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Abstract: Forecasting of real-time electricity load has been an important research topic over many
years. Electricity load is driven by many factors, including economic conditions and weather.
Furthermore, the demand for electricity varies with time, with different hours of the day and different
days of the week having an effect on the load. This paper proposes a hybrid load-forecasting method
that combines classical time series formulations with cubic splines to model electricity load. It is
shown that this approach produces a model capable of making short-term forecasts with reasonable
accuracy. In contrast to forecasting models that utilize a multitude of regressor variables observed
at multiple time points within a day, only the hourly temperature is used in the proposed model
and predictive power gains are achieved through the modeling of the 24-hour load profiles across
weekends and weekdays while also taking into consideration seasonal variations of such profiles.
Long-term trends are accounted for by using population and economic variables. The proposed
approach can be used as a stand-alone predictive platform or be used as a scaffolding to build a more
complex model involving additional inputs. The data cover the period from 1 January 1993 through
31 December 2013 from the Atlantic City Electric zone.

Keywords: forecasting; time series; cubic splines; real-time electricity load; seasonal patterns

1. Introduction

There is a long history of research on the modeling of hourly real-time electricity load. They range
from standard regression and time series approaches to methods that use machine learning algorithms,
such as artificial neural networks (ANNs), which require training by experts familiar with the algorithms
being utilized. In contrast to naive regression approaches or the use of more sophisticated machine
learning algorithms, a hybrid method that amalgamates regression splines with time series methods
is proposed. One advantage of the proposed method is that it is implementable by using standard
off-the-shelf software that does not require specialized training to be an effective user. Another is that it
utilizes temperature as the only weather-related variable. Moreover, the proposed time-varying spline
approach allows one to model the profile of daily electricity load for weak days as well as weekends for
winter, summer, and shoulder months, providing valuable information about the daily electricity use
patterns and how they evolve across days and seasons. In addition, the proposed method can be used
as a platform for building more sophisticated models with additional variables. Finally, the model is
readily interpretable as opposed to a forecasting model that utilizes a “black box” type algorithm.

The literature on load forecasting is extensive, and therefore, a complete discussion of the literature
is not possible in this paper. However, a sample of the approaches to load forecasting is presented
herein to demonstrated the variety of available methods. For early classical work, the reader is
referred to Bunn and Farmer [1], which summarized approaches developed for short-term forecasting
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of electricity load. An important reference that classifies different methods of load forecasting is
Alfares and Nazeeruddin [2]. They categorized the various approaches into nine classes, which are: (1)
multiple regression, (2) exponential smoothing, (3) iterative reweighted least-squares, (4) adaptive
load forecasting, (5) stochastic time series, (6) Autoregressive Moving Average models with exogenous
inputs (ARMAX models) and those with optimal model selection using the genetic algorithm, (7) fuzzy
logic, (8) neural networks, and (9) expert systems. Alfares and Nazeeruddin also commented that while
the pure time series approach is widely used, hybrid approaches, which combine several techniques,
have become more common.

As mentioned by Alfares and Nazeeruddin, there are many instances of the use of hybrid
methods. For example, El-Keib et al. [3] presented a hybrid approach where exponential smoothing
was augmented with power spectrum analysis and adaptive autoregressive modeling. On the other
hand, Dash et al. [4] utilized an expert system modeled fuzzy neural network and a hybrid neural
network to forecast electricity load. Other publications that employed hybrid approaches are: Kim
et al. [5] Chow et al. [6], and Choueiki et al. [7]. A more recent two-stage approach to forecasting
the hourly electricity load for 24 hours ahead was developed by Gajowniczek and Zabkowski [8].
In this approach, the peak load values were determined by using the generic function quantile in
the first stage, followed by building of three classification models, corresponding to the 99th, 95th,
and 90th percentile of the distribution, to identify the load level. They used two machine learning
algorithms, namely support vector machine (SVM) and artificial neural networks (ANN), to forecast
the 24-hour electricity load. Another recently introduced approach, based on an extreme learning
technique, was proposed by Das et al. [9]. This method considered relative difference in percentage of
load at different intervals in its modeling approach. More recently, Annamareddi et al. [10] proposed
a hybrid model based on a wavelet transform technique and double exponential smoothing to forecast
the electricity load. Another hybrid method for predicting the electricity load using Support Vector
Regression (SVR) and the Krill-Herd (KH) algorithm was proposed by Baziar and Kavousi-Fard [11].
The first step used training data, and the KH algorithm was used to optimize the SVR parameters.
Consequently, in the second step, the optimized SVR was used to forecast the electricity load.

A research paper that influenced our approach to electricity load modeling is the publication
by Nowicka-Zagrajek and Weron [12], which proposed a two-step procedure based on removing the
trend and seasonal effects first and then fitting an autoregressive moving average (ARMA) model
to the de-seasonalized data to obtain day-ahead predictions for the real-time load. In addition to
removing trend and seasonal effects, our approach uses spline regression to model daily load profiles.
In contrast, Liu et al. [13] utilized a semi-parametric model for nonlinear time series data, with the
model consisting of two components. One of the components is nonparametric, while the other is
a parametric Autoregressive Integrated Moving Average (ARIMA) component. Another approach
that accounts for periodicity is a generalization of the logistic Smooth Transition Autoregressive
(STAR) model for short term forecasting, developed by Amaral et al. [14]. This approach combines
periodic models with a smooth transition between the regimes. Another publication that deals with
cyclical behavior is that by Dordonnat et al. [15], which presented a periodic state space model,
with different equations and different parameters for each hour, for forecasting of the hourly electricity
load. The multi-equation linear model with autoregressive order two AR(2) approach developed by
Chapagain and Kittipiyakul [16] uses 48 separate equations to forecast every half hour electricity load
for one day ahead. Two different techniques, namely the ordinary least square (OLS) and a Bayesian
approach, were used to estimate the model parameters for each type of day separately weekdays,
weekends, and holidays.

