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Biaxial bending of cold-formed steel storage rack uprights - 
Part II: Direct Strength Method 

 
 

Nima Talebian1, Benoit P. Gilbert1, Cao Hung Pham2 and Hassan Karampour1  
 
 
Abstract 
 
This paper uses the results from the parametric studies reported in the companion 
paper to verify the accuracy of different forms of published direct strength method 
(DSM) equations. They consist of the classical DSM equations and considering 
the inelastic reserve capacity into these equations, with and without an extended 
range of the cross-sectional slenderness. The verifications are made for local and 
distortional buckling modes. Results show that for all investigated buckling 
modes, the DSM results in better predictions when the inelastic reserve capacity 
is considered. The appropriate form of the DSM to predict the biaxial capacity of 
unperforated cold-formed steel storage rack uprights is discussed.  
 
 
Introduction 

In the companion paper (Talebian et al. 2018b), a Finite Element (FE) model was 
developed and validated against the local and distortional buckling biaxial 
bending experimental results reported in Talebian et al. (2018a) and performed on 
two types of cold-formed steel storage rack uprights. Parametric studies were then 
conducted to expand the available experimental results over a wider range of 
upright cross-sectional slenderness ratios. Only local and distortional buckling 
failure modes were considered in the companion paper. The numerical results 
were then compared to the linear interaction equation in cold-formed steel 
structures design specifications (North American Specification AISI-S100 (AISI 
2016), Australian and New Zealand Standard AS/NZS 4600:2005 (AS/NZS 2005) 
and Eurocode 3 EN1993-1-3 (CEN 2006)). The results of the parametric studies 
showed that the linear biaxial bending interaction equation is conservative and 
underestimates the biaxial bending capacity by up to 39% and 46% for local and 
distortional buckling modes, respectively. 
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The focus of the present paper is to assess the accuracy of different forms of the 
Direct Strength Method (DSM) (Schafer, 2008) in predicting the biaxial bending 
capacity of cold-formed steel storage rack uprights. The results from the 
parametric studies performed in the companion paper are used for this purpose. 
Three different DSM approaches are investigated in this study, namely (i) by using 
the classical DSM equations given in the AS/NZS 4600:2005 (AS/NZS, 2005), 
with the nominal member moment capacity equal to the yield moment for compact 
cross-sections, (ii) through exploiting the inelastic reserve capacity for compact 
cross-sections, as permitted in the new AISI-S100 (2016) and (iii) by adopting an 
extended range of the cross-sectional slenderness for the inelastic reserve 
capacity, as proposed by Pham and Hancock (2013).  

 
Investigated upright sections and tested configurations 

In the companion paper, the parametric studies have been performed on slender, 
semi-compact and compact unperforated storage rack upright cross-sections for 
local and distortional buckling failure modes. In total, ten and four upright 
sections were considered for local and distortional buckling modes, respectively. 
Figure 1 shows the different cross-sectional shapes considered in the companion 
paper and their main cross-sectional dimensions and properties are summarised in 
Table 1. 

Table 1. Nominal cross-sectional dimensions and properties of investigated uprights 

 Thick. 
(mm) 

Depth 
(mm)  

Width 
(mm) 

Second moment of 
area 

IMajor  / IMinor 

Used for 
local 

buckling  

Used for 
distortional 

buckling  
Type C 2 140 100 2.53 Yes No 
Type D 1.2 90 72 1.58 Yes Yes 
Type E 1.2 90 72 2.06 Yes No 
Type F 1.5 125 100 1.79 Yes Yes 
Type G 1.5 100 110 0.94 Yes No 
Type H 1.5 100 90 1.41 Yes No 
Type I 1.5 100 80 2.13 Yes No 
Type J 0.6 140 100 2.53 Yes No 
Type K 0.8 90 72 1.57 Yes No 
Type L 0.8 90 72 2.03 Yes No 
Type M 1.8 80 60 2.17 No Yes 
Type N 1.5 80 90 1.17 No Yes 
 
