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Concept of local polaritons and optical properties of mixed polar crystals

Lev I. Deych,1 Alexey Yamilov,2 and Alexander A. Lisyansky2

1Department of Physics, Seton Hall University, 400 South Orange Avenue, South Orange, New Jersey 07079
2Department of Physics, Queens College of CUNY, Flushing, New York 11367

~Received 13 April 2000!

The concept of local polaritons is used to describe the optical properties of mixed crystals in the frequency
region of theirrestrahlenband. It is shown that this concept allows for a physically transparent explanation of
the presence of weak features in the spectra of so-called one-mode crystals and for one-two mode behavior.
The previous models were able to explain these features only with the use of many fitting parameters. We show
that under certain conditions new impurity-induced polariton modes may arise within therestrahlenof the host
crystals, and study their dispersion laws and density of states. Particularly, we find that the group velocity of
these excitations is proportional to the concentration of the impurities and can be thousands of times smaller
than the speed of light in vacuum.

I. INTRODUCTION

The optical properties of mixed polar crystals have been
attracting a great deal of interest since the 1950s. The main
efforts have been directed to experimental and theoretical
studies of the concentration dependences of fundamental
transverse~TO! and longitudinal~LO! phonon modes, and to
the fine structure of spectra in the frequency region between
them~restrahlenband!. Reviews of earlier experimental and
theoretical works in this area can be found in Refs. 1 and 2.
In spite of the disordered nature of mixed crystals, it is usu-
ally possible to observe both TO and LO modes of pure
crystals at both ends of the concentration range, as well as
features associated with disorder.1–3 This is usually done in
reflectance or transmittance experiments by identifying the
maxima of Im(e) and 2Im(1/e) with TO and LO modes,
respectively, wheree is the dielectric function.4

The term ‘‘mixed crystals’’ is usually applied to materials
in which the concentration of each component is large, so
that no component can be considered as a system of inde-
pendent impurities. At smaller concentrations the dynamics
of impure systems is described in terms of defect states,
which are either localized or quasilocalized depending on
whether they fall into forbidden or allowed bands5–8 of the
pure system. The transition from low- to high-concentration
behavior occurs when the average distance between defects
becomes of the same order as the localization length of the
individual states. In the case of the local phonon states, the
localization length is of the order of a few lattice constants,
and the respective transition concentration is of the order of
;1018 cm23. Most of the studies of mixed crystals were
focused upon combinations of alkali halides, II/VI and III/V
group polar binary crystalsAB12pCp , wherep is concentra-
tion. TheB atoms are substituted by the atomsC from the
same column of the periodic table. It was found that there
were several patterns that TO and LO modes follow in mixed
crystals.1–3,9,10In type I mixed crystals, also called one-mode
crystals, the frequencies of the TO and LO modes evolve
smoothly and almost linearly with the composition parameter
p from their values inAB to those inAC. In some one-mode
systems@e.g., Ba/SrF2 , Ca/SrF2 ~Refs. 11 and 12!# an addi-

tional pair of weak modes inside the absorption band is ob-
served.

Type II or two-mode mixed crystals exhibit qualitatively
different behavior. Two distinctrestrahlenbands are usually
observed in the crystals of this category. For arbitrary con-
centration, the width of each of these bands,VLO-VTO , is
approximately proportional to the composition parameterp
for the dopant related band, and to 12p for that of the origi-
nal material. Two-mode behavior is characteristic for the
crystals formed by elements from III and V groups of the
periodic table~e.g., GaAs/P and the like!.

Another mode behavior could not be fit experimentally
either to one- or to two-mode patterns~e.g., Ga/InP,13

PbSe/Te,14 K/RbI,15,16 etc.!. This group of mixed crystals
was called type I-II or one-two-mode systems. In these sys-
tems, one mode behaves as in type I, while the other behaves
as in type II, which is why type I-II is also called a mixed
mode.

