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We show that layered quenched randomness in planar magnets leads to an unusual intermediate phase

between the conventional ferromagnetic low-temperature and paramagnetic high-temperature phases. In

this intermediate phase, which is part of the Griffiths region, the spin-wave stiffness perpendicular to the

random layers displays anomalous scaling behavior, with a continuously variable anomalous exponent,

while the magnetization and the stiffness parallel to the layers both remain finite. Analogous results hold

for superfluids and superconductors. We study the two phase transitions into the anomalous elastic phase,

and we discuss the universality of these results, and implications of finite sample size as well as possible

experiments.

DOI: 10.1103/PhysRevLett.105.085301 PACS numbers: 67.85.Hj, 74.40.�n, 75.10.Nr, 75.40.Cx

The macroscopic behavior of many-particle systems is
often sensitive to quenched disorder. For example, at zero-
temperature quantum phase transitions, the interplay of
quantum and disorder fluctuations gives rise to exotic
phenomena, such as quantum Griffiths singularities [1–
3], infinite-randomness critical points [4,5], and smeared
transitions [6,7]. The main reason for these strong effects
of disorder is the presence of perfect disorder correlations
in the imaginary-time dimension, which becomes infinitely
extended at zero temperature. Thus, one is effectively
dealing with infinitely large impurities.

This suggests that strong disorder effects should also
occur at classical (thermal) phase transitions, if the disor-
der is perfectly correlated in one or more space dimen-
sions. For example, the McCoy-Wu model [8,9], a two-
dimensional (2D) Ising model in which the disorder is
perfectly correlated in one dimension, shows an exotic
transition, characterized by a smooth specific heat but an
infinite susceptibility over a range of temperatures. By
using a strong-disorder renormalization group, Fisher
[4,5] showed that the critical point is of the infinite-
randomness kind, and is accompanied by power-law
Griffiths singularities. Similar behavior was found in
Heisenberg magnets having 2D disorder correlations [10].

In this Letter, we study thermal phase transitions exhib-
ited by randomly layered 3D superfluids, superconductors,
and planar magnets, as sketched in Fig. 1.

All these systems are characterized by two-component
order parameters of Uð1Þ or, equivalently, Oð2Þ symmetry
(representing the condensate wave function, Cooper pair
amplitude, and magnetization, respectively).

Couched in terms of the planar ferromagnet, our results
can be summarized as follows: The interplay of the layered
randomness and the Kosterlitz-Thouless (KT) [11] transi-
tions in strongly coupled multilayers (slabs) leads to an

anomalously elastic intermediate phase as part of the
Griffiths region associated with the phase transition. In
this anomalous Griffiths phase, the magnetization m and
the spin-wave stiffness �s;k parallel to the layers are both

nonzero (as in a conventional ferromagnet). However, the
stiffness �s;? perpendicular to the layers vanishes, and the

elastic free energy exhibits anomalous scaling behavior.
Specifically, the free energy �F due to twisted boundary
conditions (BCs) in the z direction, forcing the spins on the
top face in Fig. 1 to make an angle of � with those on the
bottom face, varies as

�F��2L�z
? (1)

with system size L?. Here, zðTÞ is a temperature dependent

FIG. 1 (color online). Schematic behavior of the magnetiza-
tion m and the stiffnesses �s;k and �s;? vs temperature T for a

bounded disorder distribution. SD and SO denote the conven-
tional strongly disordered and ordered phases, respectively. The
Griffiths region (bounded by Tu and Tl) consists of the ‘‘non-
anomalous’’ (G) and the anomalous (AG) Griffiths phases. For
an unbounded distribution, Tu ! 1. Inset: Randomly layered
magnet or superconductor: layers of two distinct materials are
deposited in a random sequence.
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dynamical exponent that varies continuously from z ¼ 1
at the upper Griffiths temperature Tu (i.e., the boundary
between the Griffiths region and the conventional para-
magnet) to z ¼ 1 at the temperature Ts where a nonzero
perpendicular stiffness first appears.

While anomalous elasticity of this type occurs in some
disordered systems possessing uncorrelated disorder (e.g.,
liquid crystals in aerogel [12]), in those cases it is charac-
terized by universal values of the anomalous exponent z:
the nonuniversality and strong temperature dependence of
z that we find here are, to the best of our knowledge, unique
to systems having correlated disorder.

We also find unusual behavior at the two transition
temperatures Tu and Ts. The magnetization m is nonzero
for all T < Tu and shows a double-exponential tail towards
the nonmagnetic phase. Close to Tu, it takes the asymptotic
form

lnðmÞ � � exp½aðTu � TÞ���; ðT ! Tu�Þ; (2)

where � � 0:6717 [13] is the correlation-length critical
exponent of a clean 3D planar (XY) magnet and a is a
nonuniversal constant. If an external magnetic field H is
applied at temperatures T & Tu, the magnetization van-
ishes with decreasing field more slowly than any power,

lnðmÞ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j lnðHÞjðTu � TÞ��

q
; ðH ! 0Þ: (3)

This relation applies for magnetizations larger than the
double-exponentially small value given in (2).