The daily electricity use profile over a 24-hour period has prompted researchers to use functional
approaches to modeling electricity load. Kosiorowski [17] compared methods of load forecasting that
utilizes such approaches and concluded that the moving functional median is the appropriate approach
for functional time series that contain outliers and nonstationary functional time series. In comparison,
the other three approaches, functional autoregressive, fully functional regression, and the method
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proposed by Hyndman and Shang [18], work for a stationarity functional time series, and the prediction
accuracy of the Hyndman and Shang method was the best overall. Our proposed methodology treats
the 24-hour load profile as a function, which changes according to the type of day and season; however,
we model these changing profiles using the well-understood cubic spline approach.

More recently, Papadopoulos and Karakatsanis [19] compared four different approaches, namely
the seasonal autoregressive moving average (SARIMA), seasonal autoregressive moving average with
exogenous variable (SARIMAX), random forests (RF), and gradient boosting regression trees (GBRT).
Among the methods compared, GBRT showed the most accurate results based on mean absolute
percentage error (MAPE) and root mean square error (RMSE). Alkhathami [20] also discussed the
merits of various forecasting methodologies for load forecasting. He mentioned that the complex
methods give more accurate results. Yang et al. [21] developed a hybrid method to forecast the
half-hour electricity load, and they applied autocorrelation function (ACF) to select the important input
features of least square support vector machines (LSSVM), followed by the grey wolf optimization
algorithm (GWO) and cross validation (CV) to optimize the parameters of LSSVM. This method was
more accurate compared to nine other approaches over three electricity load data sets from Australia.

In addition to the literature discussed in the previous paragraphs, there are a plethora of
publications on the topics of load forecasting. Nevertheless, for the sake of brevity, we presented only
a limited sample to illustrate the diversity of approaches taken by researchers in this area.

It is worth noting that many of the RTOs (Regional Transmission Organizations) and ISOs
(Independent System Operators), as well as utility companies, have tended to use multiple regression
models with a multitude of weather-related inputs for short-term prediction in spite of recent research
that tend to include more sophisticated approaches. Possible reasons for this are discussed later in
this section.

The Pennsylvania-New Jersey-Maryland (PFM) RTO uses multiple regression models with many
regressor, such as 26 calendar variables, which are the days of the week (6), month of the year (11),
holidays (15), and daylight-saving time impacts (see PJM Manual 19 [22]). Different variables for
heating, cooling and shoulder seasons are included in the PJM model. Moreover, several formulae are
used to calculate some of the weather, economic, and end-use variables. Another variable labeled load
adjustment has also been used in PJM model.

It is evident that while many sophisticated models have been proposed, at least some practitioners,
such as the modelers at PJM, seem to prefer models based on classical statistical approaches. One reason
for this may be that the less sophisticated multiple regression models work reasonably well and are
both interpretable as well as easy to modify and re-train compared to those that are based on ANNs
(Artificial neural networks) or RFs (Random Forests). Keeping this perspective in mind, an approach
for short-term forecasting of electricity load using classical techniques that are relatively easy to
implement, is proposed. One of the goals is to avoid using “black box” approaches that result in
non-interpretable formulations, but instead to utilize methodologies that result in easy to understand
models. The proposed method, while somewhat more complex than straightforward regression
approaches, is nevertheless based on regression and basic time series modeling that can be executed
using widely available software. In addition, it uses a minimum amount of weather variables and drives
the forecasting power by capturing the effect of such variables implicitly embedded in the lagged values
of the load series as well as by exploiting the cyclical patterns inherent in the data. While relatively
simple when compared to the more sophisticated models described earlier, the proposed approach
nevertheless provides flexibility to model non-linear and non-stationary components that exhibit
seasonal variability. In addition, it provides a platform on which more complex models, involving
regressors such as additional weather variables, can be built.

The rest of the paper follows the following format. In Section 2, the main factors that affect
electricity load are discussed and their impact on the load is illustrated graphically using empirical
data. Section 3 describes the sources of the electricity load data employed in the analysis as well as
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weather and macro-economic data utilized in the proposed model. The proposed modeling approach
is detailed in Section 4 and concluding remarks are made in Section 5.

2. The Factors Affecting Electricity Load

There are many factors that affect the electricity load, some in the short term and others in the
long term. Fahad and Arbab [23] described the impact of various factors on the short-term load and
grouped those factors into four categories, namely time, weather, economy, and random disturbances.
Several economic and macroeconomic factors influence the electricity load over the long-term and
researchers have utilized these to obtain long-term forecasts. Some examples of such variables are gross
domestic product (GDP), gross domestic product per capita (GDP per capita), and population size.
At the initial stages of the proposed modeling approach, long-term trend is removed using a regression
model that accounts for several macro-economic variables and population size.

