
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Mathematics and Statistics Faculty Research & 
Creative Works Mathematics and Statistics 

10 Nov 2020 

New Proper Orthogonal Decomposition Approximation Theory for New Proper Orthogonal Decomposition Approximation Theory for 

PDE Solution Data PDE Solution Data 

Sarah Locke 

John R. Singler 
Missouri University of Science and Technology, singlerj@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/math_stat_facwork 

 Part of the Mathematics Commons, and the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
S. Locke and J. R. Singler, "New Proper Orthogonal Decomposition Approximation Theory for PDE 
Solution Data," SIAM Journal on Numerical Analysis, vol. 58, no. 6, pp. 3251-3285, Society for Industrial 
and Applied Mathematics (SIAM), Nov 2020. 
The definitive version is available at https://doi.org/10.1137/19M1297002 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Mathematics and Statistics Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat
https://scholarsmine.mst.edu/math_stat_facwork?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1013&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1013&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F1013&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1137/19M1297002
mailto:scholarsmine@mst.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. NUMER. ANAL. © 2020 Society for Industrial and Applied Mathematics
Vol. 58, No. 6, pp. 3251--3285

NEW PROPER ORTHOGONAL DECOMPOSITION
APPROXIMATION THEORY FOR PDE SOLUTION DATA\ast 

SARAH LOCKE\dagger AND JOHN SINGLER\dagger 

Abstract. In our previous work [J. R. Singler, SIAM J. Numer. Anal., 52 (2014), pp. 852--
876], we considered the proper orthogonal decomposition (POD) of time varying PDE solution data
taking values in two different Hilbert spaces. We considered various POD projections of the data
and obtained new results concerning POD projection errors and error bounds for POD reduced
order models of PDEs. In this work, we improve on our earlier results concerning POD projections
by extending to a more general framework that allows for nonorthogonal POD projections and
seminorms. We obtain new exact error formulas and convergence results for POD data approximation
errors, and also prove new pointwise convergence results and error bounds for POD projections. We
consider both the discrete and continuous cases of POD. We also apply our results to several example
problems and show how the new results improve on previous work.

Key words. proper orthogonal decomposition, projections, approximation theory

AMS subject classifications. 65, 41
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1. Introduction. Proper orthogonal decomposition (POD) is a model order
reduction technique for partial differential equations (PDEs) and other mathematical
models. With this method, modes are computed from simulation or experimental data
and a Galerkin projection is used with these modes to reduce the model. Because POD
reduced order models often have very low dimension, they can be used to efficiently
simulate computationally demanding problems. Therefore, POD has been used in
many fields of study including fluid dynamics and control theory. For a small selection
of applications, see [4, 21, 33, 36, 45]. For more information about POD and many
known results, see, e.g., [14, 17, 30].

Because of the wide use of POD in many application areas, it is of great interest to
study the approximation errors in POD model order reduction procedures. Numerical
analysis results for POD reduced order models of PDEs were first obtained by Kunisch
and Volkwein [26, 27] and then by many others; see, e.g., [1, 5, 9, 10, 13, 15, 16, 18,
19, 20, 21, 23, 24, 29, 32, 37, 38, 40, 44, 46, 47, 48] and the references therein.

Understanding POD data approximation errors is typically important for these
numerical analysis works. To see this, let w be the solution of the mathematical model,
let wr be the solution of the POD reduced order model, and let \pi r be a projection
onto the span of the first r POD modes. Split the error as

w  - wr = \rho r + \theta r, \rho r = w  - \pi rw, \theta r = \pi rw  - wr.

Energy estimates can often be used to bound \theta r by quantities including various norms
of \rho r, the POD data approximation error for that projection.

In our previous work [40], exact error formulas and convergence results were
proven for norms of \rho r involving two Hilbert spaces, where one space is a subset
of the other. In that work, we considered the continuous POD setting and proved
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3252 SARAH LOCKE AND JOHN SINGLER

results for different combinations of POD spaces, projections, and norms. Shortly
after [40], Iliescu and Wang [20] provided analogous error formulas for the discrete
POD case, and many of the recent numerical analysis works mentioned above use
results from [20, 40] or extensions of these results to other scenarios.

As POD is increasingly applied in a variety of situations, it becomes more useful
to have error results that can be easily applied in a wide range of scenarios. Therefore,
in this work we extend POD data approximation results in [20, 40] to a generalized
framework that allows us to treat nonorthogonal POD projections and seminorms. We
prove new error formulas and convergence results for norms of quantities involving
\rho r = w  - \pi rw with various POD projections \pi r. We also prove new pointwise con-
vergence results for different POD projections. Nonorthogonal POD projections have
been used in the numerical analysis for POD reduced order models [18, 37]; however,
the exact POD data approximation error formulas and convergence results obtained
here are new. Exact POD data approximation errors using various seminorms have
been obtained in some cases (see, e.g., [10, section 3.3], [38, Lemma 3.1]); the gen-
eral extension and convergence results in this work are new. Finally, some pointwise
convergence results for POD projections were obtained in our earlier work [40]; we
obtain new error bounds and improved convergence results here.

The POD data approximation error formulas presented in this work are exact
and do not require the use of POD inverse inequalities. We consider both the discrete
and continuous cases for POD and generalize the setting in [20, 40] to allow a linear
mapping between two Hilbert spaces to act on the data. We require minimal assump-
tions on the data, the linear operator, and the Hilbert spaces; the assumptions we do
require are naturally satisfied in many applications and also allow us to obtain con-
vergence results even in the fully continuous case when the data has infinitely many
positive POD eigenvalues. We note that most of the proof strategies in this work are
new; some proofs do rely on techniques from [40, 41].

The rest of the paper is outlined as follows. Section 2 provides both a brief general
background and POD specific background for both the discrete and continuous cases.
Then section 3 provides an overview of the new results along with the notation and
main assumptions needed. Properties of POD and POD projections are given in
section 4. Error formulas are presented in section 5 and pointwise convergence results
are given in section 6. Finally, in section 7, we consider examples and compare the
results from previous work and the current work.

2. Background. In this section, we recall some functional analysis background
material, and also the basic theory for discrete POD and continuous POD. For details
and proofs for the basic discrete and continuous POD theory, see, e.g., [7, 14, 17, 27,
34, 43] and also Appendix A.

2.1. Functional analysis background. Let V and W be Hilbert spaces with
inner products1 (\cdot , \cdot )V and (\cdot , \cdot )W and corresponding norms \| \cdot \| V and \| \cdot \| W . Through-
out this work, the scalar field \BbbK for all spaces is either \BbbK = \BbbR or \BbbK = \BbbC .

Linear operators. Let T : V \rightarrow W be a linear operator with domain \scrD (T ) \subset V ,
range \scrR (T ) \subset W , and null space ker(T ) \subset V . The rank of T is the dimension of
\scrR (T ). The operator T is bounded if \| Tv\| W \leq M\| v\| V for all v \in \scrD (T ). Throughout
this paper, we only consider bounded operators T : V \rightarrow W that are defined on the
whole space, so \scrD (T ) = V . For such a bounded operator T : V \rightarrow W , the usual

1In this paper, all inner products and sesquilinear forms are linear in the first argument and
conjugate linear in the second argument.
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NEW POD APPROXIMATION THEORY 3253

operator norm is given by \| T\| = sup\{ \| Tv\| W : v \in V, \| v\| V = 1\} . We also consider
unbounded linear operators that are not defined everywhere, so that \scrD (T ) \not = V . The
operator T is closed if its graph, \scrG (T ) = \{ (v, w) : v \in \scrD (T ), w = Tv\} , is closed in
V \times W . If T is bounded (and everywhere defined), then T is closed. If T is closed
and invertible, then T - 1 is closed.

Adjoint operators. The Hilbert-adjoint operator T \ast : W \rightarrow V of T : V \rightarrow W
satisfies (Tv,w)W = (v, T \ast w)V for all v \in \scrD (T ) and w \in \scrD (T \ast ). If T is bounded,
then T \ast exists, is unique, and is also bounded. If T is densely defined, then T \ast exists,
is unique, and is closed; in addition, if T is closed, then T \ast is densely defined. If
T : V \rightarrow W is invertible, then we let T - \ast : V \rightarrow W denote the Hilbert adjoint
operator of the inverse T - 1 :W \rightarrow V . We note for T \ast to exist we need T bounded or
densely defined, and for T - \ast to exist we need T - 1 bounded or densely defined. We
note these assumptions when necessary.

The following basic result is important in this work.

Lemma 2.1. Let V and W be Hilbert spaces. If T : V \rightarrow W is a bounded linear
operator, then ker(TT \ast ) = ker(T \ast ) and ker(T \ast T ) = ker(T ).

Proof. We only prove the first one. Let w \in ker(TT \ast ). Then,

TT \ast w = 0 \Rightarrow (TT \ast w,w)W = 0 \Rightarrow (T \ast w, T \ast w)V = 0 \Rightarrow \| T \ast w\| 2V = 0 \Rightarrow T \ast w = 0.

Next, let w \in ker(T \ast ). Then T \ast w = 0 \Rightarrow TT \ast w = 0.

Projections. A bounded linear operator \Pi : V \rightarrow V is a projection onto U =
\scrR (\Pi ) if \Pi 2 = \Pi . Then we have \Pi v \in U for all v \in V and \Pi u = u for all u \in U . Also,
\Pi is an orthogonal projection if u = \Pi v \in U minimizes infu\in U \| v - u\| V for any v \in V .
A nontrivial orthogonal projection \Pi is automatically self-adjoint, i.e., \Pi \ast = \Pi , and
satisfies \| \Pi \| = 1. We consider nonorthogonal projections in this work, and therefore
we do not assume a projection is orthogonal or self-adjoint unless explicitly specified.
Sometimes, we assume a family of projections \{ \Pi r\} is uniformly bounded in operator
norm, i.e., there exists a constant C such that \| \Pi r\| \leq C for all r.

The singular value decomposition of a compact operator. If T : V \rightarrow W
is a compact linear operator, with separable Hilbert spaces V and W , then T has a
singular value decomposition (SVD). The positive singular values of T are defined to be
the square roots of the positive eigenvalues of the self-adjoint nonnegative compact
operators TT \ast : W \rightarrow W and T \ast T : V \rightarrow V . Further, the nonzero eigenvalues
of these operators are equal, and we consider zero a singular value of T if either
operator has a zero eigenvalue. If the ordered singular values of T are given by
\mu 1 \geq \mu 2 \geq \cdot \cdot \cdot \geq 0 (including repetitions), the orthonormal basis of eigenvectors of
TT \ast is given by \{ \psi k\} \subset W , and the orthonormal basis of eigenvectors of T \ast T is given
by \{ gk\} \subset V , then the SVD of T is the expansion given by

Tg =
\sum 
k\geq 1

\mu k(g, gk)V \psi k

for all g \in V . If \mu k > 0, then

Tgk = \mu k\psi k and T \ast \psi k = \mu kgk.

Also, the rank r truncated SVD Tr : V \rightarrow W of T is defined for g \in V by

Trg :=

r\sum 
k=1

\mu k(g, gk)V \psi k.
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3254 SARAH LOCKE AND JOHN SINGLER

For more information, see, e.g., [11, Chapters VI--VIII], [22, section V.2.3], [28, Chap-
ter 30], [35, sections VI.5--VI.6].

Hilbert--Schmidt operators. Let T : V \rightarrow W be a linear operator, with
separable Hilbert spaces V and W , and let \{ gk\} be any orthonormal basis for V .
Define the Hilbert--Schmidt norm of T as

(2.1) \| T\| HS(V,W ) =

\left(  \sum 
k\geq 1

\| Tgk\| 2V

\right)  1/2

.

If the sum converges we say the operator T is Hilbert--Schmidt. The Hilbert--Schmidt
norm is independent of the choice of orthonormal basis, every Hilbert--Schmidt op-
erator is compact, \| T\| \leq \| T\| HS(V,W ), T is Hilbert--Schmidt if and only if T \ast is
Hilbert--Schmidt, and T is Hilbert--Schmidt if and only if

\sum 
k\geq 1 \sigma 

2
k <\infty , where \{ \sigma k\} 

are the singular values (including repetitions) of T . We also have

\| T\| 2HS(V,W ) = \| T \ast \| 2HS(W,V ) =
\sum 
k\geq 1

\sigma 2
k.

For more, see, e.g., [11, Chapter VIII], [22, section V.2.4], [35, section VI.6].
Bochner spaces. Let \scrO be an open subset of \BbbR d for some d \geq 1. For p \in [1,\infty ),

let Lp(\scrO ;V ) denote the Bochner space of (equivalence classes of) Lebesgue measurable
functions v : \scrO \rightarrow V satisfying

\int 
\scrO \| v(t)\| pV dt < \infty . For p = 2, L2(\scrO ;V ) is a Hilbert

space with inner product

(v, w)L2(\scrO ;V ) =

\int 
\scrO 
(v(t), w(t))V dt.

The following theorem (see, e.g., [8, Theorem III.6.20] and [31, Theorem 4.2.10]) allows
us to bring a closed linear operator inside an integral.

Theorem 2.2. Suppose T : \scrD (T ) \subset V \rightarrow W is a closed linear operator. If
v : \scrO \rightarrow \scrD (T ), v \in L1(\scrO ;V ), and Tv \in L1(\scrO ;W ), then\int 

\scrO 
v(t) dt \in \scrD (T ) and T

\int 
\scrO 
v(t) dt =

\int 
\scrO 
Tv(t) dt.

2.2. Discrete POD. Let X be a separable Hilbert space. For the discrete case,
let s be a positive integer and assume the POD data is given by \{ wj\} sj=1 \subset X. Let
\BbbK = \BbbR or \BbbK = \BbbC , and define S := \BbbK s

\Gamma with the weighted inner product given by

(u, v)S = v\ast \Gamma u =

s\sum 
j=1

\gamma jujvj ,

where u, v \in S, \Gamma = diag(\gamma 1, \gamma 2, . . . , \gamma s), and the values \{ \gamma j\} sj=1 are positive weights.
Note that these weights commonly arise from integral approximations. Define the
POD operator K : S \rightarrow X by

(2.2) Kf =

s\sum 
j=1

\gamma jfj wj , f = [f1, f2, . . . , fs]
T .
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Since K has finite dimensional range, it is a compact operator and has a SVD.
Let \{ \sigma k, fk, \varphi k\} \subset \BbbR \times S\times X be the singular values and orthonormal singular vectors
ordered so that \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq 0. Thus, the SVD is given by

(2.3) Kf =
\sum 
j\geq 1

\sigma j(f, fj)S\varphi j .