To explain different types of behavior in mixed polar
crystals, a number of theoretical models have been proposed.
In IR experiments, modes with wave numbersq;0 are ex-
cited. The random element isodispacement~REI! model17,18

takes advantage of this fact, assuming that the sublattices
vibrate in phase withq50. With some modifications3 after
including the local field, and assuming a dependence of the
force constants upon the composition, the modified REI
~MREI! model was successfully used to fit two-mode crys-
tals but encountered some problems in the one-mode mate-
rials. The fine structure of some mixed crystals was repro-
duced along the lines of the REI model by means of a
considerable increase in the number of fitting parameters
~cluster model18!. A different approach made use of the
Green’s function formalism in order to treat vibrations in the
mixed crystals; averaging over disorder was performed either
in a simple virtual crystal approximation~VCA! or with the
use of the much more elaborate coherent potential
approximation19 ~CPA!. The interaction with the electromag-
netic field in these approaches was included after the aver-
aging procedure was performed. The mean field approxima-
tion treats the crystal as if it has atoms of the same sort with
some average properties. It reproduces well the one-mode
behavior, but could not possibly explain the two-mode sys-
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tems. The CPA combined with an electrostatic treatment of
the electric field was used to fit a broader range of experi-
mental data~see, for instance, Ref. 20!.

An important theoretical problem many researchers have
focused upon is to find a simple criterion for different mode
behavior, based upon dynamical properties of the crystals.
Lucovsky et al.9 originally considered the significance of
whether the original absorption bands overlap or not, which
turned out to be a rather rough criterion. Harada and Narita10

proposed a criterion based on relations between MREI con-
stants~see also review papers in Refs. 1 and 2!. It turned out
that one-mode and two-mode crystals can be described using
quite simple models with only a few fitting parameters, such
as the VCA and MREI model, respectively. Lucovskyet al.
in Ref. 9 made an attempt to establish a connection between
the behavior of a mixed crystal and the existence of the lo-
calized modes at small values of concentration parametersp
or 12p. It was suggested that the two-mode behavior is
associated with the existence of local impurity states at both
ends of the concentration range, while the one-mode regime
occurs when such local states do not arise. These ideas, how-
ever, could not be applied to the mixed-mode behavior since
the local phonon states arise either in the gap between acous-
tic and optic branches or above the optic branch of the pho-
non spectrum.5–8 Therefore, the mixed-mode crystals re-
quired much more elaborate models, where agreement with
experimental data can only be achieved by increasing the
number of fitting parameters. The same was true for weak
features of spectra of the one-mode crystals.

One of the goals of the present paper is to put forward a
simple physical picture explaining the mixed-mode behavior
based upon the concept of local polaritons and an impurity-
induced polariton band. The local polariton is a state that
arises due to an impurity with frequencies inside there-
strahlenband of a crystal. These states have an electromag-
netic component which is localized around the defect, be-
cause it cannot propagate in the region with a negative
dielectric parameter. A local polariton state within there-
strahlenregion was first observed experimentally in Ref. 21
as a weak feature in reflectance and Raman spectra of GaAs
doped with Sn,Te, or S. These states were found to be asso-
ciated with the local change in susceptibility due to localiza-
tion of an electron around the dopant. An interaction be-
tween the localized electron and LO vibrations of the crystal
gives rise to local LO phonons; therefore these local states
have a complicated structure that involves interactions be-
tween electrons, phonons, and the electromagnetic field.
Theoretically these states, however, were only considered in
the electrostatic approximation,21 and therefore these early
observations did not lead to the concept of local polaritons,
which requires that the retardation be taken into account.

A new wave of interest in the optical properties of impure
crystals in therestrahlenregion occurred recently and was
due to a general interest in systems with depleted or altered
electromagnetic density of states~DOS!. The primary ex-
amples of such systems are photonic crystals22 and
microcavities.23 The restrahlenregion in polar crystals was
considered from this new perspective independently in Refs.
24–26, where the concept of local polaritons was introduced.
The local state considered in Ref. 24 arises due to an impu-
rity atom with optically active electronic transitions, which

interacts with host atoms through the electromagnetic field
only. With the transition frequency inside therestrahlen
band, this atom forms a local atom-radiation bound state. To
some extent these states are similar to the ones observed by
Dean et al.,21 though an interaction with phonons was left
out in Ref. 24. A different type of local polariton was con-
sidered in Refs. 25 and 26, where it was shown that regular
isotopic impurities can give rise to local states with frequen-
cies inside therestrahlen region. The interaction with the
retarded electromagnetic field is responsible for the localized
electromagnetic component of the states. The detailed analy-
sis of the local polariton mode in a three dimensional
sodium-chloride-like structure~bcc! crystal in the case of
diagonal and off-diagonal disorder was carried out in Ref.
27. It was proved that, because of retardation effects, a local
polariton mode splits off the bottom of the TO-LO gap for an
arbitrarily small strength of the defects even in three-
dimensional systems.