The time related changes in electricity load are not only due to long-term trend. Daily variations
in human activity due to working, leisure, and sleeping periods (see Figure 1) can introduce a cyclical
pattern with a 24-hour period. Other time related factors including day of the week, holidays,
and seasonal changes in consumer behavior can affect this 24-hour cycle as seen in Figure 1.
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Figure 1. The average of a 24-hour of load curve of weekdays (blue solid) and weekends (red dashed)
1993–2012 (left: January; right: July).

The weather variables, such as temperature, humidity, precipitation, and wind speed, have played
a significant role in electricity load forecasting, such as in the models used by the PJM TRO. Out of
these factors, the temperature plays a major role (Figure 2). The effect of seasons on the electricity load,
as seen in Figure 3, can be mainly attributed to seasonal fluctuation of the temperature, even though
seasonal changes in human behavior can also play a role. The proposed approach to modeling
electricity load strives to capture these effects due to seasonality, week-day and weekend differences,
as well as the intra-day fluctuation of temperature on the 24-hour load curve. Details of how this is
accomplished are given in Section 4.
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3. Data Sources

The historical load dataset used in this study was obtained from the Pennsylvania-New
Jersey-Maryland RTO website (PJM) [24]. The data cover a sub region of PJM (see Figure 4), namely the
Atlantic City Electric company (AE), which serve approximately 556,000 customers in eight counties
(Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Ocean, and Salem), in southern
New Jersey. This dataset includes hourly observations measured in megawatts (MW) over 20 years
from 1 January 1993 through 31 December 2012 (see Figure 5), which were used for modeling purposes
(i.e., as training data), and data from 1 January 2013 through 31 December 2013, shown in Figure 6,
which were used as test data for computing forecasting error. The weather data were obtained from
the National Oceanic Atmospheric Administration (NOAA) based on four weather stations in different
locations of the study area, southern New Jersey. These stations are located in Atlantic City, Millville,
Mount Holly, and Wildwood.
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The economic data were obtained from Federal Reserve Bank of St. Louis. The specific economic
variables used in this study are: industrial production index in the US (IPI) which is an economic
indicator that measures the amount of the output from manufacturing, mining, electric and gas
industries; government employment in New Jersey (NJGOVTN), which is defined as the total body
of employees in all government agencies apart from the military; home vacancy rate in New Jersey
(NJHVAC), which is defined as the percentage of all available units in a rental property that are vacant
or unoccupied at a particular time.
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4. The Proposed Approach to Modeling Electricity Load

The approach used in the following assumes a traditional structural time series model with trend,
seasonal, and cyclical components, but utilizes a variation of cubic splines to estimate the 24-hour load
profile for weekdays and weekends in a given season with hourly temperature playing an explanatory
role. Specifically, model parameters are estimated for the mean load curve separately for weekdays
and weekend days within each season after performing a de-trending operation. This approach
can be considered suitable for short term prediction because of the need to have good estimates of
hourly temperature.

The model assumes that Yt,i, the real-time load at hour i on day t, is a composite of structural
components consisting of a long-term trend τt, a seasonal component St, a weekly cycle wt, a set of
functions fs,d(x) representing the hourly load profile at time x for season s and day of the week d (taking
one value for week-days and a different value for weekends), and an irregular stochastic component
ut,i. Thus, Yt,i can be expressed as:

Yt,i = τt + St + wt + fs,d(i) + ut,i,

where t = 1, 2, . . . , N and i = 1, 2, . . . , 24. Note that N denotes the number of days in the training data
set and i denotes the hour of the day.

The long-term trend was modeled using classical regression with select economic variables as
regressors. The weakly seasonal component was modeled using a vector autoregressive moving
average with exogenous terms (ARMAX) formulation with the average weekly temperature and its
square as exogenous variables. The 24-hour load profiles were modeled by using a separate set of
cubic splines for each season and weekdays/weekend combinations. Different spline models were
used for each season because the 24-hour load profile within a season has almost the same pattern
but differs across seasons. The weekdays were modeled separately within each season because they
have quite different load profiles as well when compared to weekend patterns. The assumption of only
one functional form for the load profile of weekdays can be relaxed by adding unique functions for
each day of the week or for Monday, Friday, and the rest of the weekdays. Similarly, one can assume
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separate functional forms for Saturday and Sundays. Since such an approach can reduce the accuracy
of estimates due to reduced sample sizes, the number of different functions was kept to a minimum.

Details of the modeling process are described below, beginning with the detrending process
followed by the estimation of the seasonal components and concluding with the spline modeling of
the 24-hour load profile.

4.1. Predicting Long-Term Trend

The first step included modeling the hourly average electricity load per year, τ∗l =
1

24Nl

Nl∑
t=1

24∑
i=1

Yt,i,

using classical regression analysis. Note that in the above expression for the average load, l denotes the
year with l = 1, 2, . . . , 20, and Nl denotes the total number of days in that year. A stepwise selection
method was used to determine the independent variables to be included in the model. Out of more
than 20 economic variables plus population size and the average monthly temperature, the following
variables were selected: government employment in New Jersey (NJGOVTN), industrial production
index in the US (IPI), home vacancy rate in New Jersey (NJHVAC), and the average temperature of
September (Temp_Sep). Table 1 provides the results of the multiple linear regression analysis.

Table 1. The results for the regression model for annual load.