When \sigma k > 0, we have

Kfk = \sigma k\varphi k and K\ast \varphi k = \sigma kfk,

where K\ast : X \rightarrow S is the Hilbert adjoint operator given by

K\ast x = [(x,w1)X , (x,w2)X , . . . , (x,ws)X ]T .

For a positive integer r, define Xr = span\{ \varphi k\} rk=1. Let \Pi X
r : X \rightarrow X be the

orthogonal projection onto Xr, i.e., for x \in X fixed, \Pi X
r x \in Xr minimizes the ap-

proximation error \| x - xr\| X over all choices of xr \in Xr. Since \{ \varphi k\} is an orthonormal
set in X, we have the exact representation

(2.4) \Pi X
r x =

r\sum 
k=1

(x, \varphi k)X\varphi k.

The singular vectors \{ \varphi k\} are called the POD modes of the data \{ wk\} \subset X. The
POD modes provide the best low rank approximation to the data in the following
sense: we have

(2.5)

s\sum 
k=1

\gamma k
\bigm\| \bigm\| wk  - \Pi X

r wk

\bigm\| \bigm\| 2
X

=
\sum 
k>r

\sigma 2
k,

and no other choice of an orthonormal basis in (2.4) gives a smaller value for the
approximation error.

Definition 2.3. We call the singular values \{ \sigma k\} and singular vectors \{ \varphi k\} \subset X
of K the POD singular values and POD modes for the data \{ wj\} sj=1, respectively. We
also call the eigenvalues \{ \lambda k\} of the operator KK\ast : X \rightarrow X the POD eigenvalues
for the data \{ wj\} sj=1. We let sX denote the number of positive POD singular values
(or positive POD eigenvalues) for the data \{ wj\} sj=1, i.e., sX = rank(K).

From subsection 2.1, we know \lambda k = \sigma 2
k whenever \lambda k > 0. Also, we have sX \leq 

s <\infty . It is possible for data to have a zero POD singular value but have all positive
POD eigenvalues; this can happen if s > dim(X).

2.3. Continuous POD. Similarly to the discrete case we define the POD op-
erator K : S \rightarrow X for the continuous case, where again X is a separable Hilbert
space. Let d and m be positive integers and let \scrO \subset \BbbR d be an open set. Then define
S := L2(\scrO ;\BbbK m), where \BbbK = \BbbR or \BbbK = \BbbC . We note that L2(\scrO ) is separable (see,
e.g., [6, Theorem 2.5-4]), and therefore so is S. Assume the POD data is given by
\{ wj\} mj=1 \subset L2(\scrO ;X).

Remark 2.4. In POD applications the set \scrO is frequently a time interval; however,
researchers also take \scrO to be a multidimensional parameter domain as well. Note that
we could also consider multiple open sets, \scrO j \subset \BbbR dj , and data wj \in L2(\scrO j ;X) for
j = 1, . . . ,m. In this case, we would define S := L2(\scrO 1)\times \cdot \cdot \cdot \times L2(\scrO m). All results in
this paper hold for this case as well. The previous case is chosen to simplify notation.
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3256 SARAH LOCKE AND JOHN SINGLER

Define the POD operator K : S \rightarrow X by

(2.6) Kf =

m\sum 
j=1

\int 
\scrO 
fj(t)wj(t)dt, f \in S.

Since f \in S, note that f = [f1, f2, . . . , fm]T , where each fj \in L2(\scrO ). As in the discrete
case, we know that K is a compact operator and has an SVD. We let \{ \sigma k, fk, \varphi k\} \subset 
\BbbR \times S \times X denote the singular values and orthonormal singular vectors ordered so
that \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq 0. The SVD of K is given as in the discrete case (2.3). Thus,
when \sigma k > 0, we have

Kfk = \sigma k\varphi k and K\ast \varphi k = \sigma kfk,

where K\ast : X \rightarrow S is the Hilbert adjoint operator defined by

[K\ast x](t) = [(x,w1(t))X , (x,w2(t))X , . . . , (x,wm(t))X ]
T
.

We define Xr := span\{ \varphi k\} rk=1 and the orthogonal projection \Pi X
r : X \rightarrow X (2.4)

as before. The data approximation error is given by

(2.7)

m\sum 
j=1

\int 
\scrO 

\bigm\| \bigm\| wj(t) - \Pi X
r wj(t)

\bigm\| \bigm\| 2
X
dt =

\sum 
k>r

\sigma 2
k,

and the error goes to zero as r \rightarrow \infty . As in the discrete case, no other orthonormal
basis in (2.4) gives a smaller value for the error.

We define the POD singular values, POD modes, POD eigenvalues, and sX =
rank(K) as in Definition 2.3 for the discrete case. Again, it is possible for data to
have a zero POD singular value but have all positive POD eigenvalues; an example
where X is infinite dimensional can be found in [41, section 3.1, Example 3]. Also, if
X is finite dimensional, then the data always has a zero POD singular value.

3. Main assumptions, notation, and new results. In this section we high-
light the notation used in each case as well as the main assumptions made throughout
the paper. Furthermore, we briefly present an overview of the new results and give
an example to illustrate how the new results can be used.

Throughout the remainder of this paper, assume X and Y are separable Hilbert
spaces and L : \scrD (L) \subset X \rightarrow Y is a linear operator. We study POD error formulas
and POD projections involving the data \{ wj\} and the data \{ Lwj\} .

3.1. Discrete case: Assumptions and notation. As in subsection 2.2, we
consider data \{ wj\} sj=1 \subset X and the corresponding POD operator K : S \rightarrow X defined

by Kf =
\sum s

j=1 \gamma jfjwj , where S = \BbbK s
\Gamma and \BbbK is either \BbbR or \BbbC . The SVD of K is given

by Kf =
\sum 

k\geq 1 \sigma k(f, fk)S\varphi k. The set Xr is the span of \{ \varphi k\} rk=1, and \Pi X
r : X \rightarrow X

is the orthogonal projection onto Xr.
To consider POD projections involving the data \{ Lwj\} , we make the following

assumption:
Main assumption. For the discrete case, we assume throughout
the paper that (i) \{ wj\} sj=1 \subset \scrD (L), and also (ii) \sigma r > 0 whenever we

consider the projection \Pi X
r .
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Assumption (i) has two important consequences. First, since wj \in \scrD (L) for each j,
we know the range of K is contained in \scrD (L). Second, assumption (i) allows us to
consider the POD operator KY : S \rightarrow Y for the data \{ Lwj\} sj=1 \subset Y defined by

(3.1) KY f = LKf =

s\sum 
j=1

\gamma jfjLwj , f = [f1, f2, . . . , fs]
T .

Note that KY is the result of applying L to the POD operator K for the data \{ wj\} ,
i.e., KY = LK. Since KY has finite rank, it is compact and has an SVD. Define
sY = rank(KY ) to be the number of positive singular values of KY . Note that
assumption (i) is automatically satisfied if L is bounded.

For assumption (ii), note that if \sigma k > 0, then assumption (i) implies the corre-
sponding singular vector \varphi k is in \scrD (L) since

(3.2) \varphi k = \sigma  - 1
k Kfk \in \scrD (L).

Since \sigma r > 0, this implies Xr \subset \scrD (L) and \Pi X
r maps into \scrD (L).

To guarantee the boundedness of certain POD projections, in some cases of The-
orem 4.3 we need to assume the POD modes \{ \varphi k\} rk=1 \subset \scrD (L) satisfy some additional
regularity properties. These properties can be guaranteed by making additional reg-
ularity assumptions on the data.

First, the condition \{ \varphi k\} rk=1 \subset \scrD (L - \ast ) is guaranteed to hold if we assume \sigma r > 0
and wj \in \scrD (L - \ast ) for each j. With this assumption, we know as above that \scrR (K) \subset 
\scrD (L - \ast ) and also \varphi k \in \scrD (L - \ast ) whenever \sigma k > 0. Since \sigma r > 0, we can guarantee
\{ \varphi k\} rk=1 \subset \scrD (L - \ast ).

Next, a similar argument using (3.2) shows the condition \{ L\varphi k\} rk=1 \subset \scrD (L\ast ) is
guaranteed to hold if we assume \sigma r > 0 and Lwj \in \scrD (L\ast ) for each j.

3.2. Continuous case: Assumptions and notation. The continuous case
requires a few more assumptions. Recall K : S \rightarrow X, where S := L2(\scrO ;\BbbK m) and \BbbK is
either \BbbR or \BbbC . In order to define the POD operator KY and ensure \{ \varphi k\} rk=1 \subset \scrD (L),
we make the following assumption:

Main assumption. For the continuous case, we assume throughout
the paper that (i) \{ Lwj\} mj=1 \subset L2(\scrO ;Y ), and for all f \in S we have
Kf \in \scrD (L) and

LKf =

m\sum 
j=1

\int 
\scrO 
fj(t)Lwj(t)dt,

and also (ii) \sigma r > 0 whenever we consider the projection \Pi X
r .

As in the discrete case, assumption (i) gives \scrR (K) \subset \scrD (L) and allows us to define the
(compact) POD operator KY = LK for the data \{ Lwj\} mj=1 \subset L2(\scrO ;Y ). As before,

we let sY = rank(KY ) be the number of positive singular values of KY . Also as in
the discrete case, assumptions (i) and (ii) imply \{ \varphi k\} rk=1 \subset \scrD (L) and \Pi X

r maps into
\scrD (L).

Remark 3.1. There are three common conditions that guarantee assumption (i)
holds.

1. If L : X \rightarrow Y is bounded, the operator L can be pulled through the integral
in the definition of K and assumption (i) clearly holds.
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3258 SARAH LOCKE AND JOHN SINGLER

2. If each wj \in L2(\scrO ;X) takes the form

wj(t) =

nj\sum 
\ell ,k=1

ajk\ell gkj(t)x\ell j ,

where ajk\ell are constants in \BbbK , gkj(t) \in L2(\scrO ), and x\ell j \in \scrD (L), then it can be
checked that assumption (i) holds. This condition is similar to the assumption
made in the discrete case.

3. If L : \scrD (L) \subset X \rightarrow Y is closed, wj \in \scrD (L) a.e., and Lwj \in L2(\scrO ;Y ), then
Theorem 2.2 implies assumption (i) holds.

Again, for certain cases of Theorem 4.3 we need to assume the POD modes
\{ \varphi k\} rk=1 \subset \scrD (L) satisfy some additional regularity properties. As in the discrete
case, we can make additional assumptions on the data to satisfy these regularity
properties.

We briefly mention conditions on the data similar to Remark 3.1, item 3, that yield
the needed regularity. First, if L - \ast exists, it is closed. Therefore, \{ \varphi k\} rk=1 \subset \scrD (L - \ast )
holds if we assume \sigma r > 0, wj \in \scrD (L - \ast ) a.e., and \{ L - \ast wj\} mj=1 \in L2(\scrO ;Y ). Second, if
L\ast exists, then it is closed. Therefore, \{ L\varphi k\} rk=1 \subset \scrD (L\ast ) holds if we assume \sigma r > 0,
Lwj \in \scrD (L\ast ) a.e., and \{ L\ast Lwj\} mj=1 \in L2(\scrO ;X).

We also note that the condition in Remark 3.1, item 2, can be modified similarly
to the discrete case to yield the required regularity.

3.3. An overview of the new results. Here we give an overview of the new
results presented in this paper. For the overview we focus on the continuous case, but
there are analogous results for the discrete case.

Recall the standard POD orthogonal projection, \Pi X
r : X \rightarrow X given by (2.4),

and the known POD data approximation error given by

m\sum 
j=1

\int 
\scrO 

\bigm\| \bigm\| wj(t) - \Pi X
r wj(t)

\bigm\| \bigm\| 2
X
dt =

\sum 
k>r

\sigma 2
k.

One of the goals of this paper is to find extensions of this error formula to other sce-
narios involving the linear operator L : X \rightarrow Y and another sequence of projections,
which need not be orthogonal.

Definition 3.2. For a positive integer r with \sigma r > 0, we define Yr := LXr =
span\{ L\varphi k\} rk=1 and we let \Pi Y

r : Y \rightarrow Y be a projection onto Yr.

Remark 3.3. First, the condition \sigma r > 0 implies Xr \subset \scrD (L) and so the definition
makes sense. We assume throughout that \sigma r > 0 whenever we consider \Pi Y

r . Next,
it is important to note that unless stated otherwise we do not assume the projection
\Pi Y

r is orthogonal. To obtain convergence results as r increases, we sometimes need to
require \{ \Pi Y

r \} are uniformly bounded in operator norm. If \{ \Pi Y
r \} are the orthogonal

projections onto Yr, then this condition is satisfied.

Under the main assumption we have the data approximation errors

(3.3)

m\sum 
j=1

\int 
\scrO 

\bigm\| \bigm\| Lwj(t) - L\Pi X
r wj(t)

\bigm\| \bigm\| 2
Y
dt =

\sum 
k>r

\sigma 2
k\| L\varphi k\| 2Y

and

(3.4)

m\sum 
j=1

\int 
\scrO 

\bigm\| \bigm\| Lwj(t) - \Pi Y
r Lwj(t)

\bigm\| \bigm\| 2
Y
dt =

\sum 
k>r

\sigma 2
k

\bigm\| \bigm\| L\varphi k  - \Pi Y
r L\varphi k

\bigm\| \bigm\| 2
Y
.
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The error in (3.3) converges to zero as r \rightarrow \infty , and the error in (3.4) tends to zero as
r increases when the projections \{ \Pi Y

r \} are uniformly bounded. Also, under a basic
condition on L - 1, we have the data approximation error

(3.5)

m\sum 
j=1

\int 
\scrO 

\bigm\| \bigm\| wj(t) - L - 1\Pi Y
r Lwj(t)

\bigm\| \bigm\| 2
X
dt =

\sum 
k>r

\sigma 2
k

\bigm\| \bigm\| \varphi k  - L - 1\Pi Y
r L\varphi k

\bigm\| \bigm\| 2
X
.