Nine biaxial bending configurations per upright type and buckling mode were 
investigated and detailed in the companion paper (Talebian et al. 2018b).  
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(a) Type C (b) Type D (c) Type E 

 
 

 

(d) Type F (e) Type G (f) Type H 

  
 

(g) Type I (h) Type J (i) Type K 

  
 

(j) Type L (k) Type M (l) Type N 
Figure 1. Upright cross-sections considered  

 
Direct Strength Method equations to predict bending capacity  

Local Buckling 

The DSM nominal member moment capacity Mbl for local buckling, ignoring 
inelastic reserve capacity, is defined as (AISI-S100, 2016, AS/NZS, 2005, 
Schafer, 2008):  

 ybl MM =  
if  776.0l  (1) 
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where Mol and My are the elastic local buckling moment and yield moment 
respectively, and λl is a non-dimensional slenderness ratio defined as: 
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The recent AISI-S100 (2016) now allows the nominal member moment capacity 
to range between My and the plastic moment Mp for compact cross-sections if λl  ≤ 
0.776 (local inelastic reserve capacity). When the first yield is in compression: 

 2(1 1/ )( )bl y yl p yM M C M M= + − −
 

(4) 
where 

 0.776 / 3yl lC = 
 

(5) 
and when the first yield is in tension: 

 2
3(1 1/ )( )bl yc yl p y ytM M C M M M= + − −   (6) 

where  

 3 8 / 9( )yt y p yM M M M= + −
 

(7) 
and Myc is the moment at which yielding initiates in compression (after yielding 
in tension). Myc has been conservatively taken as My in the following sections 
(AISI-S100, 2016, Torabian, et al., 2014). 

Pham and Hancock (2013) proposed an extended range of the cross-sectional 
slenderness for which the inelastic strength can be applied. For local buckling, the 
inelastic reserve capacity can be applied when λl  ≤ 1.55 and Cyl in Eq. (5) becomes: 

 1.55 / 3yln lC = 
 

(8) 
and the inelastic local strength is calculated as: 

 2(1 1/ )( )nyl y yln p yM M C M M= + − −   (9) 
Mnyl is then used in the classical DSM (Eqs. (1-2)) instead of My, and λln defined 
as:  

 nyl
ln

ol

M
M

 =  (10) 

is used instead of λl to obtain the new nominal member capacity with extended 
range Mbln. 
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Distortional Buckling 

Similarly, the DSM nominal member moment capacity Mbd for distortional 
buckling, ignoring inelastic reserve capacity, is as follows (AISI-S100, 2016, 
AS/NZS, 2005, Schafer, 2008): 

  ybd MM =  
if 673.0d  (11) 
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if 0.673d   (12) 

where Mod is the elastic buckling moment for distortional buckling and λd is a non-
dimensional slenderness ratio defined as: 

 
od

y
d M

M
=

 
(13) 

According to AISI-S100 (2016), distortional inelastic reserve capacity is 
permitted to be taken into account if λd  ≤ 0.673. The same equations as for local 
buckling (Eqs (4-7)) are used with Cyl in Eqs (4, 6) replaced by: 

 0.673/ 3yd dC = 
 

(14) 
For distortional buckling, the inelastic strength with extended range proposed by 
Pham and Hancock (2013) can be applied when λd  ≤ 1.45 and Cyd in Eq. (14) 
becomes: 

 1.45 / 3ydn dC = 
 

(15) 
and the inelastic distortional strength is calculated as: 

 2(1 1/ )( )nyd y ydn p yM M C M M= + − −   (16) 
The Mnyd is then used in the classical DSM (Eqs. (11-12)) instead of My and λdn 
defined as:  

 nyd
dn

od

M
M

 =  (17) 

is used instead of λd to obtain the new nominal member capacity with extended 
range Mbdn. 

