)

where S0 contains all contributions to the action other than St
int. In particular, it contains the

particle-hole spin-singlet and particle-particle interactions, which will be important for what
follows.

∫
dx =

∫
dx
∫ 1/T

0
dτ , and we use a 4-vector notation x = (x, τ), with x a vector in

real space, and τ the imaginary time. Following Hertz, we perform a Hubbard-Stratonovich
decoupling of St

int by introducing a classical vector field M(x) with components M i that
couples to ns(x) and whose average is proportional to the magnetization, and we integrate out
all fermionic degrees of freedom. We obtain the partition function Z in the form

Z = e−F0/T

∫
D[M] exp

[
−Φ[M]

]
, (7a)

where F0 is the noncritical part of the free energy. The Landau-Ginzburg-Wilson (LGW)
functional Φ reads

Φ[M] =
1
2

∫
dx dy

1
J
δ(x− y)M(x) ·M(y) +

+
∞∑
n=2

an

∫
dx1 . . . dxn χ

(n)
i1...in

(x1, . . . , xn)M i1(x1) . . . M in(xn) , (7b)

where an = (−1)n+1/n!. The coefficients χ(n) in (7b) are connected n-point spin density
correlation functions of a reference system with action S0 [1]. The particle-hole spin-triplet
interaction J is missing in the bare reference system, but a nonzero J is generated perturba-
tively by the particle-particle interaction contained in S0. The reference system then has all of
the characteristics of the full action S, except that it must not undergo a phase transition lest
the separation of modes that is implicit in our singling out St

int for the decoupling procedure
breaks down.
χ(2) is the spin susceptibility of the reference system. Performing a Fourier transform from

x = (x, τ) to q = (q, Ω) with wave vector q and Matsubara frequency Ω, we have for small q
and Ω (3)

χ(2)(q, Ω) = χ0(q)[1− |Ω|/|q|] , (8a)

where q and Ω are measured in suitable units, and χ0(q) is the static spin susceptibility of
the reference system. We now use the fact that in a Fermi liquid at T = 0, χ0 is a nonanalytic
function of q of the form

χ0(q→ 0) ∼ const− |q|d−1 − q2 . (8b)

Here we have omitted all prefactors, since they are irrelevant for our purposes. This holds

(3) We are considering χ(2) in the limit q→ 0, |Ω| << |q|, since for a conserved order parameter,
Ω must be taken to zero before q in order to reach criticality.
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for 1 < d < 3; in d = 3 the nonanalyticity is of the form q2 ln |q| (4). Using (8), and with∫
q

=
∑

q T
∑
iΩ , the Gaussian part of Φ can be written

Φ(2)[M] =
∫
q

M(q)
[
t0 + cn|q|d−1 + caq2 + cd|Ω|/|q|

]
M(−q) . (9)

Here t0 = 1 − Γtχ(2)(q → 0, ωn = 0) is the bare distance from the critical point, and cn, ca
and cd are constants.

For the same physical reasons for which the nonanalyticity occurs in (8b), the coefficients
χ(n) in (7b) are in general not finite at zero frequencies and wave numbers. Let us focus in
χ(4), which will be the most interesting one for our purposes. Again, standard perturbation
theory shows that it is given schematically by [3]

χ(4) ∼ const + v

∫
k

[
|k|+ |ωn|

]−4 ∼ u+ v|p|d−3 . (10)

Here we have cut off the singularity by means of a wave number |p|, and u and v are finite
numbers. More generally, the coefficient of |M|n in Φ for |p| → 0 behaves like χ(n) =
v(n)|p|d+1−n. This implies that Φ contains a nonanalyticity which in our expansion takes
the form of a power series in |M|2/|p|2.

The functional Φ can be analyzed by using standard techniques [5]. We look for a FP where
cd and either cn (for 1 < d < 3), or ca (for d > 3) are not renormalized. This fixes the critical
exponents η and z. Choosing the scale dimension of a length L to be [L] = −1, standard
power counting [5] then yields the scale dimension of v(n) to be [v(n)] = −(n−2)(d−1)/2. All
non-Gaussian terms are thus irrelevant for d > 1, and they all become marginal in d = 1 and
relevant for d < 1. Several features of the critical behavior follow immediately. The critical
exponents η and z are fixed by the choice of our FP, and ν and γ as given in (2) and (4)
are obtained by considering the q-dependence of the Gaussian vertex (9). We determine the
equation of state by taking the term of order |M|4 in Φ into account. χ(4) is dangerously
irrelevant with respect to the magnetization. We have shown [3] that for scaling purposes the
cut-off |p| in (10) can be replaced by m. From this and (9) we obtain the effective equation of
state as given in (1).

These results completely specify the critical behavior at T = 0. Their most interesting
aspect is the nontrivial exponent values found for 1 < d < 3, which can nevertheless be
determined exactly. The reason for this is the |q|d−1-term in the Gaussian action (9). It
reflects the fact that in an interacting electron system, static correlations between spins do
not fall off exponentially with distance, but only algebraically like r−(2d−1). This slow decay
leads to a long-range interaction in the effective action which falls off like 1/r2d−1, see (9).
The critical behavior of classical Heisenberg magnets with such a long-range interaction has
been studied before [6].