There are further conditions implying the error in (3.5) converges to zero as well.
The details for the assumptions, theorem statements, and proofs can be found in
subsection 5.2 for the continuous case and subsection 5.1 for the discrete case.

We also have pointwise convergence results in section 6 for both the discrete
and continuous cases. One new result gives that if all POD eigenvalues for the data
\{ Lwj\} are nonzero and \{ \Pi Y

r \} is uniformly bounded, then \Pi Y
r y \rightarrow y for all y \in Y

as r increases. We also prove error bounds for pointwise convergence of the other
projections considered. Boundedness of either L or L - 1, along with various range
conditions, also plays important roles in the pointwise convergence of these POD
projections.

In the pointwise convergence result for \Pi Y
r mentioned above, we required all of

the POD eigenvalues for \{ Lwj\} to be nonzero. This improves on a similar result from
our earlier work [40], where we assumed all of the POD singular values are nonzero.
The current result is less restrictive; see subsections 2.2 and 2.3. We also explore
the boundedness of certain nonorthogonal POD projections in subsection 4.2 and the
relationship between the two sets of POD singular values for the data \{ wj\} and the
data \{ Lwj\} in subsection 4.3.

3.4. A brief example. Next, we briefly present numerical results for an example
to demonstrate our new results. POD model order reduction is considered for this
example in [44]; here, we focus on the POD data approximation errors. The new
results are discussed in greater detail for other examples in section 7.

Consider a nerve impulse model, the FitzHugh--Nagumo system in one dimension.
This model is given by

\partial u(t, x)

\partial t
= \mu 

\partial 2u(t, x)

\partial x2
 - 1

\mu 
v(t, x) +

1

\mu 
f(u) +

c

\mu 
, 0 < x < 1,

\partial v(t, x)

\partial t
= bu(t, x) - \gamma v(t, x) + c, 0 < x < 1,

where
f(u) = u(u - 0.1)(1 - u),

\mu = 0.015, b = 0.5, \gamma = 2, and c = 0.05. Further, the boundary conditions are given
by

ux(t, 0) =  - 50000t3e - 15t and ux(t, 1) = 0,

and the initial conditions are zero.
For this example, we take the Hilbert spaces X = Y = L2(0, 1) \times L2(0, 1) with

the usual inner product and define the operator L : X \rightarrow Y by

L

\biggl[ 
u
v

\biggr] 
=

\biggl[ 
\partial xu
\partial xv

\biggr] 
.

Note that here L is unbounded and closed, but not invertible. Thus, this operator sat-
isfies the main assumption made for the continuous case. We let \Pi Y

r be the orthogonal
projection onto Yr = span\{ L\varphi k\} rk=1, where \{ \varphi k\} \subset X are the POD modes.
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Table 1
Error comparison with r = 4.

POD error equation Actual error Error formula Difference

Equation (2.7) 6.2755\times 10 - 5 6.2792\times 10 - 5 3.7584\times 10 - 8

Equation (3.3) 2.1584\times 10 - 1 2.1593\times 10 - 1 9.1863\times 10 - 5

Equation (3.4) 9.8536\times 10 - 3 9.8541\times 10 - 3 4.7712\times 10 - 7

Table 2
Error comparison with r = 12.

POD error formula Actual error Error formula Difference

Equation (2.7) 4.1453\times 10 - 8 4.1487\times 10 - 8 3.3661\times 10 - 11

Equation (3.3) 2.2536\times 10 - 4 2.2541\times 10 - 4 5.2146\times 10 - 8

Equation (3.4) 1.2664\times 10 - 5 1.2668\times 10 - 5 3.5150\times 10 - 9

To approximate the solution of the PDE we used the interpolated coefficient
finite element method with continuous piecewise linear basis functions from [44] and
used ode23s from MATLAB for the time stepping scheme. We approximated the
solution using 100 equally spaced finite element nodes on the time interval \scrO = (0, 10).
Increasing the number of finite element nodes gave similar results below.

For the POD computations, the solution values were approximated at each time
step, w(tk), where w = [u, v]T , and a piecewise constant function in time was formed.
The constant on each interval is given by the average of the solution at the current
step and the solution at the next step, i.e., 0.5(w(tk+1) + w(tk)). Note that for this
problem we can calculate the POD eigenvalues, POD modes, and data approximation
errors exactly. Thus, comparisons between the actual approximation errors and the
error formulas can be made.

In Tables 1 and 2 we present the errors from the relevant projections considered
in this paper for r = 4 and r = 12. Note that errors for projections involving the
inverse mapping L - 1 are not included since L is not invertible for this example. In
the tables, the actual error is the integral error measure and the error formula is
the sum involving the POD singular values. The first line in the tables represents
computations for the known error result (2.7). The second and third lines of the
tables are computations for the new results (3.3)--(3.4). The second line of each table
gives the values for

actual error =

\int 
\scrO 

\bigm\| \bigm\| Lw(t) - L\Pi X
r w(t)

\bigm\| \bigm\| 2
Y
dt, error formula =

\sum 
k>r

\sigma 2
k \| L\varphi k\| 2Y ,

while the third line of each table shows computational results for

actual error =

\int 
\scrO 

\bigm\| \bigm\| Lw(t) - \Pi Y
r Lw(t)

\bigm\| \bigm\| 2
Y
dt, error formula =

\sum 
k>r

\sigma 2
k

\bigm\| \bigm\| L\varphi k  - \Pi Y
r L\varphi 

\bigm\| \bigm\| 2
Y
.

The differences in the computed values are likely due to round-off errors. Note that
as r increases the errors tend toward zero, as expected by the theory.

4. POD properties. In this section, we consider three topics. In subsection 4.1,
we give two results concerning Hilbert--Schmidt operator norms of POD operators and
approximations of POD operators. These Hilbert--Schmidt results are used through-
out sections 5 and 6. In subsection 4.2, we study the boundedness of various non-
orthogonal POD projections. These boundedness results are used in section 6. In
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subsection 4.3, we study the relationship between POD singular values and POD
eigenvalues for different data. This investigation is motivated by some results in
section 6, where we assume the POD eigenvalues of different data are all nonzero.

4.1. Hilbert--Schmidt results for POD operators. Below, we give two
Hilbert--Schmidt results concerning POD operators. The first result is known (see,
e.g., [3, section 3.5], [2, Theorem 12.6.1], [39, Lemma 4.4]), although perhaps not
exactly in this precise form. We provide a proof to be complete, and also since the
result is crucial to this work.

Lemma 4.1. Let Z be a separable Hilbert space, and let S = L2(\scrO ;\BbbK m), where \scrO 
is an open subset of \BbbR d. If K : S \rightarrow Z is defined by

Kf =

m\sum 
j=1

\int 
\scrO 
fj(t)zj(t) dt,

for \{ zj\} mj=1 \subset L2(\scrO ;Z), then K is Hilbert--Schmidt and

\| K\| 2HS(S,Z) =

m\sum 
j=1

\| zj\| 2L2(\scrO ;Z).

Proof. Let \{ \chi i\} i\geq 1 \subset L2(\scrO ) and \{ \xi n\} n\geq 1 \subset Z be orthonormal bases. Therefore,
\{ \chi i\} i\geq 1 is also an orthonormal basis for L2(\scrO ), and \{ \chi i\xi n\} i,n\geq 1 is an orthonormal
basis for L2(\scrO ;Z) (see, e.g., [2, Theorem 12.6.1]).

For \xi \in Z, let [K\ast \xi ]j = (\xi , zj(t))Z denote the jth component of K\ast \xi \in S.
Working with the Hilbert adjoint operator K\ast and using Parseval's equality gives

\| K\ast \| 2HS(S,Z) =
\sum 
n\geq 1

\| K\ast \xi n\| 2S

=

m\sum 
j=1

\sum 
n\geq 1

\bigm\| \bigm\| [K\ast \xi n]j
\bigm\| \bigm\| 2
L2(\scrO )

=

m\sum 
j=1

\sum 
n,i\geq 1

\bigm| \bigm| \bigm| \bigl( \chi i, [K
\ast \xi n]j

\bigr) 
L2(\scrO )

\bigm| \bigm| \bigm| 2
=

m\sum 
j=1

\sum 
n,i\geq 1

\bigm| \bigm| \bigm| \bigm| \int 
\scrO 
\chi i(t) (zj(t), \xi n)Z dt

\bigm| \bigm| \bigm| \bigm| 2

=

m\sum 
j=1

\sum 
n,i\geq 1

\bigm| \bigm| \bigm| \bigm| \int 
\scrO 
(zj(t), \chi i(t)\xi n)Z dt

\bigm| \bigm| \bigm| \bigm| 2

=

m\sum 
j=1

\sum 
n,i\geq 1

\bigm| \bigm| (zj , \chi i\xi n)L2(\scrO ;Z)

\bigm| \bigm| 2
=

m\sum 
j=1

\| zj\| 2L2(\scrO ;Z).

The next result gives three different Hilbert--Schmidt norm approximation results
involving the POD operator K for the data \{ wj\} and the POD operator KY = LK
for the data \{ Lwj\} . The result will be of particular usefulness when discussing the
continuous case in subsection 5.2, but it applies to the discrete case as well. We also
use this result throughout section 6.
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Lemma 4.2. The Hilbert--Schmidt norm errors are given by

(4.1)
\bigm\| \bigm\| LK  - L\Pi X

r K
\bigm\| \bigm\| 2
HS(S,Y )

=
\sum 
k>r

\sigma 2
k\| L\varphi k\| 2Y ,

(4.2)
\bigm\| \bigm\| LK  - \Pi Y

r LK
\bigm\| \bigm\| 2
HS(S,Y )

=
\sum 
k>r

\sigma 2
k

\bigm\| \bigm\| L\varphi k  - \Pi Y
r L\varphi k

\bigm\| \bigm\| 2
Y
,

and

(4.3)
\bigm\| \bigm\| K  - L - 1\Pi Y

r LK
\bigm\| \bigm\| 2
HS(S,X)

=
\sum 
k>r

\sigma 2
k

\bigm\| \bigm\| \varphi k  - L - 1\Pi Y
r L\varphi k

\bigm\| \bigm\| 2
X
.

In the case sX = \infty , the following convergence results hold. For (4.1), the error tends
to zero as r \rightarrow \infty . For (4.2), if \{ \Pi Y

r \} is uniformly bounded in operator norm, then
the error goes to zero as r \rightarrow \infty . For (4.3), if L - 1 is bounded and \{ \Pi Y

r \} is uniformly
bounded in operator norm, then the error tends to zero as r \rightarrow \infty . For (4.3), if
\{ L - 1\Pi Y

r L\} is uniformly bounded in operator norm, then the error converges to zero
as r \rightarrow \infty .

Proof. Let \{ fk\} be an orthonormal basis of S of eigenvectors of K\ast K and let
\BbbJ = \{ k : fk /\in ker(K\ast K)\} . Note that Kfk = 0 for all k /\in \BbbJ , since ker(K\ast K) = ker(K)
by Lemma 2.1. Also, Kfk = \sigma k\varphi k for all k \in \BbbJ . Then,\bigm\| \bigm\| LK  - L\Pi X

r K
\bigm\| \bigm\| 2
HS(S,Y )

=
\sum 
k\geq 1

\bigm\| \bigm\| (LK  - L\Pi X
r K)fk

\bigm\| \bigm\| 2
Y

=
\sum 
k\in \BbbJ 

\bigm\| \bigm\| (LK  - L\Pi X
r K)fk

\bigm\| \bigm\| 2
Y

=
\sum 
k\in \BbbJ 

\bigm\| \bigm\| L\sigma k\varphi k  - L\Pi X
r \sigma k\varphi k

\bigm\| \bigm\| 2
Y

=
\sum 

k>r, k\in \BbbJ 
\sigma 2
k\| L\varphi k\| 2Y ,

where the last equality holds since \Pi X
r \varphi k = \varphi k for k \leq r and \Pi X

r \varphi k = 0 for k > r.
Also, \sum 

k>r, k\in \BbbJ 
\sigma 2
k\| L\varphi k\| 2Y =

\sum 
k>r, k\in \BbbJ 

\| LKfk\| 2Y =
\sum 

k>r, k\in \BbbJ 
\| KY fk\| 2Y ,

which converges to zero as r \rightarrow \infty since KY is Hilbert--Schmidt.
Next,

\| LK  - \Pi Y
r LK\| 2HS(S,Y ) =

\sum 
k\geq 1

\bigm\| \bigm\| (LK  - \Pi Y
r LK)fk

\bigm\| \bigm\| 2
Y

=
\sum 
k\in \BbbJ 

\bigm\| \bigm\| L\sigma k\varphi k  - \Pi Y
r L\sigma k\varphi k

\bigm\| \bigm\| 2
Y

=
\sum 

k>r, k\in \BbbJ 
\sigma 2
k

\bigm\| \bigm\| L\varphi k  - \Pi Y
r L\varphi k

\bigm\| \bigm\| 2
Y
,
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where the last equality holds since \Pi Y
r L\varphi k = L\varphi k for k \leq r. For convergence, note\bigm\| \bigm\| LK  - \Pi Y

r LK
\bigm\| \bigm\| 2
HS(S,Y )

=
\sum 

k>r, k\in \BbbJ 

\bigm\| \bigm\| LKfk  - \Pi Y
r LKfk

\bigm\| \bigm\| 2
Y

=
\sum 

k>r, k\in \BbbJ 

\bigm\| \bigm\| KY fk  - \Pi Y
r K

Y fk
\bigm\| \bigm\| 2
Y

\leq 
\sum 

k>r, k\in \BbbJ 

\bigm\| \bigm\| I  - \Pi Y
r

\bigm\| \bigm\| 2 \bigm\| \bigm\| KY fk
\bigm\| \bigm\| 2
Y
.

Since \| I - \Pi Y
r \| is uniformly bounded and KY is Hilbert--Schmidt, the error converges

to zero as r \rightarrow \infty .
Similarly, for the last equality we have\bigm\| \bigm\| K  - L - 1\Pi Y

r LK
\bigm\| \bigm\| 2
HS(S,X)

=
\sum 
k\in \BbbJ 

\bigm\| \bigm\| \sigma k\varphi k  - L - 1\Pi Y
r L\sigma k\varphi k

\bigm\| \bigm\| 2
X

=
\sum 

k>r, k\in \BbbJ 
\sigma 2
k

\bigm\| \bigm\| \varphi k  - L - 1\Pi Y
r L\varphi k

\bigm\| \bigm\| 2
X
,

since L - 1\Pi Y
r L\varphi k = L - 1L\varphi k = \varphi k for k \leq r.