Elastic Buckling, Yield and Plastic Moments 

Elastic buckling moments (Mol and Mod) for each tested configuration were 
calculated and input in the DSM expressions running linear buckling analyses 
(LBA) in Abaqus (2015). A similar model to the one described in the companion 
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paper was used. Concentrated bending moments about major and minor axes were 
applied at the pinned boundary conditions.  

For each of tested configurations, the yield moment My and plastic moment Mp 
were calculated about the axis about which the biaxial bending moment was 
applied using a yield stress equal to 450 MPa, as used in parametric studies.  

 
Comparison of direct strength method design with parametric results 

Local Buckling 

Table 2 provides the elastic local slenderness ratio λl (Eq. (3)) and the FEA biaxial 
failure moment (MFEA) to the DSM predicted moment (MDSM) ratio for the three 
different DSM approaches and local buckling.  

Figure 2 also graphically compares the DSM local buckling curve to the 
normalised FEA predicted capacities. As shown in Table 2, the DSM without the 
inelastic reserve capacity typically conservatively estimates the bending capacity 
of the studied uprights, with the FEA to DSM capacity ratios ranging between 
0.99 and 2.05, both values for Type J upright in Configurations 1 and 8, 
respectively. On average, the DSM without the inelastic reserve capacity 
conservatively estimates the bending capacity by 44% with a Coefficient of 
Variation (COV) for all tested uprights and configuration of 17%. The classical 
DSM is generally more accurate in predicting the moment capacity when bending 
solely occurs about the major axis than about any other axis. 

The use of the DSM with inelastic reserve capacity, as in the AISI-S100 (2016), 
results in a 10% improvement of the predictions, when compared to the classical 
DSM. For all configurations, considering the AISI-S100 (2016) inelastic reserve 
capacity overestimates the biaxial bending capacity by 34% on average, with a 
COV of 14%. Note, that when compared to the classical DSM, considering the 
inelastic reserve capacity only influences the prediction when λl is less than 0.776. 

Regarding the DSM predictions using the extended range of the inelastic reserve 
capacity, Table 2 and Figure 2 show that the proposed method in Pham and 
Hancock (2013) provides better strength predictions when compared to the other 
two DSM approaches. On average, for all configurations and upright types, this 
method overestimates the FEA capacity by 21%, with a COV of 17%. As can be 
seen in Figure 2, the proposed method in Pham and Hancock (2013) is mainly 
conservative for slenderness ratio greater than about 1.15.  
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Distortional Buckling 

Table 3 provides the elastic distortional slenderness λd and the MFEA/MDSM ratios, 
with and without the inelastic reserve capacity, for all analyses failing in 
distortional buckling. Figure 3 compares the DSM distortional buckling curve to 
normalised FEA results.  

Table 3 shows that the DSM without considering the inelastic reserve capacity 
usually conservatively estimates the bending capacity of the investigated uprights, 
with a FEA to DSM biaxial moment capacity ratio up to 1.91 (Type M and 
Configuration 7). For all configurations and upright types, the classical DSM 
overestimates on average the FEA capacity by 24%, with a COV of 21%. Similar 
to local buckling, the classical DSM typically better predicts the bending capacity 
for bending about major axis only.  

The use of the DSM with inelastic reserve capacity, as in the AISI-S100 (2016), 
leads to an average underestimation of the bending capacity of 16%, with COV of 
13%.  

Similar to local buckling, the DSM predictions using the extended range of the 
inelastic reserve capacity proposed by Pham and Hancock (2013) provides better 
strength predictions when compared to the other two DSM approaches 
investigated herein. On average, this method overestimates the capacity about 1% 
with a COV of 14%. 