The parallel spin-wave stiffness (corresponding to a
twist of the BCs in the x or y direction) �s;k is nonzero

for all T < Tu and shows an exponential tail of the form

lnð�s;kÞ � ðTu � TÞ��; ðT ! Tu�Þ: (4)

In contrast, the perpendicular stiffness �s;? (correspond-

ing to a twist of the BCs in the z direction) vanishes as Ts is
approached from below via

�s;? � ðTs � TÞ; ðT ! T�
s Þ: (5)

In the remainder of this Letter, we sketch the derivation
of these results, compute finite-size effects, and discuss
possible experimental realizations. For definiteness, we
focus on the classical planar ferromagnet (i.e., the XY
model) on a cubic lattice. The Hamiltonian is given by

H¼�X

r

Jkz ðSr �Srþx̂þSr �SrþŷÞ�
X

r

J?z Sr �Srþẑ: (6)

Here, Sr is a two-component unit vector at lattice site r,
and x̂, ŷ, and ẑ are the unit vectors in the coordinate
directions. The exchange interactions within the layers,

Jkz , and between the layers, J?z , are both positive and
independent random functions of the perpendicular coor-
dinate z. For simplicity, we take all J?z � J? and draw the

Jkz from a binary distribution (Ju > Jl)

PðJkÞ ¼ ð1� cÞ�ðJk � JuÞ þ c�ðJk � JlÞ; (7)

where c is the concentration of ‘‘weak’’ layers.

Let us discuss the planar magnet (6) qualitatively. At
sufficiently high temperatures, the system is in a conven-
tional (i.e., strongly disordered) paramagnetic phase.
Below the upper Griffiths temperature Tu, which is defined

as the transition temperature of a clean system having Jkz �
Ju, rare thick slabs (‘‘rare regions’’) of strong (Jkz ¼ Ju)
layers show local magnetic order, while the bulk is non-
magnetic. Although individual such slabs are prevented
from developing true long-range order [14], they can
undergo KT transitions [11]. The unusual behavior,
Eqs. (1) and (2), is caused by the interplay between the
randomness and the KT physics of the rare regions.
Ultimately, below the lower Griffiths temperature Tl (the

transition temperature of a clean system having Jkz � Jl),
all layers order magnetically, and the system exhibits the
conventional (i.e., strongly ordered) ferromagnetic phase.
We now use optimal fluctuation theory (i.e., Lifshitz-tail

arguments [15]) to derive the thermodynamics in the
Griffiths region. The probability wðLRRÞ for finding a
rare region of LRR consecutive strong layers reads

wðLRRÞ � ð1� cÞLRR ¼ e�~cLRR ; (8)

with ~c � � lnð1� cÞ. Each individual such slab is equiva-
lent to a 2D XY model, and thus undergoes a KT transition
at some thickness-dependent temperature TKTðLRRÞ.
Finite-size scaling yields Tu � TKTðLRRÞ � L�1=�

RR . This
result defines a cutoff length LcðTÞ � ðTu � TÞ��. At any
temperature T < Tu, all rare regions of thickness LRR <
LcðTÞ are (locally) in the disordered phase, while those
having LRR > LcðTÞ are in the quasi-long-range ordered
KT phase.
Let us first consider a single rare region. According to

KT theory [11], the spatial spin correlation function CðxÞ
in the KT phase falls off as a power of the distance jxj:

CðxÞ � jxj�� ðjxj ! 1Þ: (9)

The exponent � is related to the renormalized (parallel)
spin-wave stiffness �s;RR of the slab via � ¼ T=ð2��s;RRÞ.
It takes the value 1=4 at the KT transition and is inversely
proportional to LRR for very thick rare regions. We thus
model the thickness dependence of � via � ¼
1
4LcðTÞ=LRR, which correctly describes both limits. The

power-law correlations also lead to a nonlinear magneti-
zation vs. field curve within the KT phase,

m�H�=ð4��Þ; (10)

which implies an infinite magnetic susceptibility.
We now combine the single-slab results, (9) and (10),

with the size distribution (8). We start with the response to
an external magnetic field H. Neglecting interactions be-
tween the rare regions for the moment, we write the rare-
region contribution to the magnetization as

m�
Z 1

LcðTÞ
dLRRwðLRRÞH�ðLRRÞ=½4��ðLRRÞ�: (11)
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For small fields, this integral can be evaluated using the
saddle-point method. This yields a saddle-point value
L2
sp ¼ j lnðHÞjLcðTÞ=ð16~cÞ, implying that the response at

small fields is dominated by thick rare regions. Inserting
Lsp into (11) immediately gives (3). This highly singular

result breaks down for H >Hx � exp½�16~cLcðTÞ�, at
which the saddle point reaches LcðTÞ. For H * Hx, the

response is of the power-law type, m�H1=15, until the
regular, linear-response part takes over at an even larger
field Hreg � exp½�ð15=14Þ~cLcðTÞ� [16].