Assuming L - 1 is bounded and \{ \Pi Y
r \} is uniformly bounded, the convergence fol-

lows from\bigm\| \bigm\| K  - L - 1\Pi Y
r LK

\bigm\| \bigm\| 2
HS(S,X)

=
\sum 

k>r, k\in \BbbJ 

\bigm\| \bigm\| L - 1(I  - \Pi Y
r )LKfk

\bigm\| \bigm\| 2
X

\leq 
\sum 

k>r, k\in \BbbJ 

\bigm\| \bigm\| L - 1
\bigm\| \bigm\| 2 \bigm\| \bigm\| I  - \Pi Y

r

\bigm\| \bigm\| 2 \bigm\| \bigm\| KY fk
\bigm\| \bigm\| 2
Y

in a similar manner to the previous case. For the second convergence case, we assume
\{ L - 1\Pi Y

r L\} is uniformly bounded in operator norm and we have\bigm\| \bigm\| K  - L - 1\Pi Y
r LK

\bigm\| \bigm\| 2
HS(S,X)

=
\sum 

k>r, k\in \BbbJ 

\bigm\| \bigm\| (I  - L - 1\Pi Y
r L)Kfk

\bigm\| \bigm\| 2
X

\leq 
\sum 

k>r, k\in \BbbJ 

\bigm\| \bigm\| I  - L - 1\Pi Y
r L
\bigm\| \bigm\| 2 \bigm\| \bigm\| KY fk

\bigm\| \bigm\| 2
X
,

which converges to zero as r \rightarrow \infty .

4.2. Nonorthogonal POD projections. In section 6, we consider pointwise
convergence results for the linear operators L - 1\Pi Y

r L : X \rightarrow X and L\Pi X
r L

 - 1 : Y \rightarrow Y .
Below, we give conditions that guarantee that these linear operators are bounded, or
have bounded extensions, for r fixed. We note that when these operators are bounded
we have L - 1\Pi Y

r L : X \rightarrow X is a projection ontoXr = span\{ \varphi \} rj=1 and L\Pi 
X
r L

 - 1 : Y \rightarrow 
Y is a projection onto Yr = span\{ L\varphi \} rj=1. Even if \Pi Y

r is an orthogonal projection,
these projections are typically nonorthogonal POD projection operators.

In the simplest case, if L and L - 1 are bounded, then clearly L - 1\Pi Y
r L : X \rightarrow X

and L\Pi X
r L

 - 1 : Y \rightarrow Y are both bounded for each r. In this case, \{ L\Pi X
r L

 - 1\} 
is uniformly bounded in operator norm, and \{ L - 1\Pi Y

r L\} is also uniformly bounded
when \{ \Pi Y

r \} is uniformly bounded.
Below, we consider the case when either L or L - 1 is unbounded. For each fixed

r, we show L - 1\Pi Y
r L : X \rightarrow X is bounded when L is bounded, and L\Pi X

r L
 - 1 : Y \rightarrow Y
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is bounded when L - 1 is bounded. In other cases, we need certain assumptions to
be satisfied to construct bounded extensions of the operators for each r. We do not
show that these nonorthogonal POD projection operators are uniformly bounded in
operator norm.

In specific cases, we need certain adjoint operators to exist and therefore we need
the operators to be densely defined or bounded. For example, for the operator L - \ast to
exist we must assume that \scrD (L - 1) is dense in Y , or L - 1 is bounded. These type of
assumptions must be added to the second and fourth parts of the following theorem,
in addition to results later in this paper.

Theorem 4.3. Assume L is invertible and r > 0 is fixed.
1. If L - 1 is bounded, then L\Pi X

r L
 - 1 : Y \rightarrow Y is bounded.

2. If \scrD (L - 1) is dense in Y and \{ \varphi k\} rk=1 \subset \scrD (L - \ast ), the operator L\Pi X
r L

 - 1 :
Y \rightarrow Y can be extended to a bounded operator on Y .

3. If L is bounded, then L - 1\Pi Y
r L : X \rightarrow X is bounded.

4. Assume \Pi Y
r : Y \rightarrow Y is the orthogonal projection onto span\{ L\varphi k\} rk=1. If L

 - 1

is bounded, \scrD (L) is dense, and \{ L\varphi k\} rk=1 \subset \scrD (L\ast ), then L - 1\Pi Y
r L : X \rightarrow X

can be extended to a bounded operator on X.

Remark 4.4. In the second and fourth items, we assume the POD modes satisfy
the regularity properties \{ \varphi k\} rk=1 \subset \scrD (L - \ast ) and \{ L\varphi k\} rk=1 \subset \scrD (L\ast ), respectively.
See section 3 for conditions on the data in the discrete and continuous cases that
guarantee these properties hold.

Proof. For item 1, note that for y \in Y we have

(4.4) L\Pi X
r L

 - 1y =

r\sum 
k=1

(L - 1y, \varphi k)XL\varphi k.

Since L - 1 is a bounded operator and \varphi k \in \scrD (L) for all k, the sum in (4.4) is well-
defined for all y \in Y . Also, it can be checked that

(4.5)
\bigm\| \bigm\| L\Pi X

r L
 - 1y

\bigm\| \bigm\| 
Y
\leq c\| y\| Y ,

where the constant c := \| L - 1\| 
\bigl( \sum r

k=1 \| L\varphi k\| 2Y
\bigr) 1/2

depends on r. This shows that the
operator L\Pi X

r L
 - 1 is bounded when L - 1 is bounded.

For item 2, the linear operator L\Pi X
r L

 - 1 : Y \rightarrow Y is defined by (4.4) for all
y \in \scrD (L - 1). Using the assumptions, we can rewrite (4.4) for y \in \scrD (L - 1) as

(4.6) L\Pi X
r L

 - 1y =

r\sum 
k=1

(y, L - \ast \varphi k)Y L\varphi k.

It can be checked that (4.5) holds for all y \in \scrD (L - 1) with the constant c given by
c :=

\sum r
k=1 \| L - \ast \varphi k\| Y \| L\varphi k\| Y . Note that (4.6) is well-defined for all y \in Y and

therefore yields a bounded linear extension of L\Pi X
r L

 - 1 : Y \rightarrow Y to all of Y .
For item 3, since \Pi Y

r is a projection onto Yr = span\{ L\varphi j\} rj=1, we know for y \in Y

there exist constants \{ \alpha j(y)\} depending on y such that \Pi Y
r y =

\sum r
j=1 \alpha j(y)L\varphi j . Then

(4.7)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r\sum 

j=1

\alpha j(y)L\varphi j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Y

=
\bigm\| \bigm\| \Pi Y

r y
\bigm\| \bigm\| 
Y
\leq 
\bigm\| \bigm\| \Pi Y

r

\bigm\| \bigm\| \| y\| Y .
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Also, \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r\sum 

j=1

\alpha j(y)L\varphi j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

Y

=

r\sum 
j,k=1

\alpha j(y)(L\varphi j , L\varphi k)Y \alpha k(y) = \alpha (y)\ast Ar\alpha (y),

where the star denotes complex conjugate, and

\alpha (y) = [\alpha 1(y), . . . , \alpha r(y)]
T \in \BbbK r, [Ar]i,j = (L\varphi i, L\varphi j)Y .

Since L is invertible and \{ \varphi j\} rj=1 is a linearly independent set, we know \{ L\varphi j\} rj=1 is
a linearly independent set; therefore, Ar is symmetric positive definite, which implies
there exists \beta > 0 such that \alpha \ast Ar\alpha \geq \beta \| \alpha \| 2\BbbK r for all \alpha \in \BbbK r. Note that \beta may
depend on r. Together, the above implies that

\beta \| \alpha (y)\| 2\BbbK r \leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r\sum 

j=1

\alpha j(y)L\varphi j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

Y

\leq 
\bigm\| \bigm\| \Pi Y

r

\bigm\| \bigm\| 2 \| y\| 2Y .
So,

(4.8) \| \alpha (y)\| \BbbK r \leq \beta  - 1/2
\bigm\| \bigm\| \Pi Y

r

\bigm\| \bigm\| \| y\| Y .
In this case, y = Lx for x \in X and L is bounded and invertible; thus,

L - 1\Pi Y
r (Lx) = L - 1

r\sum 
j=1

\alpha j(Lx)L\varphi j =

r\sum 
j=1

\alpha j(Lx)\varphi j ,

where the constants \alpha j now depend on Lx. Since \{ \varphi j\} \subset X is orthonormal, we have

\bigm\| \bigm\| L - 1\Pi Y
r Lx

\bigm\| \bigm\| 2
X

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
r\sum 

j=1

\alpha j(Lx)\varphi j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

X

= \| \alpha (Lx)\| 2\BbbK r

\leq \beta  - 1
\bigm\| \bigm\| \Pi Y

r

\bigm\| \bigm\| 2 \| Lx\| 2Y
\leq \beta  - 1

\bigm\| \bigm\| \Pi Y
r

\bigm\| \bigm\| 2 \| L\| 2\| x\| 2X .
Therefore, for all x \in X we have

(4.9)
\bigm\| \bigm\| L - 1\Pi Y

r Lx
\bigm\| \bigm\| 
X

\leq c\| x\| X ,

where c := \beta  - 1/2\| \Pi Y
r \| \| L\| .

For item 4, we obtain a representation of L - 1\Pi Y
r L as follows. First, note that the

sets \{ L\varphi k\} and \{ L - \ast \varphi k\} are biorthogonal, i.e., (L\varphi k, L
 - \ast \varphi j)Y = \delta k,j , where \delta k,j is

the Kronecker delta symbol. Recall from the proof of part 3 that \Pi Y
r y =

\sum r
k=1 \alpha kL\varphi k

for some scalars \alpha k that depend on y. We can calculate the values for \alpha k by noting\bigl( 
\Pi Y

r y, L
 - \ast \varphi j

\bigr) 
Y
=

r\sum 
k=1

\alpha k(L\varphi k, L
 - \ast \varphi j)Y = \alpha j .

This yields

(4.10) \Pi Y
r y =

r\sum 
k=1

(\Pi Y
r y, L

 - \ast \varphi k)Y L\varphi k =

r\sum 
k=1

(y,\Pi Y
r L

 - \ast \varphi k)Y L\varphi k,

since \Pi Y
r is orthogonal and therefore (\Pi Y

r )
\ast = \Pi Y

r .
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By assumption, \{ L\varphi j\} \subset \scrD (L\ast ) and so (4.10) implies \Pi Y
r y \in \scrD (L\ast ) for all y \in Y .

This gives the following representation for any x \in \scrD (L):

(4.11) L - 1\Pi Y
r Lx =

r\sum 
k=1

(x, L\ast \Pi Y
r L

 - \ast \varphi k)X\varphi k.

Also, for all x \in \scrD (L), the bound (4.9) holds with c :=
\bigl( \sum r

k=1 \| L\ast \Pi Y
r L

 - \ast \varphi k\| 2X
\bigr) 1/2

.
Equation (4.11) is well-defined for all x \in X and therefore defines a bounded linear
extension of L - 1\Pi Y

r L : X \rightarrow X to all of X.

4.3. POD singular values and POD eigenvalues. The number of nonzero
singular values (or eigenvalues) of the POD operators plays an important role through-
out the paper. It is also important to note the difference between singular values and
eigenvalues. For a POD operator K : S \rightarrow Z, recall the POD eigenvalues are the
eigenvalues of KK\ast : Z \rightarrow Z, the POD singular values are the singular values of K,
and sZ = rank(K), i.e., sZ is the number of positive POD singular values of K (or
positive POD eigenvalues of KK\ast ). As discussed in section 2, it is possible to have a
zero POD singular value but to have all nonzero POD eigenvalues.

Below, we study various relationships between the POD eigenvalues and POD
singular values for the data \{ wj\} and the data \{ Lwj\} . Recall that K : S \rightarrow X is the
POD operator for the data \{ wj\} , and KY = LK : S \rightarrow Y is the POD operator for
the data \{ Lwj\} . Therefore, sX = rank(K) is the number of nonzero POD singular
values (or POD eigenvalues) for the data \{ wj\} , and sY = rank(KY ) is the number of
nonzero POD singular values (or POD eigenvalues) for the data \{ Lwj\} 

First, we give a relationship between the POD eigenvalues and the null space of
the adjoint POD operator and also give some additional information about sX and sY .

Lemma 4.5. 1. All of the POD eigenvalues for the data \{ wj\} are nonzero if

and only if ker(K\ast ) = \{ 0\} . In this case, X = \scrR (K). In addition, if sX <\infty ,
then X = \scrR (K) and dim(X) = sX .

2. All of the POD eigenvalues for the data \{ Lwj\} are nonzero if and only if

ker((KY )\ast ) = \{ 0\} . In this case, Y = \scrR (KY ). In addition, if sY < \infty , then
Y = \scrR (KY ) and dim(Y ) = sY .

3. The number of nonzero POD eigenvalues for \{ Lwj\} is less than or equal to
the number of nonzero POD eigenvalues for \{ wj\} . That is, sY \leq sX .

4. If L is invertible, then sX = sY .

Proof. The first two items are proven similarly. Here we show item 1. Lemma 2.1
proves the first statement. To see the rest, note that X = ker(K\ast ) \oplus \scrR (K) and
ker(K\ast ) = \{ 0\} imply X = \scrR (K). Then if sX = rank(K) = dim(\scrR (K)) is finite, we
have \scrR (K) = \scrR (K) and therefore X = \scrR (K) and dim(X) = sX .

For item 3, first if sX = \infty , we are done. Assume sX <\infty . We know

Kf =

sX\sum 
j=1

\sigma j(f, fj)S\varphi j ,

and therefore

KY f = LKf =

sX\sum 
j=1

\sigma j(f, fj)SL\varphi j .