 
Figure 2. Comparison of the DSM curve to parametric studies data for local buckling  
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Table 2. Comparison of parametric results with DSM for local buckling uprights 

Up- 
right  Conf λl   

MFEA/MDSM 
(No 

reserve)(1) 

MFEA/MDSM 
(With 

reserve)(2) 

MFEA/MDSM 
(Pham and 
Hancock(3) 

Up- 
right  Conf λl   

MFEA/MDSM 
(No 

reserve)(1) 

MFEA/MDSM 
(With 

reserve)(2) 

MFEA/MDSM 
(Pham and 
Hancock(3) 

Type 
C 

0 0.57 1.31 1.22 1.12 

Type 
H 

0 1.30 1.06 1.06 1.05 
1 0.78 1.21 1.21 1.06 1 1.17 1.09 1.09 1.02 
2 0.83 1.26 1.26 1.08 2 1.08 1.16 1.16 1.05 
3 0.74 1.59 1.52 1.18 3 1.03 1.20 1.20 1.08 
4 0.71 1.51 1.40 1.08 4 1.06 1.10 1.10 1.04 
5 0.52 1.38 1.20 1.07 5 1.06 1.15 1.15 1.05 
6 0.43 1.44 1.04 0.89 6 1.01 1.23 1.23 1.10 
7 0.40 1.94 1.36 1.16 7 1.09 1.40 1.40 1.27 
8 0.41 2.00 1.40 1.20 8 1.23 1.37 1.37 1.32 

Type 
D 

0 0.58 1.27 1.19 1.09 

Type 
I 

0 0.83 1.16 1.16 1.10 
1 0.61 1.43 1.25 1.02 1 0.72 1.13 1.10 0.95 
2 0.62 1.56 1.36 1.08 2 0.72 1.17 1.14 0.98 
3 0.60 1.67 1.40 1.10 3 0.64 1.58 1.39 1.10 
4 0.61 1.45 1.31 1.11 4 0.62 1.58 1.39 1.11 
5 0.47 1.60 1.27 1.09 5 0.90 1.23 1.23 1.12 
6 0.46 1.79 1.38 1.18 6 1.02 1.30 1.30 1.19 
7 0.44 1.90 1.40 1.19 7 0.98 1.63 1.63 1.39 
8 0.45 1.57 1.30 1.16 8 1.01 1.66 1.66 1.43 

Type 
E 

0 0.90 1.26 1.26 1.18 

Type 
J 

0 1.88 1.25 1.25 1.30 
1 1.19 1.37 1.37 1.30 1 1.65 0.99 0.99 1.01 
2 1.30 1.33 1.33 1.28 2 1.74 1.01 1.01 1.05 
3 1.08 1.64 1.64 1.38 3 1.54 1.18 1.18 1.17 
4 1.05 1.52 1.52 1.29 4 1.48 1.14 1.14 1.11 
5 0.52 1.32 1.17 1.05 5 1.71 1.34 1.34 1.38 
6 0.48 1.57 1.26 1.09 6 1.39 1.31 1.31 1.26 
7 0.42 1.96 1.36 1.15 7 1.29 1.87 1.87 1.71 
8 0.39 1.91 1.33 1.16 8 1.30 2.05 2.05 1.88 

Type 
F 

0 0.64 1.26 1.21 1.10 

Type 
K 

0 0.88 1.16 1.16 1.08 
1 0.71 1.27 1.21 0.99 1 0.91 1.28 1.28 1.11 
2 0.69 1.48 1.37 1.09 2 0.90 1.44 1.44 1.20 
3 0.66 1.54 1.37 1.06 3 0.87 1.52 1.52 1.24 
4 0.68 1.29 1.20 0.99 4 0.89 1.23 1.23 1.09 
5 0.58 1.43 1.25 1.05 5 1.18 1.28 1.28 1.18 
6 0.52 1.68 1.35 1.13 6 1.36 1.47 1.47 1.39 
7 0.47 1.77 1.33 1.11 7 1.47 1.62 1.62 1.58 
8 0.47 1.56 1.29 1.14 8 1.65 1.52 1.52 1.55 