When considering local polaritons, the authors of Refs.
25–27 assumed that therestrahlenis a spectral gap not only
for electromagnetic excitations but for phonons as well. This
is indeed the case for some polar crystals. It occurs more
frequently, however, that therestrahlenregion is devoid of
transverse optic phonons, but is still filled with LO modes. In
this case the interaction between local polaritons and LO
phonons would make the former quasistationary. Whether
the local polaritons survive this interaction depends upon
their life-time, and we shall address this question in the
present paper. At the same time it is useful to note that the
states observed in Ref. 21 reside in the frequency region
where the density of LO modes is especially large. The fact
that they remained observable allows for optimism that the
local polariton states of Refs. 25–27 could also survive pro-
vided that the DOS of LO is not too large. If this is the case,
then local polaritons due to isotopic impurities can be in-
voked to explain the mixed-mode behavior of mixed crystals
and weak features in the one-mode systems without having
to introduce tens of fitting parameters.

These ideas can, for example, be used to discuss the one-
two-mode mixed crystal Ga0.70In0.30P. Pure GaP has a com-
plete polariton gap in all directions, and the experiments of
Ref. 28 clearly demonstrated the polariton band associated
with In atoms inside therestrahl of GaP even at room tem-
perature. Polariton branches insiderestrahlenwere also ob-
served in pure CuCl.28 This material demonstrates a very
peculiar behavior because Cu atoms can occupy several non-
equivalent positions, thereby producing defects even in a
pure material.29 These defects were shown to be responsible
for a new TO mode with a frequency in the mainrestrahlen.
These experiments were originally described using a phe-
nomenological two-oscillator model, but they perfectly fit to
the idea of local polariton sates.

Local polaritons, however, can take us further than an
explanation of the old reflectivity experiments. When retar-
dation is taken into account, the local polaritons give rise to
a new transmitting channel for electromagnetic excitations,
via an impurity-induced polariton band. Experimentally,
such a band can be observed in transmission steady-wave
and time-resolved experiments. The majority of the old ex-
periments mentioned above dealt with reflection spectra.
Dips in the reflection coefficient in those experiments were
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associated with impurity-induced absorption, while they
could have actually occurred because of enhanced transmis-
sion via the impurity-induced polariton band. The effect of
the enhanced transmission inside therestrahlenregion of a
polar crystal was observed in CuCl.30

We showed analytically that local polaritons give rise to a
strong resonance enhancement of the transmittance at the
frequency of the local mode,31,32 using a one-dimensional
chain of dipoles. In the system without dissipation, the maxi-
mum value of the transmission coefficient reaches unity, al-
though the peak width depends exponentially upon the size
of the system. Numerical simulations for a finite concentra-
tion of impurities showed that a localized mode develops
into a conduction band inside the original polariton gap.32

The growth of the local state into a conduction band in the
system of optically active defects was also demonstrated in
Ref. 33. An analytical treatment of the impurity-induced po-
lariton band in the dispersionless one-dimensional dipole
chain, with a concentration of defects varying in the range
0,p,1, was proposed in Ref. 34. Using the microcanonical
method35 we were able to calculate the DOS due to the de-
fect subsystem and the extinction~localization! length. We
found that the impurity-induced band has a number of inter-
esting properties. The group velocity of electromagnetic ex-
citations, propagating in this band, for instance, was found to
be proportional to the concentration of the impurities, and
can be significantly smaller than the speed of light in
vacuum. The results of analytical calculations were in agree-
ment with numerical simulations in the presence of the spa-
tial dispersion. The knowledge obtained from analytical de-
pendencies of DOS in the one-dimensional model gives us
insight into a treatment of three dimensional mixed polar
crystals. The spatial size of local polariton states may be as
large as the electromagnetic~EM! wavelength, meaning that
even at a very low impurity concentration;1012 cm23, the
local polaritons significantly overlap. This fact allows us to
develop a continuous approximation for calculating proper-
ties of the polariton-induced band. Applying this approxima-
tion to the one-dimensional case, we can use our previous
one-dimensional~1D! results to test the suggested approach.