Thus, sY = rank(KY ) \leq sX .
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For item 4, because of item 3, we need only show sX \leq sY . First, if sY = \infty , we
are done. Assume sY <\infty . Let the SVD of KY be given by

KY f = LKf =

sY\sum 
j=1

\sigma Y
j (f, fYj )S\varphi 

Y
j .

Note that \varphi Y
j \in \scrD (L - 1) whenever \sigma Y

j > 0, since \scrD (L - 1) = \scrR (L) and \varphi Y
j =

(\sigma Y
j ) - 1KY fYj = (\sigma Y

j ) - 1LKfYj . Then, since L is invertible,

Kf = L - 1LKf = L - 1KY f =

sY\sum 
j=1

\sigma Y
j (f, fYj )SL

 - 1\varphi Y
j ,

and therefore sX = rank(K) \leq sY .

The following lemma gives further results about the connections between the
two main sets of POD eigenvalues under consideration in this paper, i.e., the POD
eigenvalues for the data \{ wj\} and the data \{ Lwj\} . With extra assumptions, we can
use the fact that all the POD eigenvalues are nonzero for one set of data to obtain
the same conclusion for the other set of data.

Lemma 4.6. 1. If L is bounded, \scrR (L) is dense in Y , and the POD eigenvalues for
\{ wj\} are all nonzero, then the POD eigenvalues for \{ Lwj\} are all nonzero.

2. If L - 1 is bounded, \scrR (L - 1) is dense in X, and the POD eigenvalues for \{ Lwj\} 
are all nonzero, then the POD eigenvalues for \{ wj\} are all nonzero.

Proof. The proofs of the two items are similar; we prove only the first item.
Since X = ker(K\ast ) \oplus \scrR (K) and ker(K\ast ) = \{ 0\} (Lemma 4.5, item 1), we have

X = \scrR (K). Let \varepsilon > 0 and let y \in Y . Since \scrR (L) is dense in Y , there exists x \in X
such that \| y - Lx\| Y < \varepsilon /2. Since X = \scrR (K), for this x there exists f \in S such that
\| x - Kf\| X < \varepsilon /(2\| L\| ). This gives

\| y  - LKf\| Y < \| y  - Lx\| Y + \| Lx - LKf\| Y <
\varepsilon 

2
+ \| L\| \varepsilon 

2\| L\| 
< \varepsilon ,

which shows \scrR (KY ) = Y and ker((KY )\ast ) = \{ 0\} . Thus, the POD eigenvalues for
\{ Lwj\} are all nonzero by Lemma 4.5, Item 2.

5. Error formulas. One goal of this paper is to provide exact formulas for
POD data approximation errors. The two main results of this section can be found
in Theorems 5.1 and 5.4. The section is split between the discrete case, where we can
use a more direct proof approach, and the continuous case, which requires more care
since the data can have infinitely many nonzero POD eigenvalues.

5.1. Discrete case. First we introduce several representations that will be use-
ful in the proof of Theorem 5.1 below. Recall, sX = rank(K) < \infty is the number of
nonzero POD singular values (or POD eigenvalues) for the data \{ wj\} . By the known
POD error formula (2.5), we have

wj = \Pi X
sXwj =

sX\sum 
k=1

(wj , \varphi k)X \varphi k and Lwj =

sX\sum 
k=1

(wj , \varphi k)X L\varphi k.

Note that since the sums are finite, \{ \varphi k\} \subset \scrD (L), and L is linear we can pull L
through the sums in this section without any additional assumptions. This is one
point where the discrete and continuous cases differ.
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Next, from subsection 2.2 we know for all j \leq s and k \leq sX we have

(wj , \varphi k)X = (\varphi k, wj)X = (K\ast \varphi k)j = \sigma kfk,j ,

where fk,j denotes the jth component of the singular vector fk \in \BbbK s. This gives

(5.1) wj =

sX\sum 
k=1

\sigma k fk,j \varphi k and Lwj =

sX\sum 
k=1

\sigma k fk,j L\varphi k.

Also, recall \{ fj\} are orthonormal in S, which yields

s\sum 
j=1

\gamma jfk,jf\ell ,j = (f\ell , fk)S = \delta \ell ,k.

Theorem 5.1. The data approximation errors are given by

(5.2)

s\sum 
j=1

\gamma j\| Lwj  - L\Pi X
r wj\| 2Y =

sX\sum 
k=r+1

\sigma 2
k\| L\varphi k\| 2Y

and

(5.3)

s\sum 
j=1

\gamma j\| Lwj  - \Pi Y
r Lwj\| 2Y =

sX\sum 
k=r+1

\sigma 2
k\| L\varphi k  - \Pi Y

r L\varphi k\| 2Y .

Also, if L is invertible, then

(5.4)

s\sum 
j=1

\gamma j\| wj  - L - 1\Pi Y
r Lwj\| 2X =

sX\sum 
k=r+1

\sigma 2
k\| \varphi k  - L - 1\Pi Y

r L\varphi k\| 2X .

Proof. We prove only (5.3). The proofs of the other two results are similar. First,
note we can apply \Pi Y

r to Lwj given in (5.1) to get

Lwj  - \Pi Y
r wj =

sX\sum 
k=1

\sigma k fk,j (L\varphi k  - \Pi Y
r L\varphi k).

Then

s\sum 
j=1

\gamma j\| Lwj  - \Pi Y
r Lwj\| 2Y

=

s\sum 
j=1

\gamma j

\Biggl( 
sX\sum 
k=1

\sigma kfk,j(L\varphi k  - \Pi Y
r L\varphi k),

sX\sum 
\ell =1

\sigma \ell f\ell ,j(L\varphi \ell  - \Pi Y
r L\varphi \ell )

\Biggr) 
Y

=

s\sum 
j=1

\gamma j

sX\sum 
\ell ,k=1

\sigma k\sigma \ell fk,jf\ell ,j
\bigl( 
L\varphi k  - \Pi Y

r L\varphi k, L\varphi \ell  - \Pi Y
r L\varphi \ell 

\bigr) 
Y

=

sX\sum 
\ell ,k=1

\sigma k\sigma \ell 

\left(  s\sum 
j=1

\gamma jfk,jf\ell ,j

\right)  \bigl( L\varphi k  - \Pi Y
r L\varphi k, L\varphi \ell  - \Pi Y

r L\varphi \ell 

\bigr) 
Y

=

sX\sum 
k=1

\sigma 2
k

\bigl( 
L\varphi k  - \Pi Y

r L\varphi k, L\varphi k  - \Pi Y
r L\varphi k

\bigr) 
Y
=

sX\sum 
k=1

\sigma 2
k\| L\varphi k  - \Pi Y

r L\varphi k\| 2Y .
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Now note that \Pi Y
r L\varphi k = L\varphi k for k = 1, . . . , r since \Pi Y

r is a projection onto
Yr = span\{ L\varphi k\} rk=1. Therefore,

s\sum 
j=1

\gamma j\| Lwj  - \Pi Y
r Lwj\| 2Y =

sX\sum 
k=r+1

\sigma 2
k\| L\varphi k  - \Pi Y

r L\varphi k\| 2Y .

Remark 5.2. In Corollary 6.10, we focus on error bounds for approximating each
individual data snapshot w\ell with various POD projections. Also, another way to
prove Theorem 5.1 is to use the Hilbert--Schmidt norm results in Lemma 4.2. The
proof we give above requires less background. However, we do require Lemma 4.2 for
the continuous case below.

5.2. Continuous case. For the continuous case we must consider the possibility
that the number of nonzero POD eigenvalues is infinite. We approach this case dif-
ferently from the discrete case above. We show each of the data approximation errors
we consider is equal to one of the Hilbert--Schmidt norm errors from Lemma 4.2. We
use that result to prove the convergence of the errors to zero in the case of an infinite
number of nonzero POD eigenvalues.

For one case, we need to make an additional assumption on L - 1.
The L--\bfone assumption. We assume
1. sX <\infty , or
2. L - 1\Pi Y

r LKf =
\sum m

j=1

\int 
\scrO fj(t)L

 - 1\Pi Y
r Lwj(t)dt for all f \in S.

Remark 5.3. Note that if sX < \infty , then the proof technique in subsection 5.1
above can be used for the continuous cases, with some minor modifications to deal with
the change in the space S. The second condition is similar to the main assumption
made in subsection 3.2. Any of the three common conditions in Remark 3.1 that
guarantee the main assumption holds also imply that the second condition in the L - 1

assumption holds.

Theorem 5.4. The data approximation errors are given by

(5.5)

m\sum 
j=1

\bigm\| \bigm\| Lwj  - L\Pi X
r wj

\bigm\| \bigm\| 2
L2(\scrO ;Y )

=
\sum 
k>r

\sigma 2
k\| L\varphi k\| 2Y

and

(5.6)

m\sum 
j=1

\bigm\| \bigm\| Lwj  - \Pi Y
r Lwj

\bigm\| \bigm\| 2
L2(\scrO ;Y )

=
\sum 
k>r

\sigma 2
k

\bigm\| \bigm\| L\varphi k  - \Pi Y
r L\varphi k

\bigm\| \bigm\| 2
Y
.

Also, if the L - 1 assumption holds, then

(5.7)

m\sum 
j=1

\bigm\| \bigm\| wj  - L - 1\Pi Y
r Lwj

\bigm\| \bigm\| 2
L2(\scrO ;X)

=
\sum 
k>r

\sigma 2
k

\bigm\| \bigm\| \varphi k  - L - 1\Pi Y
r L\varphi k

\bigm\| \bigm\| 2
X
.

In the case sX = \infty , the following convergence results hold. For (5.5), the error tends
to zero as r \rightarrow \infty . For (5.6), if \{ \Pi Y

r \} is uniformly bounded in operator norm, then
the error goes to zero as r \rightarrow \infty . For (5.7), if L - 1 is bounded and \{ \Pi Y

r \} is uniformly
bounded in operator norm, then the error tends to zero as r \rightarrow \infty . For (5.7), if
\{ L - 1\Pi Y

r L\} is uniformly bounded in operator norm, then the error converges to zero
as r \rightarrow \infty .
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Remark 5.5. Note that for the case sX = \infty , the conditions for convergence are
exactly the conditions given in Lemma 4.2.

Proof. We prove (5.5) and the associated convergence result. The proofs of the
other equalities and convergence results are similar. We first show that the data
approximation error has an integral representation, and then we use the two Hilbert--
Schmidt results for POD operators from subsection 4.1 to conclude.

By definition, for f \in S we have

L\Pi X
r Kf =

r\sum 
k=1

(Kf,\varphi k)XL\varphi k

=

r\sum 
k=1

\left(  m\sum 
j=1

\int 
\scrO 
fj(t)wj(t)dt, \varphi k

\right)  
X

L\varphi k

=

m\sum 
j=1

\int 
\scrO 
fj(t)

r\sum 
k=1

(wj(t), \varphi k)XL\varphi kdt

=

m\sum 
j=1

\int 
\scrO 
fj(t)Lw

r
j (t)dt,

where wr
j (t) = \Pi X

r wj(t) =
\sum r

k=1(wj(t), \varphi k)X\varphi k. Because of the main assumption,
we can pull the operator L inside the integral to give

(LK  - L\Pi X
r K)f =

\int 
\scrO 

m\sum 
j=1

fj(t)[Lwj(t) - Lwr
j (t)]dt.

Since Lwj  - Lwr
j \in L2(\scrO ;Y ) for each j, by Lemma 4.1 we have

m\sum 
j=1

\bigm\| \bigm\| Lwj  - L\Pi X
r wj

\bigm\| \bigm\| 2
L2(\scrO ;Y )

=
\bigm\| \bigm\| LK  - L\Pi X

r K
\bigm\| \bigm\| 2
HS(S,Y )

.

Lemma 4.2 proves both (5.5) and the convergence result in the case sX = \infty .
Note for (5.7), for f \in S the L - 1 assumption gives

(5.8) L - 1\Pi Y
r LKf =

\int 
\scrO 

m\sum 
j=1

fj(t)L
 - 1\Pi Y

r Lwj(t)dt,

and then we proceed similarly to establish the result.

6. Pointwise convergence of POD projections. Recall that \{ \varphi k\} is an or-
thonormal basis for X, and therefore \| \Pi X

r x - x\| X \rightarrow 0 for all x \in X. In this section,
we prove various types of pointwise convergence results for the other POD projections,
namely, \Pi Y

r from subsection 3.3 and L\Pi X
r L

 - 1 and L - 1\Pi Y
r L from subsection 4.2. The

majority of this section is not split into the discrete and continuous cases because the
proofs are similar for both, and many of the results hold regardless of case. We do
focus on the discrete case at the end of this section and address some assumptions
made in the literature about approximations of each individual data snapshot using
POD projections.

Pointwise convergence results for these POD projections are easiest to obtain
when L and L - 1 are both bounded. We primarily focus on the case when either L or
L - 1 is unbounded.
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Range conditions are an important factor in this section. When an element to
be approximated by a POD projection is in the range of K or KY , we can often get
better results. When certain conditions hold, we know these ranges exactly. Recall
from Lemma 4.5 that if all the POD eigenvalues for \{ wj\} are nonzero and sX < \infty ,
then we know X = \scrR (K) and dim(X) = sX . Note that in this case, the Hilbert
space X must be finite dimensional. If all the POD eigenvalues for \{ wj\} are nonzero
and sX = \infty (i.e., X must be infinite dimensional), then Lemma 4.5 only gives
X = \scrR (K). We do not always obtain the better convergence results in this case.
Similar statements hold for the spaces Y and \scrR (KY ).

Also, as in section 5, we sometimes need to consider different proof techniques in
the case sX = \infty .

We begin with a pointwise convergence result for \Pi Y
r assuming L is bounded. For

another pointwise convergence result for \Pi Y
r with different assumptions, see Theo-

rem 6.5 below.

Theorem 6.1. Assume L is bounded and \{ \Pi Y
r \} is uniformly bounded in operator

norm. If y \in \scrR (L), then \Pi Y
r y \rightarrow y as r increases. In addition, if \scrR (L) is dense in

Y , then \Pi Y
r y \rightarrow y for all y \in Y .