Analysis of Variance

Source DF Sum of Squares Mean Square F-Ratio Prob > F

Model 4 117546 29386 310.41 <0.0001
Error 15 1420.061 94.67q

Corrected Total 19 118966

Root MSE 9.73 R-Square 0.988 Adjusted R-Square 0.985
AIC 95.255 Dependent Mean 1237.84 Coefficient of Variation 0.78604

Variable DF Parameter
Estimate

Standard
Error t-Statistic Prob > |t| Variance

Inflation

Intercept 1 −422.011 91.167 −4.63 0.0003 0
NJGOVTN 1 1.61 0.109 14.71 <0.0001 2.429
NJHVAC 1 −36.776 4.975 −7.39 <0.0001 1.041

IPI 1 2.769 0.343 8.08 <0.0001 2.399
Sep_M 1 7.247 1.276 5.68 <0.0001 1.079

Note: The above results are for the training data set only.

The estimated regression model for the annual data is:

τ̂∗l = −422.01− 36.78 NJHVAC + 1.61 NJGOVTN + 2.77 IPI +7.25 Temp_Sep.

The selected independent variables explain 98.5% of the variation in the average annual load
and the root mean square error (RMSE) is 9.7, which is relatively small. Moreover, no serious
multicollinearity among the independent variables was detected. The residual analysis is shown in the
Figure A1 in the Appendix A, and while two outliers (with high Cook’s distance) are shown, no major
concern is raised. In addition, the model does a good job of predicting the annual load, as seen in
Figure 7.

Figure 7 displays the average annual real-time load per hour for the 20 years of training data
and one year of test data and the average annual load predicted, using the estimated regression
model. The figure shows the predicted trend using actual macroeconomic data for the test year, but the
macroeconomic data for the test year can be predicted very accurately using an ARMA model, and the
results do not change by much. The display shows very good in-sample agreement between the
observed and predicted load and a reasonable agreement between the two for the test year. One word
of caution is that we observed that the electricity load decreased in the last three years, but one of the
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two most important variables in the model, the government employment in New Jersey (NJGOVTN),
decreased only slightly, while the industrial production index in the US (IPI) increased. Those two
variables explained 92% of the variation in the electricity load. Thus, some delinking of these variables
with electricity load may be occurring and developing an annual model with more recent data may
be pragmatic.
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Figure 7. The annual average of hourly load (blue solid) and the predicted load (red doted) 1993–2013.

4.2. Estimating Seasonal Variation in Data

The trend estimates for each year were transposed onto a weekly series, and a 52-week moving
average was applied to this series to smooth the predictions from a step function to a smooth one.

The smoothed trend, τ̃∗w, for week w, was subtracted from the average load Yt,• = (24)−1 24∑
i=1

Yt,i for each

day within the corresponding week, with the process repeated for all weeks, yielding the detrended
daily averages Y

∗

t,•. The resulting data can be represented in a vector series S∗w, where each vector
contains the seven detrended daily averages Y

∗

t,• corresponding to that week. Note that w = 1, 2, . . . ,
W, where W is the total number of weeks in the training data set. The de-trended weekly time series,
Ŝ∗w, was then used to fit a subset ARMAX model (see Baillie, R. T [26] for details) given below:

S∗w = 1023 + 1.13S(w−1) − 0.23S∗
(w−2)

+ 0.76S∗
(w−52)

− 0.67S ∗
(w−53)

+0.75Z(w−1)

− 0.06Z(w−50) + 0.71Z(w−52) − 0.44Z(w−53) − 0.11Z(w−54) − 50.36T + 0.53T2,

where L(w−lag) denotes the autoregressive lag term, Z(w−lag) denotes the moving average lag terms,
and T denotes the weekly average temperature. The residuals of the fit do not show any major
autocorrelations and the test for white noise (bottom right hand corner of Figure A2 in the Appendix A)
shows no evidence that the residuals are anything other than white noise. The check for normality of
the residuals, given in Figure A3 in the Appendix A, shows some deviation from normality, but this
is not much of a concern because the model performed an adequate job of extracting the seasonal
component as indicated by white noise residual.

The forecasted weekly vector values for the test data set (year 2013) were then obtained using
the estimated ARMAX model. These estimated vectors Ŝ∗w contain forecasted daily values for each
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week. These daily values were averaged to get a forecast weekly average. The trend model was then
employed to forecast a yearly trend for the test data (year 2013). Note that to predict a trend, we needed
macroeconomic data for the test year and in practice, these have to be predicted. We found that
applying an ARMA model to the past macroeconomic data would yield accurate forecasts for the test
year. This yielded a constant forecast across all the weeks of the test year. These were them smoothed
using a 52-week moving average that utilized previous year’s data for the smoothing. The smoothed
weekly trend data were then added to the forecast weekly average obtained from averaging the daily
values from the ARMAX vector forecasts. The resulting weekly averages were then compared with the
observed weekly average load for the test year (Figure 8). These out-of-sample checks show that the
seasonal (weekly) model provides a satisfactory estimation of the seasonal component.

Note that the smoothing of the yearly trend data allows for a smooth transition from one year
to the next. It also reduces any bias due to poor estimation of the trend value for the test year,
when computing trend values for the early part of the test year. The trend estimates can be updated
later in the test year by reforecasting the trend value by using updated macroeconomic variables that
may become available after the first quarter of that year and later after the second and third quarter.
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4.3. Modeling the Hourly Load

At this point, the weekly smoothed trend τ̃∗w and the estimated seasonal component Ŝ∗w were
removed from the hourly data Yt,i for both training and test data years, and a new de-trended and
de-seasonalized time series, Y∗t,i, was obtained. The times series Y∗t,i was modeled using the training
data set, by fitting cubic splines to model the 24-hour daily profile. Different spline estimates were
obtained for each season, weekday, and weekend combination. Temperature and its interaction with
time were also fitted as regressors.