The structure of our paper is as follows. In Sec. II, the
continuous approximation for the mixed crystals, based upon
the concept of local polaritons, is introduced. In Sec. III, we
estimate the lifetime of the polariton local states due to in-
teraction with LO modes. We show that under realistic as-
sumptions about the density of states of LO modes, this life-
time is compatible with that caused by inelastic relaxation,
and may be long enough for local polaritons to survive. Sec-
tion IV deals with the properties of the impurity-induced
polariton band~dispersion laws and density of states of the
respective excitations are studied!. We also consider in this
section the concentration dependence of poles and zeros of
the dielectric function, and a simple explanation of the
mixed-mode and one-mode~with weak structure! behaviors
is proposed. Section V is devoted to an investigation of the
reflection and transmission spectra of the semi-infinite mixed
crystals and slabs of finite width. In Sec. VI we calculate the
scattering length of the impurity-induced polaritons due to
the fluctuations of concentration, and demonstrate why this
scattering is significantly less important for impurity-induced
polaritons than for regular polariton branches. This section

provides an additional justification for the main results of the
paper.

II. MODEL

In our recent work, Ref. 34, we considered development
of an impurity-induced polariton band in a one-dimensional
model, and used the so-called microcanonical method35 in
order to analytically calculate the complex Lyapunov expo-
nent of the system. The approximation used turned out to be
in a very good agreement with numerical results, and was
shown to be equivalent to a continuous medium approxima-
tion. The latter can easily be generalized for 3D systems, and
below we develop an approach to the impurity-induced po-
lariton band in a 3D mixed polar crystal using the following
fundamental assumptions.

In order to model the optic vibrations of the system under
study, we introduce two subsystems of oscillators with dif-
ferent frequencies. One subsystem represents an optic mode
of the host atoms. The interaction between this mode and
light leads to the polariton gap between TO and LO frequen-
cies of the pure crystal. The second subsystem introduces
vibrations of impurities, and it is assumed that its frequency
belongs to therestrahlenof the host crystal. This is a crucial
assumption of the model, since the interaction between light
and this mode brings about local polariton modes. The sig-
nificance of this assumption rests upon two ideas. The first
one goes back to Lucovsky9 et al., who connected modes of
mixed crystals with local impurity modes. The second one is
the concept of local polaritons, which are local states with
frequencies in therestrahlen of the host. In the one-
dimensional case we have confirmed analytically and
numerically32,34 that the presence of the local polaritons
gives rise to an impurity polariton branch, when the concen-
tration of impurities grows.

The frequencies of both oscillators are, in general, com-
plex valued. The imaginary part of host vibrations is due to
anharmonicity, while the impurity mode has two sources of
decay. Besides the usual relaxation, local polaritons can ac-
quire an additional imaginary part due to an interaction with
LO phonons which in some cases can fill therestrahlen. We
will consider the contribution of this interaction into the life-
time of local polaritons in the next section, and the general
effects of relaxation upon reflection spectra of mixed crystals
will be discussed in Section V.

It was found in Refs. 25–27 and 34 that for all frequen-
cies outside of the immediate vicinity of the TO boundary of
the restrahlen, the localization lengthl 0 of local polaritons is
of the order of magnitude of the wavelength of the incident
light, ;1023 cm. Even for residual concentrationn
;1012 cm23 of the impurities,nl0

3 is large. The individual
states significantly overlap, and a macroscopic volume con-
taining many impurities can still be much smaller than the
localization length. This fact allows us to develop a continu-
ous medium approximation similar to the usual one used to
treat long-wave excitations,36 but this time we use it to treat
the subsystem of impurities. We would like to emphasize
again that this consideration is reasonable for the polariton
band only because of the long-range nature of the localized
electromagnetic component of the local polaritons.
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The microscopical Hamiltonian describing optic modes of
our system is

H5(
r

m0

2 S dur

dt D 2

1(
r8

m1

2 S dvr8
dt D 2

1
1

2 (
r ,r8

F~ur ,vr8!,

~1!