Proof. Let y \in \scrR (L), so that y = Lx for some x \in X. Note that since L\Pi X
r x \in 

Yr = span\{ L\varphi k\} rk=1 and \Pi Y
r is a projection onto Yr, we have \Pi Y

r L\Pi 
X
r x = L\Pi X

r x.
Then \bigm\| \bigm\| \Pi Y

r y  - y
\bigm\| \bigm\| 
Y
\leq 
\bigm\| \bigm\| \Pi Y

r Lx - \Pi Y
r L\Pi 

X
r x
\bigm\| \bigm\| 
Y
+
\bigm\| \bigm\| \Pi Y

r L\Pi 
X
r x - Lx

\bigm\| \bigm\| 
Y

=
\bigm\| \bigm\| \Pi Y

r Lx - \Pi Y
r L\Pi 

X
r x
\bigm\| \bigm\| 
Y
+
\bigm\| \bigm\| L\Pi X

r x - Lx
\bigm\| \bigm\| 
Y

\leq 
\bigm\| \bigm\| \Pi Y

r L
\bigm\| \bigm\| \bigm\| \bigm\| x - \Pi X

r x
\bigm\| \bigm\| 
Y
+ \| L\| 

\bigm\| \bigm\| \Pi X
r x - x

\bigm\| \bigm\| 
Y
,

which converges to zero as r increases since \Pi X
r x\rightarrow x and \{ \Pi Y

r \} is uniformly bounded
in operator norm. The final result follows directly from the Banach--Steinhaus theorem
(i.e., the principle of uniform boundedness).

The next convergence result relies on the boundedness of either L or L - 1 and
certain range conditions involving L.

Theorem 6.2. 1. For any y \in \scrR (L) = \scrD (L - 1), if L is bounded, then \| L\Pi X
r L

 - 1

y - y\| Y \rightarrow 0 as r increases. In addition, if \scrR (L) is dense in Y and \{ L\Pi X
r L

 - 1\} 
is uniformly bounded, then L\Pi X

r L
 - 1y \rightarrow y for all y \in Y .

2. For any x \in \scrD (L) = \scrR (L - 1), if L - 1 is bounded and \Pi Y
r y \rightarrow y for all y \in Y as

r increases, then \| L - 1\Pi Y
r Lx - x\| X \rightarrow 0 as r increases. In addition, if \scrD (L)

is dense in X and \{ L - 1\Pi Y
r L\} is uniformly bounded, then L - 1\Pi Y

r Lx\rightarrow x for
all x \in X.

Remark 6.3. Note that Theorems 6.1 and 6.5 give two cases where the assump-
tion \Pi Y

r y \rightarrow y for all y \in Y holds. Also, the uniform boundedness of \{ L\Pi X
r L

 - 1\} and
\{ L - 1\Pi Y

r L\} is not currently known, unless L and L - 1 are both bounded. Note that
when L and L - 1 are both bounded, Theorem 6.1 gives \Pi Y

r y \rightarrow y for all y \in Y
whenever \{ \Pi Y

r \} is uniformly bounded; therefore, in this case Theorem 6.2 gives
L\Pi X

r L
 - 1y \rightarrow y for all y \in Y and L - 1\Pi Y

r Lx\rightarrow x for all x \in X.

Proof. We prove only the first result; the proof of the second is similar. Since
y \in \scrR (L) we have y = Lx for some x \in X. Then
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\bigm\| \bigm\| L\Pi X
r L

 - 1y  - y
\bigm\| \bigm\| 
Y
=
\bigm\| \bigm\| L\Pi X

r x - Lx
\bigm\| \bigm\| 
Y

\leq \| L\| 
\bigm\| \bigm\| \Pi X

r x - x
\bigm\| \bigm\| 
X
,

which converges to zero as r increases. The final convergence result again follows from
the principle of uniform boundedness.

Next, we consider how range conditions involving K and KY affect the conver-
gence of POD projections. We are able to obtain convergence rates and at most
require either L or L - 1 to be bounded. We begin with the POD projection \Pi Y

r and
then consider L\Pi X

r L
 - 1 and L - 1\Pi Y

r L. We use the following simple lemma multiple
times below.

Lemma 6.4. Assume y \in \scrR (KY ) so that y = KY g = LKg for some g \in S. If

(6.1) yN = LKNg = L\Pi X
NKg, where KN = \Pi X

NK,

then yN \rightarrow y as N increases.

Proof. As N increases,

\| yN  - y\| Y = \| LKg  - LKNg\| Y \leq \| LK  - L\Pi X
NK\| HS(S,Y )\| g\| S \rightarrow 0

by Lemma 4.2.

Recall from Lemma 4.5 that sY is always less than or equal to sX . Thus if we
assume sX <\infty , we know that sY <\infty . For the following proofs, we consider whether
sX is finite or infinite.

Theorem 6.5. Assume \{ \Pi Y
r \} is uniformly bounded in operator norm whenever

sX = \infty . If y = KY g for some g \in S, then \Pi Y
r y \rightarrow y as r increases and the following

error bound holds:

(6.2) \| \Pi Y
r y  - y\| Y \leq 

\sum 
k>r

\sigma k| (g, fk)S | \| \Pi Y
r L\varphi k  - L\varphi k\| Y .

Also, if the POD eigenvalues for the data \{ Lwj\} are all nonzero, then \Pi Y
r y \rightarrow y for

all y \in Y .

Proof. First consider the case sX < \infty , and fix r. Assume y = KY g = LKg for
some g \in S. Thus,
(6.3)

\Pi Y
r y = \Pi Y

r K
Y g = \Pi Y

r LKg =

sX\sum 
k=1

\sigma k(g, fk)S\Pi 
Y
r L\varphi k and y =

sX\sum 
k=1

\sigma k(g, fk)SL\varphi k.

Subtracting gives

\Pi Y
r y  - y =

sX\sum 
k=1

\sigma k(g, fk)S
\bigl( 
\Pi Y

r L\varphi k  - L\varphi k

\bigr) 
=

sX\sum 
k=r+1

\sigma k(g, fk)S
\bigl( 
\Pi Y

r L\varphi k  - L\varphi k

\bigr) 
since \Pi Y

r L\varphi k = L\varphi k for k = 1, . . . , r. The error bound (6.2) follows directly from
this representation and the triangle inequality. Furthermore, since sX < \infty , clearly
\Pi Y

r y \rightarrow y as r increases for each y \in \scrR (KY ).
Next, assume the POD eigenvalues for the data \{ Lwj\} are all nonzero. By item 2

of Lemma 4.5, since sY \leq sX <\infty we have Y = \scrR (KY ). This gives \Pi Y
r y \rightarrow y for all

y \in Y .
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Now consider the case sX = \infty , and fix r. For y = KY g = LKg with g \in S as
above, recall the definition of yN = L\Pi X

NKg given in (6.1). We have\bigm\| \bigm\| \Pi Y
r y  - y

\bigm\| \bigm\| 
Y
\leq 
\bigm\| \bigm\| \Pi Y

r y  - \Pi Y
r yN

\bigm\| \bigm\| 
Y
+
\bigm\| \bigm\| \Pi Y

r yN  - yN
\bigm\| \bigm\| 
Y
+ \| yN  - y\| Y

\leq 
\bigl( \bigm\| \bigm\| \Pi Y

r

\bigm\| \bigm\| + 1
\bigr) 
\| y  - yN\| Y +

\bigm\| \bigm\| \Pi Y
r yN  - yN

\bigm\| \bigm\| 
Y
.

Note that for the second term, \| \Pi Y
r yN  - yN\| Y , we can obtain representations for

\Pi Y
r yN and yN similar to that in (6.3) above. Proceeding in the same way gives

\bigm\| \bigm\| \Pi Y
r yN  - yN

\bigm\| \bigm\| 
Y
\leq 

N\sum 
k=r+1

\sigma k| (g, fk)S | 
\bigm\| \bigm\| \Pi Y

r L\varphi k  - L\varphi k

\bigm\| \bigm\| 
Y
.

Since r is fixed and yN \rightarrow y as N \rightarrow \infty (Lemma 6.4), the two inequalities above give

\bigm\| \bigm\| \Pi Y
r y  - y

\bigm\| \bigm\| 
Y
\leq 

\infty \sum 
k=r+1

\sigma k| (g, fk)S | 
\bigm\| \bigm\| \Pi Y

r L\varphi k  - L\varphi k

\bigm\| \bigm\| 
Y
.

For convergence, we have

\bigm\| \bigm\| \Pi Y
r y  - y

\bigm\| \bigm\| 
Y
\leq 

\Biggl( \sum 
k>r

| (g, fk)S | 2
\Biggr) 1/2 \Biggl( \sum 

k>r

\sigma 2
k

\bigm\| \bigm\| \Pi Y
r L\varphi k  - L\varphi k

\bigm\| \bigm\| 2
Y

\Biggr) 1/2

.

Since \{ fk\} is an orthonormal basis for S, we know
\sum 

k>r | (g, fk)S | 2 goes to zero as
r increases by Parseval's equality. Furthermore, since \{ \Pi Y

r \} is uniformly bounded,
Lemma 4.2 gives that

\sum 
k>r \sigma 

2
k\| \Pi Y

r L\varphi k  - L\varphi k\| 2Y goes to zero as r increases. This
gives \Pi Y

r y \rightarrow y for each y \in \scrR (KY ).
Finally, assume the POD eigenvalues for the data \{ Lwj\} are all nonzero. By

item 2 of Lemma 4.5, we have\scrR (KY ) is dense in Y . Since \{ \Pi Y
r \} is uniformly bounded,

the principle of uniform boundedness gives \Pi Y
r y \rightarrow y for all y \in Y .

For the next two results we need to assume L or L - 1 is bounded whenever sX =
\infty .

Theorem 6.6. Assume sX <\infty , or either L or L - 1 is bounded. If y = KY g for
some g \in S, then

(6.4) \| y  - L\Pi X
r L

 - 1y\| Y \leq 
\sum 
k>r

\sigma k | (g, fk)S | \| L\varphi k\| Y

and the error converges to zero as r increases. Now assume \{ L\Pi X
r L

 - 1\} is uniformly
bounded in operator norm whenever sX = \infty . If the POD eigenvalues for the data
\{ Lwj\} are all nonzero, then L\Pi X

r L
 - 1y \rightarrow y for all y \in Y .

Proof. Let y = LKg for some g \in S, assume sX <\infty , and fix r. As in the proof
of Theorem 6.5, it can be shown that

y  - L\Pi X
r L

 - 1y = LKg  - L\Pi X
r Kg

=

sX\sum 
k=1

\sigma k(g, fk)SL\varphi k  - 
r\sum 

k=1

\sigma k(g, fk)SL\varphi k

=

sX\sum 
k=r+1

\sigma k(g, fk)SL\varphi k.
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The triangle inequality gives the error bound (6.4). The convergence results for
the case sX <\infty follow just as in the proof of Theorem 6.5.

Now consider the case sX = \infty , assume y = LKg for some g \in S, and fix r. Then
for yN = L\Pi X

NKg as in (6.1), with N \geq r, we have

\| y - L\Pi X
r L

 - 1y\| Y \leq \| y - yN\| Y +\| yN  - L\Pi X
r L

 - 1yN\| Y +\| L\Pi X
r L

 - 1yN  - L\Pi X
r L

 - 1y\| Y .

Lemma 6.4 implies that the first term tends to zero as N \rightarrow \infty . For the second term,
proceed as above and use \Pi X

r \Pi X
N = \Pi X

r (since N \geq r) to show

\| yN  - L\Pi X
r L

 - 1yN\| Y \leq 
N\sum 

k=r+1

\sigma k | (g, fk)S | \| L\varphi k\| Y .

For the third term, first assume L is bounded. In this case,

\| L\Pi X
r L

 - 1yN  - L\Pi X
r L

 - 1y\| Y \leq \| L\| \| \Pi X
r \| \| L - 1yN  - L - 1y\| X

= \| L\| \| \Pi X
r \| \| \Pi X

NKg  - Kg\| X ,

which converges to zero as N \rightarrow \infty , since r is fixed. If instead L - 1 is bounded, then
L\Pi X

r L
 - 1 is bounded by Theorem 4.3 and so

\| L\Pi X
r L

 - 1yN  - L\Pi X
r L

 - 1y\| Y \leq \| L\Pi X
r L

 - 1\| \| yN  - y\| Y ,

which converges to zero as N \rightarrow \infty by Lemma 6.4, again since r is fixed. Combining
the above results gives

\| y  - L\Pi X
r L

 - 1y\| Y \leq 
\infty \sum 

k=r+1

\sigma k | (g, fk)S | \| L\varphi k\| Y .

For convergence, we proceed as in the proof of Theorem 6.5. We have

\| y  - L\Pi X
r L

 - 1y\| Y \leq 

\Biggl( \sum 
k>r

| (g, fk)S | 2
\Biggr) 1/2 \Biggl( \sum 

k>r

\sigma 2
k\| L\varphi k\| 2Y

\Biggr) 1/2

.

We know
\sum 

k>r | (g, fk)S | 2 goes to zero as r increases by Parseval's equality. Further-
more, Lemma 4.2 gives that

\sum 
k>r \sigma 

2
k\| L\varphi k\| 2Y goes to zero as r increases. This implies

L\Pi X
r L

 - 1y \rightarrow y for each y \in \scrR (KY ). To show convergence for all y \in Y , we again use
item 2 of Lemma 4.5 and the principle of uniform boundedness.

We omit the proof of the next result, as it is similar to the proof of the previous
result, Theorem 6.6. Note that in Theorem 6.6 the error converges to zero for a fixed
y \in \scrR (KY ) without any additional assumptions. In this next result, if sX = \infty we
need to require additional conditions to guarantee that the error converges to zero for
a fixed x \in \scrR (K); these conditions come from Lemma 4.2.

Theorem 6.7. Assume sX < \infty or either L or L - 1 is bounded. If x = Kg for
some g \in S, then

(6.5) \| x - L - 1\Pi Y
r Lx\| X \leq 

\sum 
k>r

\sigma k| (g, fk)S | \| \varphi k  - L - 1\Pi Y
r L\varphi k\| X .

If sX <\infty , the error converges to zero as r increases. If sX = \infty , then the error goes
to zero as r increases when either (i) L - 1 is bounded and \{ \Pi Y

r \} is uniformly bounded or
(ii) \{ L - 1\Pi Y

r L\} is uniformly bounded. Now assume \{ L - 1\Pi Y
r L\} is uniformly bounded

in operator norm whenever sX = \infty . If the POD eigenvalues for the data \{ wj\} are
all nonzero, then L - 1\Pi Y

r Lx\rightarrow x for all x \in X.
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To be complete, we give an exact error formula and an error bound for approx-
imations of elements in the range of K using the POD projection \Pi X

r . This result
gives an error bound for approximating each individual data snapshot in the discrete
case.