The parallel spin-wave stiffness �s;k can be found anal-

ogously. The free energy cost due to a twist of the BCs in
either the x or y direction is simply a sum over all slabs in
the KT phase. Each slab has the same twisted BCs, thus,
the total parallel stiffness is given by

�s;k �
Z 1

LcðTÞ
dLRRwðLRRÞ�s;RRðLRRÞ: (12)

This integral is dominated by the contribution near the
lower limit, where �s;RR is approximately constant and

equal to 2T=�. To leading exponential accuracy, we thus
obtain �s;k � exp½�~cLcðTÞ�, which leads to (4).

To discuss the perpendicular stiffness �s;?, we apply

twisted BCs in the z direction. The resulting local twists
occur mostly in the disordered bulk between the rare
regions; due to the randomness, they are not uniform but
vary from layer to layer. As the spatial positions of the
rare regions are completely random, the distribution of
their nearest-neighbor distances R is Poissonian, PðRÞ ¼
RKT expð�R=RKTÞ, where RKT � exp½~cLcðTÞ� is the ty-
pical separation. The effective coupling between neigh-
boring rare regions falls off exponentially, J?effðRÞ �
expð�R=�0Þ, where �0 is the bulk correlation length.
Combining this exponential form with PðRÞ gives a
power-law distribution for the effective couplings, i.e.,

�PðJ?effÞ � ðJ?effÞð1=zÞ�1: (13)

The Griffiths dynamical exponent z � RKT=�0 takes the
value 1 at Tu, and decreases with decreasing temperature.
Writing the free energy due to the twist of the BCs by an
angle � as �F�P

zJ
?
eff�

2
z , with

P
z�z ¼ �, and mini-

mizing with respect to the �z, we obtain [10]

�s;? � h1=J?effi�1 (14)

where h� � �i denotes the average over the distribution (13).
This average diverges for z > 1, implying �s;? ¼ 0 at

temperatures just below Tu. Upon lowering T further, the
exponent z reaches the value 1 at a temperature Ts < Tu.
For T < Ts (i.e., z < 1), the average converges, yielding a
nonzero stiffness. Close to z ¼ 1, the average behaves as
h1=J?effi � 1=ð1� zÞ yielding (5).

Finally, we turn to the spontaneous magnetization m.
The reason that m> 0 for all T < Tu is the infinite sus-
ceptibility of those slabs that are in the KT phase. They
align to one another via an infinitesimal coupling. In con-
trast, in the quantum Griffiths scenario, realized in the

layered Heisenberg magnet [10], the rare regions have a
large but finite susceptibility. Aligning them requires a
nonzero coupling, so that long-range order only appears
at some critical temperature below Tu. To estimate m, we
combine the effective interaction J?eff with the KT scaling

within the rare regions. Consider an area of linear size L (in
the x and y directions) in one of the slabs. The typical
magnetization (per site) of such a region can be calculated

by integrating (9), yielding mðLÞ � L��=2. Now consider
two such areas in neighboring rare regions. Their interac-
tion can be estimated as J?effðLÞ ¼ J?effL

2m2ðLÞ �
L2�� expð�RKT=�0Þ. When this interaction becomes of
order T, the areas align, and long-range order sets in.

This happens at a length L ¼ Lx � ½expðRKT=�0Þ�1=ð2��Þ,
yielding

m� L��=2
x � exp½�ðRKT=�0Þ�=ð4� 2�Þ�: (15)

Because of the exponential size distribution (8), the vast
majority of rare regions in the KT phase are very close to
the KT transition. Thus, to a good approximation, we can
set � ¼ 1=4. Inserting this, along with RKT �
exp½~cLcðTÞ�, into (15) yields the final result (2). This
calculation can be refined by taking into account the ran-
dom distribution of rare-region separations, which only
modifies the nonuniversal constants in (2) [16].
We now turn to the aspects of finite system size. The

main effect of a finite perpendicular size L?, which is
experimentally important because the number of layers in
a real sample will often be small, is to limit the maximum
rare-region thickness Lmax

RR in the sample. Estimating Lmax
RR

via the condition that a sample of size L? contains, on
average, exactly one such rare region, i.e. L?wðLmax