Type 
G 

0 1.03 1.19 1.19 1.13 

Type 
L 

0 1.43 1.37 1.37 1.35 
1 0.87 1.38 1.38 1.21 1 1.89 1.55 1.55 1.64 
2 0.72 1.34 1.29 1.08 2 1.90 1.63 1.63 1.79 
3 0.50 1.62 1.30 1.10 3 1.72 1.73 1.73 1.86 
4 0.42 1.65 1.30 1.16 4 1.68 1.50 1.50 1.57 
5 0.92 1.32 1.32 1.18 5 1.31 1.14 1.14 1.10 
6 0.84 1.33 1.33 1.15 6 1.45 1.35 1.35 1.32 
7 0.67 1.62 1.48 1.18 7 1.41 1.68 1.68 1.59 
8 0.52 1.54 1.29 1.11 8 1.46 1.94 1.94 1.88 

     Average (all uprights) 1.44 1.34 1.21 
                          COV (%) 17.00 15.00 18.00 

(1) No inelastic reserve capacity; (2) Inelastic reserve capacity as in AISI-S100 (2016); (3) Extended reserve strength 
in Pham and Hancock (2013) 
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Table 3. Comparison of parametric results with DSM for distortional buckling uprights 

Up- 
right  Conf λd 

MFEA/MDSM 
(No 

reserve)(1) 

MFEA/MDSM 
(With 

reserve)(2) 

MFEA/MDSM 
(Pham and 
Hancock(3) 

Up- 
right  Conf λd   

MFEA/MDSM 
(No 

reserve)(1) 

MFEA/MDSM 
(With 

reserve)(2) 

MFEA/MDSM 
(Pham and 
Hancock(3) 

Type 
D 
 

0 0.74 0.92 0.92 0.85 

Type 
F 

0 0.78 0.97 0.97 0.90 
1 0.76 1.01 1.01 0.83 1 0.83 0.94 0.94 0.81 
2 0.76 1.13 1.13 0.92 2 0.80 1.10 1.10 0.91 
3 0.72 1.17 1.17 0.92 3 0.75 1.18 1.18 0.94 
4 0.74 1.06 1.06 0.91 4 0.77 1.18 1.18 1.01 

Type 
M 

0 0.63 1.10 1.09 0.97 

Type 
N 

0 1.29 1.07 1.07 1.06 
1 0.66 1.19 1.18 0.97 1 1.39 1.26 1.26 1.24 
2 0.63 1.27 1.22 0.98 2 1.32 1.30 1.30 1.25 
3 0.57 1.55 1.40 1.08 3 1.26 1.27 1.27 1.18 
4 0.59 1.55 1.46 1.20 4 1.25 0.93 0.93 0.88 
5 0.36 1.37 1.08 0.96      
6 0.31 1.62 1.20 1.07      
7 0.30 1.91 1.35 1.19      
8 0.33 1.64 1.32 1.20      

     Average  (all uprights) 1.24 1.16 1.01 
     COV (%) 21.00 13.00 14.00 

(1) No inelastic reserve capacity; (2) Inelastic reserve capacity as in AISI-S100 (2016); (3) Extended reserve 
strength in Pham and Hancock (2013) 

 
 

 
Figure 3. Comparison of the DSM curve to parametric studies data for distortional 

buckling  
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Conclusion 

This paper presented the evaluation of different Direct Strength Method 
approaches to estimate the biaxial bending capacity of cold-formed steel storage 
rack uprights falling in local and distortional buckling. The DSM, as published in 
the AISI-S100 (2016), with or without considering the inelastic reserve capacity, 
was found to underestimate the biaxial bending capacity for the majority of the 
tested configurations. On average, the capacity to DSM prediction ratios were 
equal to 1.44 and 1.24 for local and distortional buckling, respectively, when the 
inelastic reserve capacity was ignored. When considering it, these ratios changed 
to 1.34 and 1.16 for local and distortional buckling, respectively. When using the 
extended inelastic reserve capacity range proposed by Pham and Hancock (2013), 
the DSM equations better predict the biaxial capacity, with an capacity to 
prediction equal to 1.21 and 1.01 for local and distortional buckling, respectively.  
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