Theorem 6.8. If x = Kg for some g \in S, then

(6.6) \| x - \Pi X
r x\| X =

\Biggl( \sum 
k>r

\sigma 2
k| (g, fk)S | 2

\Biggr) 1/2

\leq \sigma r+1\| g\| S .

Also, in the discrete case, for each \ell = 1, . . . , s we have

(6.7) \| w\ell  - \Pi X
r w\ell \| X \leq \gamma 

 - 1/2
\ell \sigma r+1.

Remark 6.9. The bound (6.7) was obtained in [25, Proposition 3.1] for X = \BbbR n

and \gamma \ell = 1 for all \ell . Recall the constants \{ \gamma \ell \} are the positive weights in the definition
of the POD operator K in the discrete case; see subsection 2.2.

Proof. Using the SVD of K gives

x - \Pi X
r x =

\sum 
k>r

\sigma k(g, fk)S\varphi k.

Since \| x - \Pi X
r x\| 2X = (x - \Pi X

r x, x - \Pi X
r x)X and \{ \varphi k\} is an orthonormal basis for X,

we immediately obtain the exact error formula in (6.6). To obtain the error bound in
(6.6), use \sigma k \leq \sigma r+1 for all k > r and also Parseval's equality.

Next, in the discrete case we have w\ell = Kg\ell for each \ell = 1, . . . , s, where g\ell =
\gamma  - 1
\ell e\ell and e\ell is the \ell th standard unit vector for \BbbK s, i.e., the \ell th entry of e\ell is one

and all other entries are zero. The error bound (6.7) follows from \| g\ell \| S = \gamma 
 - 1/2
\ell and

(6.6).

In Theorem 6.8, note that the quantity \gamma  - 1
\ell appears in the error bound (6.7)

for approximating the snapshot w\ell . However, in applications it is typical that each
weight \gamma \ell tends to zero as the number s of snapshots increases. Next, we use the above
results to prove various approximation error bounds for each individual snapshot w\ell 

in the discrete case that do not depend on \gamma  - 1
\ell . Here, the bounds are valid only if r is

sufficiently large. We note that these types of error bounds have been assumed to hold
in the literature; Iliescu and Wang made this type of assumption in [20, Assumption
3.2] (with \gamma \ell = s - 1 for all \ell ) in their analysis of a POD reduced order model of the
Navier--Stokes equations, and many others have followed their approach.

Corollary 6.10. In the discrete case, if r is sufficiently large, then for each
\ell = 1, . . . , s we have

\| w\ell  - \Pi X
r w\ell \| 2X \leq \sigma 2

r+1,(6.8a)

\| Lw\ell  - \Pi Y
r Lw\ell \| 2Y \leq 

\sum 
k>r

\sigma 2
k\| L\varphi k  - \Pi Y

r L\varphi k\| 2Y ,(6.8b)

\| Lw\ell  - L\Pi X
r w\ell \| 2Y \leq 

\sum 
k>r

\sigma 2
k\| L\varphi k\| 2Y ,(6.8c)

\| w\ell  - L - 1\Pi Y
r Lw\ell \| 2X \leq 

\sum 
k>r

\sigma 2
k\| \varphi k  - L - 1\Pi Y

r L\varphi k\| 2X .(6.8d)
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Remark 6.11. For a given set of data \{ w\ell \} s\ell =1, we cannot rule out the possibility
that r must be taken as large as possible (i.e., r = s) in Corollary 6.10.

Proof. We prove only (6.8b); the proofs of the remaining inequalities are similar.
As in the proof of Theorem 6.8, we know w\ell = Kg\ell for each \ell = 1, . . . , s, where g\ell =
\gamma  - 1
\ell e\ell . Using the error bound (6.2) in Theorem 6.5, the Cauchy--Schwarz inequality

on the sum, and Parseval's inequality gives

\| Lw\ell  - \Pi Y
r Lw\ell \| 2Y \leq \| g\ell  - \Pi S

r g\ell \| 2S
\sum 
k>r

\sigma 2
k\| L\varphi k  - \Pi Y

r L\varphi k\| 2Y ,

where \Pi S
r : S \rightarrow S is the orthogonal projection onto Sr := span\{ fk\} rk=1. Since

\{ fk\} k\geq 1 is an orthonormal basis for S, we know \Pi S
r g\ell \rightarrow g\ell for \ell = 1, . . . , s. Since s

is fixed, for all sufficiently large r we have \| g\ell  - \Pi S
r g\ell \| S \leq 1 for all \ell = 1, . . . , s, and

this completes the proof.

7. More examples. We now consider a few additional examples. For all three
examples we consider two separable Hilbert spaces, H and V , where V is a proper
subset of H, and V is both continuously embedded2 and dense in H. The linear
operator L is a mapping between these two spaces.

For all three examples, we present results for the continuous case only. We assume
we have the data \{ wj\} mj=1 \subset L2(\scrO ;H)\cap L2(\scrO ;V ) = L2(\scrO ;V ). Results for the discrete
case can also be obtained using the theory in this work if desired.

The first two examples are from our previous work [40]. Due to the above as-
sumption on the data, the POD operator K can be viewed as a mapping into H or a
mapping into V . One can obtain the SVD of K : S \rightarrow H or the SVD of K : S \rightarrow V ,
i.e., one can choose X = H or X = V . The different choices for X give different POD
singular values, POD singular vectors, POD modes, and POD projections. In [40],
we considered both choices for X and four different POD projections between these
spaces and gave exact expressions for the POD data approximation errors in the two
different Hilbert space norms. We relate the notation and results for both the error
formulas and pointwise convergence from the present work to [40]. We obtain better
pointwise convergence results in this work. Also, \scrO was only an interval in [40], but
now we have \scrO is an open subset of \BbbR d. For these first two examples, Yr = span\{ L\varphi k\} 
and \Pi Y

r : Y \rightarrow Y is the orthogonal projection onto Yr. Note this implies \{ \Pi Y
r \} is

uniformly bounded in operator norm.
For the third example, we consider a case where \Pi Y

r is not an orthogonal projec-
tion. In particular, we take \Pi Y

r to be a Ritz projection, as considered in [18, 37]. All
of our results for this case are new.

7.1. Example 1. For the first example, consider the case where X = H, Y = V ,
and L : H \rightarrow V is defined by Lv = v for all v \in \scrD (L) = V . The operator L is clearly
invertible, and L - 1 : V \rightarrow H is given by L - 1v = v for all v \in V . Note that
L - 1 : V \rightarrow H is bounded due to the continuous embedding assumption. Also, the
inverse of a bounded operator is closed, so L is closed. Furthermore, the assumption
on the data gives \{ wj\} \subset L2(\scrO ;X) and \{ Lwj\} \subset L2(\scrO ;Y ). Thus, we know that both
the main assumption and the L - 1 assumption hold.

Since X = H and each set of singular vectors of the POD operator K : S \rightarrow H are
an orthonormal basis, we know the POD modes \{ \varphi k\} are an orthonormal basis for H.
Note that Xr = span\{ \varphi k\} rk=1 \subset H, and Yr = span\{ L\varphi k\} rk=1 = span\{ \varphi k\} rk=1 \subset V .

2That is, there exists a constant CV > 0 such that \| v\| H \leq CV \| v\| V for all v \in V .
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Furthermore, the POD modes \{ \varphi k\} may not be orthogonal in V . Also, the operator
KY = LK is simply the POD operator K viewed as a mapping from S to V . We
take \Pi X

r : X \rightarrow X to be the orthogonal projection onto Xr and \Pi Y
r : Y \rightarrow Y to be

the orthogonal projection onto Yr.
In order to discuss the POD projections we pay special attention to the spaces

under consideration. Since V \subset H, the projections can be considered as mappings
from V to V or from H to H. The projections considered in this work are related to
the projections PH

r and PV
r in [40, Definition 3.2] as follows:

\bullet \Pi X
r : X \rightarrow X is equal to the orthogonal projection PH

r : H \rightarrow H.
\bullet \Pi Y

r : Y \rightarrow Y is equal to the orthogonal projection PV
r : V \rightarrow V .

\bullet L\Pi X
r L

 - 1 : Y \rightarrow Y is equal to the operator PH
r : V \rightarrow V .

\bullet L - 1\Pi Y
r L : X \rightarrow X is equal to the operator PV

r : H \rightarrow H.
Now that we have the relationships between the projections, we compare the

results. The error formulas presented here in Theorem 5.4 are essentially the same
as the results in [40]. Again, the primary difference here is that \scrO is an open subset
of \BbbR d instead of an interval. The POD data approximation errors from Theorem 5.4
become the following:

m\sum 
j=1

\int 
\scrO 
\| wj(t) - PH

r wj(t)\| 2V dt =
\sum 
k>r

\sigma 2
k\| \varphi k\| 2V ,(7.1)

m\sum 
j=1

\int 
\scrO 
\| wj(t) - PV

r wj(t)\| 2V dt =
\sum 
k>r

\sigma 2
k\| \varphi k  - PV

r \varphi k\| 2V ,(7.2)

m\sum 
j=1

\int 
\scrO 
\| wj(t) - PV

r wj(t)\| 2Hdt =
\sum 
k>r

\sigma 2
k\| \varphi k  - PV

r \varphi k\| 2H .(7.3)

In this example, all three sums converge to zero as r increases.
A larger improvement from [40] can be seen in the results concerning pointwise

convergence of POD projections. To illustrate, we give the following result.

Proposition 7.1. We have the following:
1. \| PV

r y  - y\| V \rightarrow 0 for all y \in \scrR (K), and for y = Kg we have

\| PV
r y  - y\| V \leq 

\sum 
k>r

\sigma k| (g, fk)S | \| PV
r \varphi k  - \varphi k\| V .

2. If the POD eigenvalues for \{ wj\} \subset L2(\scrO ;V ) are all nonzero, then PV
r y \rightarrow y

in both H and V for all y \in V .
3. \| PH

r y  - y\| V \rightarrow 0 for all y \in \scrR (K), and for y = Kg we have

\| y  - PH
r y\| V \leq 

\sum 
k>r

\sigma k | (g, fk)S | \| \varphi k\| V .

4. \| PV
r x - x\| H \rightarrow 0 for all x \in \scrR (K), and for x = Kg we have

\| x - PV
r x\| H \leq 

\sum 
k>r

\sigma k | (g, fk)S | \| \varphi k  - PV
r \varphi k\| H .

Note that since \Pi Y
r is orthogonal, items 1 and 2 follow from Theorem 6.5 and

item 2 of Theorem 6.2. Items 3 and 4 can be obtained from Theorems 6.6 and 6.7
and the fact that L - 1 is bounded.
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The pointwise convergence results above are more complete and sharper than the
results in [40, Proposition 5.5]. First, item 2 is shown in [40, Proposition 5.5] under
the assumption that all the POD singular values for \{ wj\} \subset L2(\scrO ;V ) are nonzero; as
discussed in section 2 this is a more restrictive assumption than the POD eigenvalues
all being nonzero, as is required above. Next, the convergence result in item 3 is
shown in [40, Proposition 5.5]; however, the error bound in item 3 is new. Also, items
1 and 4 are completely new.

For item 3, we note that an error bound was given in the proof of [40, Proposition
5.5]. However, that error bound does not converge to zero as fast as the error bound
given in Theorem 6.6. Specifically, the error bound in [40] is a constant multiple of
(
\sum 

k>r | (g, fk)S | 2)1/2. However, the error bound in item 3 can be bounded above by

\| y  - PH
r y\| V \leq 

\Biggl( \sum 
k>r

| (g, fk)S | 2
\Biggr) 1/2\Biggl( \sum 

k>r

\sigma 2
k \| \varphi k\| 2V

\Biggr) 1/2

,

and both terms in parentheses tend to zero as r increases by Parseval's equality and
Lemma 4.2 (see the proof of Theorem 6.6). Therefore, the error bound in item 3 is
an improvement over the error bound in [40].

Finally, we consider boundedness of the nonorthogonal POD projections PH
r :

V \rightarrow V and PV
r : H \rightarrow H. For each fixed r, we showed in [40, Lemma 3.3] that

PH
r : V \rightarrow V is bounded. We did not consider the boundedness of PV

r : H \rightarrow H
in [40]. Below, we use Theorem 4.3 to show PH

r : V \rightarrow V is bounded and also give a
condition guaranteeing PV

r : H \rightarrow H has a bounded extension. However, we still do
not know if these nonorthogonal POD projections are uniformly bounded in operator
norm.

Define the linear operator A : \scrD (A) \subset H \rightarrow H by

(Au, v)H = (u, v)V

for all u \in \scrD (A) and v \in V (see, e.g., [42, section II.2]). We know A is closed. Now
we apply this to our example. For all x \in \scrD (L) = V and y \in \scrD (L\ast ) we have

(x, L\ast y)H = (Lx, y)V = (x, y)V

\Rightarrow (L\ast y, x)H = (y, x)V .

Thus, L\ast = A and \scrD (L\ast ) = \scrD (A). For PDE solution data we often have \{ Awj\} \subset 
L2(\scrO ;H) for each j; see [42] for examples. In this case, since \varphi k = \sigma  - 1

k Kfk we can
use the Bochner integral result in Theorem 2.2 to show \varphi k \in \scrD (A) whenever \sigma k > 0.

Therefore, since L - 1 is bounded, items 1 and 4 of Theorem 4.3 give the following
result.

Proposition 7.2. Let r be fixed. The operator PH
r : V \rightarrow V is bounded, and if

\{ Awj\} mj=1 \subset L2(\scrO ;H), then the operator PV
r : H \rightarrow H can be extended to a bounded

operator.

7.2. Example 2. Next, consider the case where X = V , Y = H, and L : V \rightarrow H
is defined by by Lv = v for all v \in V . Then L - 1 : H \rightarrow V is given by L - 1v = v
for all v \in \scrD (L - 1) = V . Note that in this case L is bounded by the continuous
embedding property. Again, the assumption on the data gives \{ wj\} \subset L2(\scrO ;X) and
\{ Lwj\} \subset L2(\scrO ;Y ). Therefore, the main assumption and the L - 1 assumption hold.