wherem0 , m1 andur , vr8 are the reduced masses and rela-
tive displacements of the ions in pureAB andAC crystals,
respectively. We will assume that the presence of atomsC
does not affect the order in theA sublattice. The summation
runs over spatial indexr for host atoms and overr 8 for the
impurities. The third term in the above expression is the
potential energy. In the harmonic approximation it can be
written as

F~ur,vr8!5F i , j
(0)~r2r1!ur

i ur1

j 1F i , j
(1)~r 82r18!v r8

i v r
18

j

1F i , j
(01)~r2r 8!ur

i v r8
j . ~2!

In order to avoid unnecessary complications, we assume no
spatial dispersion in our model Hamiltonian~1! and isotropy
of force constants,

F~ur ,vr8!5F0ur
21F1vr8

2 , ~3!

whereF0 andF1 are force constants describing the interac-
tion of the ions in theAB andAC lattices, respectively. As
follows from the form of expression~3!, the contributions
due to host and impurity ions in the Hamiltonian~1! can be
separated:

H5(
r

F1

2
m0S dur

dt D 2

1
1

2
F0ur

2G
1(

r8
F1

2
m1S dvr8

dt D 2

1
1

2
F1vr8

2 G . ~4!

We have several parameters of the dimension of length in
our system: a lattice constanta; an average distance between
defects,l;n21/3, which depends on concentration; and the
localization length and the wavelength of the incident light,
which are of the same order,l 0;l;1025 m. We shall as-
sume that the concentration is such thatn@ l 0

23. When this
condition is satisfied, the individual defect states overlap,
and the dynamical properties, apart from those at the fluctua-
tion band edge, do not depend significantly upon the particu-
lar arrangement of the defects in the crystal. Hence, one can
introduce a smoothing parameterl dV such thatl ! l dV! l 0.
The macroscopic volume associated with this parameter is
such that it contains macroscopically many impurities, but
there are still no significant changes in spatial distribution of
vibrations over this length:ur,vr'uR ,vR for u r2Ru; l dV .
Taking advantage of this fact one can sum over the volume
dV(R); l dV

3 in the vicinity of R in the Hamiltonian~4!:

(
rPdV(R)

F1

2
m0S dur

dt D 2

1
1

2
F0ur

2G
→F1

2
m0S duR

dt D 2

1
1

2
F0uR

2Gn0@12p~R!#dV~R!,

~5!

(
r8PdV(R)

F1

2
m0S dur8

dt D 2

1
1

2
F0ur8

2G
→F1

2
m0S duR

dt D 2

1
1

2
F0uR

2Gn0p~R!dV~R!, ~6!

where we assume that the change in lattice constants of two
end crystals is negligible,a.n0

1/3, and p(R)5n(R)/n0.
Thus the Hamiltonian~4! can be rewritten in the continuous
medium approximation as

H5
n0

2 E $@12p~R!#m0u̇R
2 1@12p~R!#F0uR

2

1p~R!m1v̇R
2 1p~R!F1vR

2 %dV. ~7!

The ion polarization atR is

Pion~R!5
1

dV~R! F (
rPdV(R)

qur1 (
r8PdV(R)

qvr8G
→@12p~R!#qn0uR1p~R!qn0vR , ~8!

where we assume for simplicity the same effective charges
for both oscillators, and again use the fact thatl dV! l 0 and
consequentlyur , vr8 do not change significantly over such
distances. The interaction of the polarization with the elec-
tromagnetic field gives rise to an additional term in the
Hamiltonian:

Uint5E P•E dV5n0E $@12p~R!#uR1p~R!vR%•E dV.

~9!

Combining Eqs.~7! and ~9! and writing out the resulting
Hamilton equations foruR , vR , one obtains

m0üR5F0uR1qE,

m1v̈R5F1vR1qE. ~10!

These equations of motion should be accompanied by the
Maxwell equation for the electromagnetic field in the me-
dium,

¹3¹3E5
1

c2

d2~E14pPion14pPel!

dt2
, ~11!

where the last term describes electronic contribution to the
polarization that determines the high-frequency value of the
dielectric parameter. Another effect to be taken into account
is that the local electric field on atoms that induces polariza-
tion is different from the macroscopic field entering the Max-
well equations. The effective local field in a high-symmetry
crystal can be written in the form36,20

Eloc5E1
4p

3
~Pion1Pel!, ~12!