Two scenarios were applied here. The first one modeled each season and each day type (weekday
or weekend) separately. We denoted the resulting model as Model 1. The second scenario modeled
each season separately and ignored the day type but added a dummy variable to identify the type of
day. This approach provided us with Model 2.
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4.3.1. The First Scenario

The general spline Model 1 is:

Y∗t,i = b0 + b1i + b2i2 + b3i3 + b4(i− κ1)
2 + b5(i− κ2)

2 + b6(i− κ3)
2 + b7(i− κ1)

3 + b8(i− κ2)
3

+ b9(i− κ3)
3 + b10Tt,i + b11Tt,i ∗ i + b12Tt,i ∗ i2 + b13Tt,i ∗ i3 + b14Tt,i ∗ (i− κ1)

2 + b15Tt,i ∗ (i− κ2)
2

+ b16Tt,i ∗ (i− κ3)
2 + b17Tt,i ∗ (i− κ1)

3 + b18Tt,i ∗ (i− κ2)
3 + b19Tt,i ∗ (i− κ3)

3,

where i is the hour, κ′js are the knots that change according to season and day type, and Tt,i is
temperature at hour i on day t. The knot positions were chosen by inspection for each season and
are given, together with the parameter estimates, in the Tables A2–A5 in the Appendix A. Note that
non-significant terms were dropped from the model and what is given above is the reduced model.

4.3.2. The Second Scenario

The general spline Model 2 is:

Y∗t,i = b0 + b1i + b2i2 + b3i3 + b4(i− κ1)
2 + b5(i− κ2)

2 + b6(i− κ3)
2 + b7(i− κ1)

3 + b8(i− κ2)
3

+ b9(i− κ3)
3 + b10Tt,i + b11Tt,i ∗ i + b12Tt,i ∗ i2 + b13Tt,i ∗ i3 + b14Tt,i ∗ (i− κ1)

2 + b15Tt,i ∗ (i− κ2)
2

+ b16Tt,i ∗ (i− κ3)
2 + b17Tt,i ∗ (i− κ1)

3 + b18Tt,i ∗ (i− κ2)
3 + b19Tt,i ∗ (i− κ3)

3 + b20wt,

where i is the hour, κ is a knot that changes according to the season and the knot positions and parameter
estimates are given in the Tables A6 and A7 in the Appendix A. Note that Tt,i is the temperature at
time i on day t, and wt is a dummy variable denoting weekend day. Note that non-significant terms
were dropped from the model and the results reported are for the reduced model.

As mentioned previously, the Table A2 through Table A7, given in the Appendix A, present the
knot positions and the results of the regression model for each season and each type of day. The tables
for weekdays and weekends for a given season are paired together for easy comparison.

Model obtained for each season is different from the others, reflecting changes in the daily load
profiles across seasons. The comparison between Model 1 and Model 2, based on Akaike Information
Criteria (AIC) and Root Mean Square Error (RMSE) is presented in Table 2. The results show very little
difference between the two models. In addition, the Figures 10 and 11 show the comparison between
the two models based on the Coefficient of Variation (CV) for each month and each hour, respectively.

Table 2. The comparison between the two models.

Season Day Type
RMSE AIC

Model 1 Model 2 Model 1 Model 2

Winter
Weekdays 72.961 72.997 260089.07 260119.13
Weekends 74.395 74.743 100751.11 100862.34

Spring Weekdays 73.524 73.484 271284.41 271249.53
Weekends 84.087 84.273 111701.59 111757.18

Summer
Weekdays 121.68 121.754 303082.91 303118.57
Weekends 138.232 138.465 124225.17 124267.61

Fall
Weekdays 94.403 92.402 282449.53 282449.54
Weekends 100.777 101.231 115155.18 115268.54

Figure 9 shows very close agreement between the two models when compared using the CV by
month. There is a slight drop in the CV for Model 1 suggesting a slight gain in accuracy when the
weekdays and weekends are modeled separately. Figure 10 given below shows the CV for the two
models by each hour of the day. Again, Model 1 shows a slight advantage with the CV for Model 2
showing higher values for hours before 10 am. This may be because the load profile for weekends
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shows a two-hour shift in the morning load profile and the inclusion of a dummy variable is not
sufficient to account for this difference in the shape of the load profile.
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The Figures 11–14 provide a comparison between the two models for four different weeks of
the test year. The weeks were chosen from the middle of each season. The forecasts based on each
model were very close to one another, which suggests that adding a dummy variable for the day type
instead of building the extra models for the type of day provides satisfactory forecast overall; however,
for all seasons except summer, Model 2 yielded forecasts that fall below the observed load during the
weekends (last two days in the graph), especially in the morning period. However, except for the
weekends, both models underestimated the afternoon peak in winter and spring. For the summer
season (Figure 13), the afternoon peak was overestimated by both models on Fridays.
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Table 3 provides an additional contrast between the two models based on CV. It is immediately
apparent that any difference between the two models is quite marginal and may not have any practical
consequences. The cells highlighted in light blue indicate places where the CV for a given model
is lower than that for the competing model. If any conclusion can be made based examining these
results, it may be that Model 1 is slightly better than Model 2 across most hours in winter and fall,
and Model 1 appears to perform slightly better before noon during spring. One reason for this may be
the somewhat poor performance of model two during the weekend mornings. If pressed to select one
model over the other, the natural choice would be Model 1, but a strong argument cannot be made that
it is much more superior to Model 2.
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Table 3. The comparison between the CV of the two models for each season by hour.