We now turn to the T -dependence of the specific heat, cV . We expand the free-energy
functional (7b) about the expectation value, m, of M to second order, and then perform the
Gaussian integral to obtain the partition function. The free energy is obtained as the sum of
a mean-field contribution given by Φ[m], and a fluctuation contribution given by the Gaussian

(4) The physical origin of this nonanalyticity are mode-coupling effects analogous to those that
generate a term |q|d−2 in disordered Fermi systems [7]. We have ascertained the presence of the effect
in clean systems by calculating χ0 perturbatively to second order in the interaction. To that order,
the sign of the |q|d−1 term in eq. (8b) is positive, but higher-order terms will presumably lead to a
negative sign for realistic values of the interaction, thus allowing for a ferromagnetic ground state.
Here we discuss only the latter case. A more complete discussion, including the physical situation for
weak interactions, will be given elsewhere [3].
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integral. The latter yields the leading nonanalytic term in the free energy. We find [3] that
effectively H and T have the same scale dimension, viz. d(= z), and that at t = 0 there is
a logarithmic T -dependence of γV for all 1 < d < 3. If we put the t-dependence back in, we
obtain that the scale dependence of γV is given by (5).

For the magnetization the leading T -dependence is given by the mean-field contribution to
the free energy. We calculate the temperature corrections to the equation of state (1) and find
that for m >> T (in suitable units) md in (1) will be replaced by md[1 + const× T/m+ . . .],
while for m << T , t is replaced by t + T 1/ν . The effective scale dimension of T in m is
therefore 1 (not z), and we obtain for m and χm the homogeneity laws given by (3). Thus, the
relevant operator T in (3) reflects the crossover from the quantum to the classical FP rather
than dynamical scaling. Accordingly, we have written the T -dependence in (3) in terms of a
crossover exponent φ which is given by (4).

Next we briefly discuss Hertz’s original model, which differs from the one discussed above
in two ways. First, the reference ensemble consists of noninteracting electrons. Second, the
coefficients χ(n) are taken to be the correlation functions of a 3-d fermion system. χ(2) is then
simply the Lindhard function, so (8) gets replaced by

χ(2)(q, Ω) = 1− q2 − |Ω|/|q|+ . . . . (11)

Due to the missing interaction in the reference ensenble, χ(2)(q, 0) is now analytic at |q| = 0.
The resulting quadratic term in (7b) allows for a Gaussian FP with mean-field static exponents
and a dynamical exponent z = 3 [1]. Whether this FP is stable depends on the higher χ(n).
Hertz considered only the limit q = Ω = 0, where all of these terms are finite numbers and
irrelevant for d > 1. The quartic term is marginal in d = 1 and relevant for d < 1 [1].

The striking difference between the finite coefficients in Hertz’s model and the diverging
ones in the realistic model above is due to the latter containing interactions in the reference
ensemble. The interactions lead to frequency mixing, and hence to soft particle-hole excitations
contributing to the χ(n) even in the limit of zero external frequency. A similar effect is achieved
for noninteracting electrons by considering correlation functions at nonvanishing external
frequency. Therefore we include the higher-order terms in an expansion of the χ(n) in powers
of Ω and analyze the arising LGW functional by the same power counting arguments as above.
The details of this calculation will be presented elsewhere [3]. We find that all non-Gaussian
terms are still irrelevant for d ≥ 2 and the critical behavior is mean-field like. In d = 1, however,
the χ(n) change their functional form so that an infinite number of operators are relevant (not
marginal) with respect to the Gaussian FP in d = 1 and below. Therefore, the upper critical
dimension is not one, but rather the 1-d system is below its upper critical dimension, and will
show critical behavior that is substantially different from mean-field behavior.

We conclude with a few remarks. First, the vertices in the LGW functional discussed here
are singular only if the order parameter is conserved, and only at zero temperature, which
means that the phenomenon is confined to the quantum magnetic transition. Second, our
conclusion, although derived for the special example of itinerant quantum ferromagnetism, is
rather general: We expect the LGW formalism to break down whenever there are soft modes
other than the critical order parameter fluctuations that couple to the order parameter. The
general rule is that all of the soft modes should be retained on equal footing in the effective
theory. If any of them are integrated out, the resulting penalty are ill-behaved coefficients in
the LGW functional. This has been shown recently for disordered electrons [7]. The present
results indicate that the underlying principle is very general. Indeed, it also applies to classical
phase transitions with additional soft modes. However, there are many modes that are soft at
T = 0 but acquire a mass at finite temperature, making quantum phase transitions more likely
candidates. Finally, we mention that Sachdev [8] has noted that something must be wrong
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with Hertz’s theory in d < 1, since it violates an exact exponent equality for quantum phase
transitions with conserved order parameters. He suspected Hertz’s omission of the cubic term
in the LGW functional to be at fault. Our analysis provides instead the explanation given
above, namely the presence of infinitely many relevant operators due to the soft particle-hole
excitations.
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