RR Þ � 1,
we obtain Lmax

RR � lnðL?Þ=~c.
We note that Lmax

RR introduces an upper limit to the
integral (11) for the mðHÞ curve. When the saddle-point
value Lsp is larger than L

max
RR , which happens for fieldsH <

Hx with lnðHxÞ � ln2ðL?Þ=½cLcðTÞ�, the integral is domi-
nated by the contribution near the upper limit. For very low
fields, (3) gets thus replaced by a power law with a size-

dependent exponent: m�HB~cLcðTÞ= lnðL?Þ, with B a con-
stant. The same mechanism also introduces an upper limit
into the integral (12) for the parallel stiffness. As this
integral is dominated by the lower limit, the finite size
only matters when LcðTÞ> Lmax

RR . Thus, the exponential
tail (4) of �s;k gets cutoff near the upper Griffiths tempera-

ture, for Tu � T & ½lnðL?Þ=~c��1=�. Using (13), the mini-
mum J?eff in a sample of size L? behaves as L�z

? . Inserting

this into the elastic free energy expression given above (14)
yields the anomalous elasticity scaling (1).
As an example of the effects of a finite in-plane size Lk,

we discuss the magnetic susceptibility. When Lk is finite,
the susceptibility of a single slab in the KT phase is no
longer infinite. Its Lk dependence can be obtained from

integrating (9) to an upper cutoff Lk, which yields

�RRðLkÞ � L
2��
k . Summing this over all rare regions, and

evaluating the integral in the saddle-point approximation,
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gives a total susceptibility (per unit volume) of ��
L2
k expf�½cLcðTÞ lnðLkÞ�1=2g.
In summary, we have shown that the randomly layered

planar magnet features anomalous elasticity and unusual
thermodynamics in parts of the Griffiths phase. Although
we have considered the binary disorder distribution (7), the
functional forms of the results (1) to (5) remain valid for
any bounded distribution, provided it does not vanish too
rapidly at the upper bound. If the distribution is un-
bounded, the tails of magnetization and parallel stiffness
would extend to T ¼ 1, implying that the system is always
in the magnetic phase [16].

Our theory describes the regime where the system con-
sists of a few isolated rare regions in a disordered bulk; it
becomes controlled for T ! Tu. To describe the formation
of bulk order close to Tl, the growths and merging of rare
regions need to be included. Moreover, the character of the
vortex unbinding transition changes for layers that are
coupled to already ordered slabs [17,18].

The results (1) to (5) have been formulated in terms of
the planar ferromagnet. Nonetheless, they apply to all
transitions having Oð2Þ or Uð1Þ order parameters, if ex-
pressed in terms of the appropriate variables. For layered
superfluids and superconductors [19], the magnetization
should be exchanged for the condensate wave function or
the Cooper pair amplitude, respectively. In the same way,
the spin-wave stiffness should be exchanged for the super-
fluid density, and the external field could possibly be
realized via the proximity effect.

Let us relate our theory to the classification of phase
transitions with disorder based on the rare-region dimen-
sionality dRR [7,20]: It states that the critical behavior is
conventional if dRR is smaller than the lower critical di-
mension d�c of the corresponding clean transition; if the
rare regions order independently (i.e., if dRR > d�c ), the
transition is smeared. The marginal case, dRR ¼ d�c , usu-
ally leads to an infinite-randomness critical point. Based on
these arguments, one might expect an infinite-randomness
critical point in our system. However, the quasi long-range
order that arises on rare regions in the KT phase actually
leads to a hybrid between a smeared and a sharp transition.
On the one hand, long-range order is present in the entire
Griffiths phase (extending to T ¼ 1 for an unbounded
disorder distribution), just as at the smeared transition of
the randomly layered Ising model [21]. On the other hand,
the long-range order is due to a collective effect (rather
than individual freezing of rare regions), as in the randomly
layered Heisenberg magnet [10], which has a sharp
transition.

Not only are our results of conceptual importance for the
theory of phase transitions, but also they can be tested
experimentally by producing layered nanostructures of
magnetic or superconducting materials. Magnetic multi-
layers having systematic variations of Tc from layer to
layer have recently been produced [22], and our theory
should describe random versions of such structures (with

XY spin symmetry). Moreover, using ultracold atomic
gases, one should be able to completely engineer the
appropriate many-particle Hamiltonian. We note that the
Kosterlitz-Thouless transition in a single slab of an 87Rb
gas has already been observed [23].
This work was supported in part by NSF Grants

No. DMR-0339147, No. DMR-0906566, and No. DMR-
0906780; and by the Research Corporation. We also ac-
knowledge the hospitality of the Aspen Center of Physics.
Note added.—Recently, we learned of a study of the

same issues by means of a numerical strong-disorder re-
normalization group [24]. Our phase transition scenario
agrees with that of Ref. [24], and our asymptotic analytical
results complement their numerical data.
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