Hour
Winter Spring Summer Fall

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
1 0.064 0.068 0.077 0.082 0.087 0.090 0.083 0.092
2 0.061 0.063 0.076 0.090 0.093 0.094 0.077 0.086
3 0.063 0.065 0.075 0.080 0.093 0.093 0.078 0.086
4 0.065 0.067 0.079 0.080 0.093 0.091 0.081 0.088
5 0.063 0.063 0.077 0.077 0.092 0.089 0.081 0.085
6 0.059 0.059 0.077 0.079 0.087 0.088 0.081 0.081
7 0.066 0.075 0.087 0.093 0.091 0.092 0.088 0.093
8 0.062 0.076 0.076 0.090 0.096 0.090 0.088 0.095
9 0.056 0.064 0.072 0.080 0.104 0.098 0.088 0.088

10 0.063 0.066 0.078 0.081 0.104 0.106 0.092 0.091
11 0.072 0.071 0.083 0.084 0.100 0.101 0.096 0.097
12 0.076 0.074 0.090 0.089 0.102 0.102 0.105 0.107
13 0.076 0.076 0.099 0.096 0.107 0.104 0.119 0.120
14 0.073 0.075 0.105 0.104 0.101 0.100 0.132 0.132
15 0.071 0.072 0.107 0.107 0.096 0.095 0.139 0.138
16 0.069 0.069 0.110 0.111 0.093 0.093 0.144 0.145
17 0.068 0.070 0.114 0.115 0.090 0.091 0.150 0.150
18 0.072 0.073 0.118 0.117 0.087 0.086 0.156 0.155
19 0.060 0.062 0.116 0.115 0.085 0.085 0.134 0.135
20 0.059 0.060 0.106 0.105 0.083 0.083 0.116 0.117
21 0.061 0.062 0.099 0.097 0.079 0.078 0.107 0.109
22 0.062 0.062 0.090 0.085 0.080 0.078 0.096 0.098
23 0.060 0.060 0.080 0.074 0.092 0.088 0.086 0.088
24 0.060 0.060 0.078 0.075 0.085 0.084 0.081 0.086

Note: The numbers highlighted in blue indicates the lower of the two CV values for each hour of each season.

5. Conclusions

A multi-step approach to modeling the hourly electricity load using a structural time series
model that utilizes only standard statistical modeling techniques was introduced. While the proposed
methods require multiple steps to model the load data, every step can be implemented using commonly
available statistical software packages, and therefore, they are within the reach of empirical modelers
who do not have training in the use of sophisticated machine learning algorithms or have the time
required to master complex analytical techniques. The results of modeling observed real-time load
data from the PJM market show that the proposed method performs reasonably well in modeling the
training data and short-term forecasting out-of-sample data. In addition, the proposed methodology
utilized only macroeconomic and temperature data, and the use of additional input variables has the
potential to further improve the performance of the models considered in this study. One shortcoming
of the proposed study is the need to know macroeconomic data and the population figures to predict
long-term trend, but in the context of forecasting in the short-term, this may not be a great drawback,
because near-term forecasts of these can be quite reliable or one can use the most recent data without
sacrificing much accuracy. In spite of the above shortcoming, it is seen that the cubic spline model
worked very well in capturing the 24-hour load curve, and therefore, the proposed methodology can
provide a framework for modeling other phenomena that exhibit a daily cycle, especially if long-term
trend forecasting is not needed.
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Appendix A

In this appendix, additional figures and tables relevant to material presented in this paper
are given.
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Table A1. The Results for the Weekly ARMAX Model.

Maximum Likelihood Estimation

Parameter Estimate Standard Error t Value Approx. Pr > |t| Lag

MU 1023.0 28.446 35.96 <0.0001 0
MA1,1 0.751 0.06 12.55 <0.0001 1
MA1,2 −0.056 0.019 −2.99 0.0028 50
MA1,3 0.712 0.037 19.22 <0.0001 52
MA1,4 −0.440 0.048 −9.22 <0.0001 53
MA1,5 −0.105 0.025 −4.24 <0.0001 54
AR1,1 1.128 0.057 19.67 <0.0001 1
AR1,2 −0.227 0.033 −6.87 <0.0001 2
AR1,3 0.762 0.027 28.06 <0.0001 52
AR1,4 −0.673 0.031 −22.11 <0.0001 53

T −50.357 0.958 −52.56 <0.0001 0
T2 0.533 0.01 57.50 <0.0001 0

Constant Estimate 10.074 Std Error Estimate 41.473
AIC 10765.4 SBC 10824.8



Energies 2019, 12, 4169 18 of 22

Table A2. The Results for the Regression Model for the Winter Season (Model 1).