Since X = V , in this example the POD modes \{ \varphi k\} are an orthonormal basis for
V . We have Xr = span\{ \varphi k\} rk=1 \subset V , and Yr = span\{ L\varphi k\} rk=1 = span\{ \varphi k\} rk=1 \subset H.
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The POD modes \{ \varphi k\} may not be orthogonal in H. The operator KY = LK is
the POD operator K : S \rightarrow H. As in Example 1, \Pi X

r : X \rightarrow X is the orthogonal
projection onto Xr, and \Pi Y

r : Y \rightarrow Y is the orthogonal projection onto Yr.
The projections in this work are related to the projections QH

r and QV
r from [40,

Definition 3.2] as follows:
\bullet \Pi X

r : X \rightarrow X is equal to the orthogonal projection QV
r : V \rightarrow V .

\bullet \Pi Y
r : Y \rightarrow Y is equal to the orthogonal projection QH

r : H \rightarrow H.
\bullet L\Pi X

r L
 - 1 : Y \rightarrow Y is equal to the operator QV

r : H \rightarrow H.
\bullet L - 1\Pi Y

r L : X \rightarrow X is equal to the operator QH
r : V \rightarrow V .

As before, the main data approximation error results in Theorem 5.4 become

m\sum 
j=1

\int 
\scrO 

\bigm\| \bigm\| wj(t) - QV
r wj(t)

\bigm\| \bigm\| 2
H
dt =

\sum 
k>r

\sigma 2
k\| \varphi k\| 2H ,

m\sum 
j=1

\int 
\scrO 

\bigm\| \bigm\| wj(t) - QH
r wj(t)

\bigm\| \bigm\| 2
H
dt =

\sum 
k>r

\sigma 2
k\| \varphi k  - QH

r \varphi k\| 2H ,

m\sum 
j=1

\int 
\scrO 
\| wj(t) - QH

r wj(t)\| 2V dt =
\sum 
k>r

\sigma 2
k\| \varphi k  - QH

r \varphi k\| 2V .

Here, the first two sums converge to zero as r increases. However, we cannot show
convergence of the last sum. This is because we do not know L - 1 is bounded or \{ QH

r \} 
is uniformly bounded as a family of operators mapping V to V . As before, the only
improvement here compared to [40] is that \scrO is not restricted to be an interval.

We also have the following pointwise convergence results.

Proposition 7.3. As r increases we have
1. \| QH

r y  - y\| H \rightarrow 0 for all y \in H, and for y = Kg we have

\| QH
r y  - y\| H \leq 

\sum 
k>r

\sigma k| (g, fk)S | \| QH
r \varphi k  - \varphi k\| H .

2. \| QV
r y  - y\| H \rightarrow 0 for all y \in V , and for y = Kg we have

\| QV
r y  - y\| H \leq 

\sum 
k>r

\sigma k| (g, fk)S | \| \varphi k\| H .

3. For x = Kg we have

\| QH
r x - x\| V \leq 

\sum 
k>r

\sigma k| (g, fk)S | \| QH
r \varphi k  - \varphi k\| V .

If also sX <\infty or L - 1 is bounded, then the error goes to zero as r increases.

Since L is bounded, item 1 follows from item 1 of Theorem 6.1 and also Theo-
rem 6.5. Item 2 can be obtained from Theorem 6.6, using L is bounded. Theorem 6.7
gives item 3; note that we cannot guarantee convergence of the error without the
extra assumptions since we only know L is bounded.

Again, these results improve on the results in [40, Proposition 5.5]. All of the
error bounds are new. The convergence result in item 2 was not stated in [40], but it
follows directly from the continuous embedding and \| QV

r y  - y\| V \rightarrow 0 for all y \in V .
The convergence result in item 1 was given in [40, Proposition 5.5]; however, we made
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the assumption that all the POD singular values for \{ wj\} \subset L2(\scrO ;V ) are nonzero.
Here, we proved the convergence result in item 1 without that assumption.

Next, we use the technique from subsection 7.1 to determine the boundedness
of the nonorthogonal POD projections QH

r : V \rightarrow V and QV
r : H \rightarrow H. For this

example, we have A = L - \ast = (L - 1)\ast . Therefore, if \{ Awj\} \subset L2(\scrO ;H), then we
have \{ \varphi k\} \subset \scrD (L - \ast ), just as in subsection 7.1. Since L is bounded, items 2 and 3 of
Theorem 4.3 give the following result.

Proposition 7.4. Let r be fixed. The operator QH
r : V \rightarrow V is bounded, and if

\{ Awj\} mj=1 \subset L2(\scrO ;H), then the operator QV
r : H \rightarrow H can be extended to a bounded

operator on H.

7.3. Example 3. In order to demonstrate the usefulness of considering \Pi Y
r as

a nonorthogonal projection, we consider the case of a Ritz projection as presented
in [18, 37].

Consider the situation from Example 1 in subsection 7.1: we haveX = H, Y = V ,
and L : X \rightarrow Y is defined by Lv = v for all v \in \scrD (L) = Y . Assume we have a
continuous elliptic sesquilinear form3 a : V \times V \rightarrow \BbbK . Define the projection PV

r :
V \rightarrow V onto Vr := Yr = span\{ L\varphi k\} = span\{ \varphi k\} \subset V as follows: let PV

r u := ur \in Vr
be the unique solution of

a(ur, vr) = a(u, vr) for all vr \in Vr.

The existence and uniqueness of such a solution are guaranteed by the Lax--Milgram
theorem. We take \Pi Y

r = PV
r .

Note that the main difference between this example and Example 1 is that the
projection PV

r is not the same. However, for this example it can be checked that the
family of projections, \{ \Pi Y

r \} , is uniformly bounded. Therefore, the same pointwise
convergence results and error formulas from subsection 7.1 hold for this example with
PV
r : V \rightarrow V defined as above. We note that these pointwise convergence results

and error formulas are all new. Bounds on the POD data approximation errors can
be found in Lemma 3.4 in [18] and Lemma 2.9 in [37] in the discrete case; however,
we have the exact formulas (7.1)--(7.3) for the POD data approximation errors in the
continuous case. Again, analogous error formulas can be derived for the discrete case
using our results.

8. Conclusions. We proved new generalized error formulas for POD data ap-
proximation errors for both the discrete and continuous cases. We also showed conver-
gence of these errors under certain conditions and obtained new pointwise convergence
results for POD projections. We demonstrated the application of our results to several
example problems. We leave the application of these results to the numerical analysis
of POD model order reduction methods for PDEs to be considered elsewhere.

Some open questions remain. When L - 1 is unbounded, we had to assume uniform
boundedness of the POD projections \{ L - 1\Pi Y

r L\} to show that the error formula in
(5.7) converges to zero as r increases. We do not know if there is a simpler condition
that yields convergence of the approximation error. If L or L - 1 is unbounded, we
also do not know if the POD projections \{ L\Pi X

r L
 - 1\} and \{ L - 1\Pi Y

r L\} are uniformly
bounded. Both of these issues have been discussed in the context of Example 2 in
subsection 7.2 in [5, 40]. The second issue has also been discussed in the context of

3That is, there exists constants Ca, ca > 0 such that | a(u, v)| \leq Ca\| u\| V \| v\| V and ca\| u\| 2V \leq 
Re a(u, u) for all u, v \in V .
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Example 1 in subsection 7.1 in [23, 46]; in these works, the H1 stability of the L2

POD projection is of interest.

Appendix A. Optimality of discrete and continuous POD. To be com-
plete, we present a brief proof of the optimality of POD for low rank data approxi-
mation in both the discrete and continuous cases. Our problem statement and proof
strongly rely on ideas from [43] and [7].

POD optimality problem. Let X be a separable Hilbert space, and let S = \BbbK s
\Gamma 

in the discrete case or S = L2(\scrO ;\BbbK m) in the continuous case, where \BbbK = \BbbR or \BbbK = \BbbC ;
see section 2 for details. Suppose we have given data \{ wj\} sj=1 \subset X in the discrete

case or \{ wj\} mj=1 \subset L2(\scrO ;X) in the continuous case. The POD optimality problem is
to find coefficients \{ ak\} \subset \BbbK and basis elements \{ sk\} \subset S and \{ \eta k\} \subset X so that the
rth order approximations

wr
j =

r\sum 
k=1

aksk,j\eta k for j = 1, . . . , s (discrete case),

wr
j (t) =

r\sum 
k=1

aksk,j(t)\eta k for j = 1, . . . ,m (continuous case),

minimize the data approximation error

Er(w
r) =

s\sum 
j=1

\gamma j\| wj  - wr
j\| 2X (discrete case),

Er(w
r) =

m\sum 
j=1

\int 
\scrO 
\| wj(t) - wr

j (t)\| 2X dt (continuous case).

Remark A.1. In many papers on POD, the basis elements \{ \eta k\} \subset X are required
to be orthonormal, and wr

j is also required to equal the orthogonal projection of wj

onto span\{ \eta k\} rk=1. Therefore, the POD problem above allows more general approxi-
mations. The final result is the same.

Notation. For given data \{ yj\} sj=1 \subset X in the discrete case or \{ yj\} mj=1 \subset 
L2(\scrO ;X) in the continuous case, we let K(y) : S \rightarrow X denote the POD operator
for the data and we let K\ast (y) : X \rightarrow S denote the Hilbert adjoint operator of K(y).

The proof of the next result follows directly from definitions and is omitted.

Lemma A.2. If the data is given by

yj =

p\sum 
k=1

\alpha ksk,j\eta k (discrete case), yj(t) =

p\sum 
k=1

\alpha ksk,j(t)\eta k (continuous case)

for each j with \{ \alpha k\} \subset \BbbK , \{ sk\} \subset S, and \{ \eta k\} \subset X, then the POD operator K(y) :
S \rightarrow X is given by

K(y)f =

p\sum 
k=1

\alpha k(f, sk)S\eta k, f \in S.

Next, we present the discrete version of the Hilbert--Schmidt norm result for a
continuous POD operator in Lemma 4.1.
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Lemma A.3. For given data \{ yj\} sj=1 \subset X in the discrete case, the Hilbert--
Schmidt norm of the POD operator K(y) : S \rightarrow X is given by

\| K(y)\| 2HS(S,X) =

s\sum 
j=1

\gamma j\| yj\| 2X .

Proof. Let \{ \xi k\} k\geq 1 be an orthonormal basis for X. We have

\| K(y)\| 2HS(S,X) = \| K\ast (y)\| 2HS(X,S) =
\sum 
k\geq 1

\| K\ast (y)\xi k\| 2S =
\sum 
k\geq 1

s\sum 
j=1

\gamma j | (\xi k, yj)X | 2

=

s\sum 
j=1

\gamma j
\sum 
k\geq 1

| (\xi k, yj)X | 2 =

s\sum 
j=1

\gamma j\| yj\| 2X

by Parseval's equality.

Now we prove the main optimality result. We rely on the fact that the rank r
truncated SVD of K(y) is the optimal rank r approximation to K(y) in the Hilbert--
Schmidt norm; see, e.g., [12, section III.7, Theorem 7.1].

Theorem A.4. Let \{ wj\} sj=1 \subset X in the discrete case or \{ wj\} mj=1 \subset L2(\scrO ;X)
in the continuous case be given data, and let \{ \sigma i, fi, \varphi i\} \subset \BbbR \times S \times X be the ordered
singular values of K(w) : S \rightarrow X and the corresponding orthonormal bases of singular
vectors. A solution of the POD problem is given by \{ wr

j\} sj=1 \subset X in the discrete case

or \{ wr
j\} mj=1 \subset L2(\scrO ;X) in the continuous case, where

wr
j =

r\sum 
k=1

\sigma kfk,j\varphi k =

r\sum 
k=1

\bigl( 
wj , \varphi k

\bigr) 
X
\varphi k (discrete case),

wr
j (t) =

r\sum 
k=1

\sigma kfk,j(t)\varphi k =

r\sum 
k=1

\bigl( 
wj(t), \varphi k

\bigr) 
X
\varphi k (continuous case).

The minimum approximation error is given by

Emin
r := Er(w

r) =
\sum 
k>r

\sigma 2
k <\infty ,

and Emin
r \rightarrow 0 as r increases.

Proof. We first assume r \leq sX so that \sigma k > 0 for k = 1, . . . , r.
First, the equivalence of the two expressions for wr

j comes from K\ast (w)\varphi k = \sigma kfk,
\sigma k > 0 for k = 1, . . . , r, and the formulas for K\ast (w). Also, for g \in S, Lemma A.2
implies

K(wr)g =

r\sum 
k=1

\sigma k(g, fk)S\varphi k = Kr(w)g.

Therefore, K(wr) = Kr(w), where Kr(w) : S \rightarrow X is the rth order truncated SVD of
the POD operator K(w) : S \rightarrow X.

Next, by the Hilbert--Schmidt norm results Lemma 4.1 and Lemma A.3 and since
the POD operator is linear in the data we have

Er(w
r) = \| K(w  - wr)\| 2HS = \| K(w) - K(wr)\| 2HS = \| K(w) - Kr(w)\| 2HS =

\sum 
k>r

\sigma 2
k.

Also, since \| K(w)\| HS =
\sum 

k\geq 1 \sigma 
2
k <\infty , we have

\sum 
k>r \sigma 

2
k \rightarrow 0 as r increases.
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Now we show that this is the smallest value possible for the error. Let coefficients
\{ ak\} \subset \BbbK and basis elements \{ sk\} \subset S and \{ \eta k\} \subset X be given, and define the rth
order approximation

zrj =

r\sum 
k=1

\alpha ksk,j\eta k (discrete case), zrj (t) =

p\sum 
k=1

\alpha ksk,j(t)\eta k (continuous case).

By Lemma A.2, K(zr) has rank at most r. Therefore, we have

Er(z
r) = \| K(w  - zr)\| 2HS = \| K(w) - K(zr)\| 2HS \geq 

\sum 
k>r

\sigma 2
k.

Next, if sX <\infty , then the result is true for r = sX . Therefore, we have wj = wsX
j

for all j, and this proves the result for r > sX .
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