Winter—Weekdays Winter—Weekends

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −43.94700 0.0003 Intercept 33.16159 0.0438

i 43.00126 <0.0001 i −68.74540 <0.0001

i2 −28.47236 <0.0001 i2 10.86316 0.0456

i3 3.90525 <0.0001 i3 −0.34335 0.5244

(i − 6)2 −72.28854 <0.0001 (i − 5)2 4.53027 0.1994

(i − 14)2 −42.29815 <0.0001 (i − 12)2 21.97808 <0.0001

(i − 17)2 −103.8987 <0.0001 (i − 17)2 −42.63870 <0.0001

(i − 6)3 −1.95948 <0.0001 (i − 5)3 −0.98781 0.0461

(i − 14)3 8.92152 <0.0001 (i − 12)3 2.63976 <0.0001

(i − 17)3 −9.58272 <0.0001 (i − 17)3 −0.96957 0.0194

temp −2.89175 <0.0001 temp −2.59769 <0.0001

T*i −0.71365 <0.0001 T*i −0.15635 0.0027

T* i2 0.17868 <0.0001 T* (i − 5)2 0.06344 <0.0001

T* i3 −0.01462 <0.0001 T*(i − 12)2 −0.56360 <0.0001

T* (i − 6)2 0.26047 <0.0001 T*(i − 17)2 −0.67866 0.0005

T*(i − 14)2 0.23657 <0.0001 T*(i − 12)3 0.06180 <0.0001

T*(i − 17)3 0.02458 <0.0001 T*(i − 17)3 −0.03642 0.0005

RMSE 72.961 RMSE 74.388
Adj-R2 0.767 Adj-R2 0.707

AIC 260089.07 AIC 100750.97

Table A3. The Results for the Regression Model for the Spring Season (Model 1).

Spring—Weekdays Spring—Weekends

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept 93.65097 <0.0001 Intercept −7.13119 0.6187

i −150.22285 <0.0001 i −48.84602 <0.0001

i2 68.15250 <0.0001 i2 13.06001 <0.0001

i3 −8.97118 <0.0001 i3 −0.74388 <0.0001

(i − 4)2 115.05545 <0.0001 (i − 9)2 −13.54758 0.0001

(i − 8)2 61.51265 <0.0001 (i − 18)2 124.02630 0.0021

(i − 19)2 −124.08785 <0.0001 (i − 20)2 231.54827 0.0011

(i − 4)3 −3.47963 0.0009 (i − 9)3 2.62643 <0.0001

(i − 8)3 13.74708 <0.0001 (i − 18)3 −66.42324 <0.0001

(i − 19)3 9.48140 <0.0001 (i − 20)3 65.77067 <0.0001

temp −2.50879 <0.0001 Temp −1.45289 <0.0001

T* i2 −0.41258 <0.0001 T* i2 −0.22542 <0.0001

T* i3 0.07054 0.0001 T* i3 0.02324 <0.0001

T* (i − 4)2 −1.05263 <0.0001 T* (i − 9)2 −0.43314 <0.0001

T* (i − 8)2 −1.02330 <0.0001 T*(i − 18)2 −2.77329 <0.0001

T*(i − 19)2 1.75668 <0.0001 T*(i − 20)2 −5.14219 <0.0001

T* (i − 4)3 0.06608 <0.0001 T*(i − 9)3 −0.03102 <0.0001

T* (i − 8)3 −0.14706 <0.0001 T*(i − 18)3 1.26328 <0.0001

T*(i − 19)3 −0.19409 <0.0001 T*(i − 20)3 −1.22318 <0.0001

RMSE 73.524 RMSE 84.087
Adj-R2 0.75 Adj-R2 0.625

AIC 271284.41 AIC 111701.59
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Table A4. The Results for the Regression Model for the Summer Season (Model 1).

Summer—Weekdays Summer—Weekends

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −1031.8216 <0.0001 Intercept −1121.8108 <0.0001

i 20.83889 0.6311 i 92.24404 0.0765

i2 23.34519 0.0028 i2 −4.50357 0.5201

i3 −2.15146 <0.0001 i3 0.23011 0.4594

(i − 9)2 −58.35710 <0.0001 (i − 7)2 −50.56548 0.0002

(i − 14)2 −52.55395 0.0212 (i − 12)2 79.89184 <0.0001

(i − 19)2 −55.43427 0.1113 (i − 20)2 −45.09066 0.0476

(i − 9)3 13.63412 <0.0001 (i − 7)3 0.75179 0.4427

(i − 14)3 −10.04996 <0.0001 (i − 12)3 −1.41147 0.3334

(i − 19)3 −3.42800 <0.0001 (i − 20)3 −5.65133 <0.0001

temp 12.30673 <0.0001 temp 13.92763 <0.0001

T*i −1.67881 0.0056 T*i −2.61695 <0.0001

T* i2 −0.23403 0.0326 T* i2 0.15085 0.0283

T* i3 0.03886 <0.0001 T* (i − 7)2 1.43653 <0.0001

T*(i − 14)2 1.07409 0.0002 T*(i − 20)2 0.72256 0.0058

T*(i − 19)2 1.20714 0.0053 T*(i − 7)3 −0.14516 <0.0001

T*(i − 9)3 −0.17607 <0.0001 T*(i − 12)3 0.15275 <0.0001

T*(i − 14)3 0.09527 <0.0001

RMSE 121.682 RMSE 138.235
Adj-R2 0.866 Adj-R2 0.815

AIC 303082.91 AIC 124226.62

Table A5. The Results for the Regression Model for the Fall Season (Model 1).

Fall—Weekdays Fall—Weekends

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −124.73508 <0.0001 Intercept −21.40477 0.3987

i 49.54582 0.0001 h −27.84008 0.0282

i2 −20.69335 <0.0001 h2 7.44891 0.0016

i3 2.88465 <0.0001 h3 −0.32170 0.0803

(i − 6)2 −62.12202 <0.0001 (i − 8)2 −14.30060 0.3538

(i − 15)2 106.77851 <0.0001 (i − 10)2 5.40145 0.5837

(i − 20)2 190.28792 <0.0001 (i − 18)2 −147.68332 <0.0001

(i − 6)3 −1.41533 <0.0001 (i − 8)3 −1.67366 0.6195

(i − 15)3 −17.40696 <0.0001 (i − 10)3 5.28608 0.1368

(i − 20)3 4.95084 <0.0001 (i − 18)3 5.18245 <0.0001

temp −0.55227 0.0901 temp −1.22595 0.0026

T* i −0.95896 <0.0001 T* i −0.87935 <0.0001

T* i2 0.05788 0.0049 T* i2 0.00681 <0.0001

T* (i − 6)2 0.31932 <0.0001 T* (i − 8)2 0.68040 0.0036

T*(i − 15)2 −1.29167 <0.0001 T*(i − 18)2 1.72536 <0.0001

T*(i − 20)2 −3.25219 <0.0001 T*(i − 8)3 −0.14824 0.0002

T* (i − 6)3 −0.02245 <0.0001 T*(i − 10)3 0.11613 0.0105

T*(i − 15)3 0.23814 <0.0001 T*(i − 18)3 −0.10069 <0.0001

RMSE 92.402 RMSE 100.78
Adj-R2 0.745 Adj-R2 0.653

AIC 282449.54 AIC 115156.88
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Table A6. The Results for the Regression Model for the Winter and Spring Seasons (Model 2).

Winter Spring

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −16.55248 0.1207 Intercept −28.71512 0.3281

i 23.25116 0.0014 i 43.44180 0.1746

i2 −20.66445 <0.0001 i2 −18.69310 0.0568

i3 2.96367 <0.0001 i3 2.56499 0.0042

(i − 6)2 −52.98180 <0.0001 (i − 5)2 17.48659 <0.0001

(i − 15)2 −16.66555 <0.0001 (i − 8)2 42.40157 <0.0001

(i − 17)2 −112.22096 <0.0001 (i − 19)2 −123.9761 <0.0001

(i − 6)3 −1.83272 <0.0001 (i − 5)3 −13.11806 <0.0001

(i − 15)3 13.03173 <0.0001 (i − 8)3 11.98398 <0.0001

(i − 17)3 −12.65773 <0.0001 (i − 19)3 9.16725 <0.0001

temp −2.76643 <0.0001 temp −0.64997 0.2414

T* i −0.64320 <0.0001 T* i −2.15721 0.0003

T* i2 0.13092 <0.0001 T* i2 0.50905 0.0049

T* i3 −0.00834 <0.0001 T* i3 −0.04807 0.0027

T*(i − 6)2 0.12037 0.0070 T*(i − 8)2 −0.96311 <0.0001

T*(i − 15)2 0.13705 0.0009 T*(i − 19)2 1.72975 <0.0001

T*(i − 17)3 0.01452 <0.0001 T* (i − 5)3 0.18007 <0.0001

Weekend −49.01851 <0.0001 T*(i − 8)3 −0.14305 <0.0001

T*(i − 19)3 −0.18822 <0.0001

Weekend −59.90003 <0.0001

RMSE 75.781 RMSE 79.687
Adj-R2 0.741 Adj-R2 0.705

AIC 363556.63 AIC 386694.58
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Table A7. The Results for the Regression Model for the Summer and Fall Seasons (Model 2).

Summer Fall

Variable Parameter Estimate Pr > |t| Variable Parameter Estimate Pr > |t|

Intercept −1131.9170 <0.0001 Intercept −84.22522 <0.0001

i 115.72585 <0.0001 i 40.45021 0.0004

i2 1.12711 0.2755 i2 −17.21285 <0.0001

i3 −0.77157 <0.0001 i3 2.41275 <0.0001

(i − 9)2 −83.52495 <0.0001 (i − 6)2 −51.38721 <0.0001

(i − 14)2 −46.86818 0.0578 (i − 15)2 120.69047 <0.0001

(i − 19)2 −45.76871 0.1566 (i − 20)2 205.64318 <0.0001

(i − 9)3 13.02938 <0.0001 (i − 6)3 −1.34485 <0.0001

(i − 14)3 −11.66866 <0.0001 (i − 15)3 −18.15278 <0.0001

(i − 19)3 −3.20285 <0.0001 (i − 20)3 4.97629 <0.0001

temp 13.81380 <0.0001 temp −0.70591 0.0145

T*i −2.73699 <0.0001 T*i −0.99218 <0.0001

T* i3 0.02435 <0.0001 T* i2 0.06113 0.0008

T* (i − 9)2 0.30996 0.0564 T* (i − 6)2 0.30423 <0.0001

T*(i − 14)2 1.08035 0.0008 T*(i − 15)2 −1.37326 <0.0001

T*(i − 19)2 1.11159 0.0059 T*(i − 20)2 −3.36051 <0.0001

T*(i − 9)3 −0.17592 <0.0001 T*(i − 6)3 −0.02131 <0.0001

T*(i − 14)3 0.11706 <0.0001 T*(i − 15)3 0.24565 <0.0001

Weekend −55.87929 <0.0001 Weekend −71.82423 <0.0001

RMSE 128.175 RMSE 97.147
Adj-R2 0.85 Adj-R2 0.717

AIC 428670.67 AIC 399798.26
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