Pel5n0a`Eloc . ~13!

Substituting the effective local field into Eq.~10! and total
polarization of the volumeP5Pion1Pel into Eq. ~11!, one
obtains the closed system of equations of mechanical coor-
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dinates, the polarization and the electric field. Equations
~10!, ~11!, ~12!, and~13! formally resemble equations of the
MREI model used in many papers. There are, however, im-
portant differences. First, the concentration parameterp(r )
entering our equations is still a random function of coordi-
nates. The statistics of this parameter, however, is signifi-
cantly different from the original statistics of the microscopic
distribution of impurities. The spatial inhomogeneity of the
continuous functionp(r ) reflects the fluctuations in the num-
ber of impurities in the macroscopic volume,dV, which are
significantly reduced as compared to the fluctuations in the
original microscopic distribution of impure atoms. More de-
tailed consideration of the statistical properties ofp(r ) will
be presented in Sec. VI. Second, the derivation of Eqs.~10!,
~11!, ~12!, and ~13! is explicitly based upon existence of a
macroscopic length scale—the localization length of the lo-
cal polaritons. A similar procedure cannot be applied to the
regular phonon states, because the localization length of the
local phonon states is usually microscopic. Finally, the re-
quirements that the impurity-induced oscillator have its fre-
quency withinrestrahlenreplaces conditions for local pho-
non modes that appear in the regular MREI model.3 In this
section we will assume that the fluctuation of the number of
defects in the chosen volume is negligible and, therefore,
p(R)[p. Excluding the polarization and lattice displace-
ments from the system yields the following equation for the
Fourier components of the electric field:

k3k3Ev5
v2

c2
e~v!Ev . ~14!

In this equation,e(v) denotes the effective dielectric func-
tion of the mixed polar crystalAB12pCp ,

e~v!5e`

11
2

3 S ~12p!
d0

2

V0
22v2

1p
d1

2

V1
22v2D

12
e`

3 S ~12p!
d0

2

V0
22v2

1p
d1

2

V1
22v2D , ~15!

where V0,1
2 5(F0,1/m0,1)

1/2 are the lattice eigenfrequencies
and the parameters

d0,1
2 54p

e`12

3e`

q2

m0,1

determine the width of the polariton gaps of the end crystals.
We assume that the high-frequency dielectric constant does
not depend upon the concentration.e` can be expressed in
terms of polarizabilitya` as

e`511
4pa`n0

12
4p

3
a`n0

.

From Eq.~14! one can separate the transverse and longi-
tudinal modes as

k2Ev
'5

v2

c2
e~v!Ev

' , ~16!

e~v!Ev
i 50. ~17!

A similar expression for the dielectric function was obtained
previously in Ref. 10 within the MREI model. Nobody, how-
ever, assumed before that theV1 lies within therestrahlenof
the host. It is only the concept of local polaritons that justi-
fies using this dielectric function in the case when the fre-
quency of the defect oscillator falls into the polariton band
gap. Comparing Eq.~15! with the respective expression of
our earlier work on the 1D model, Ref. 34, one can see that
Eq. ~15! is a zero-order approximation in a series expansion
in terms of the small parameterl / l 0!1. In Sec. VI of this
paper we shall demonstrate this fact implicitly.

III. LONG-LIVING QUASISTATIONARY LOCAL
POLARITON STATES IN RESTRAHLEN BAND

The model developed in the previous section is implicitly
based upon the assumption about the existence of local states
with frequencies within therestrahlen. In this section we
shall provide additional justifications for this assumption.

In the original papers25,26 where local polaritons were in-
troduced, it was assumed that within therestrahlenthere is a
genuine spectral gap with the phonon DOS being equal to
zero over some frequency region. Such situations are, in-
deed, possible in some crystals~GaP, ZnS, CuBr, etc.37!. It is
more common, however, that therestrahlenis filled with LO
phonons, which are linearly coupled to local polaritons. This
coupling results in the ‘‘phonon radiative decay’’ of the local
polaritons~compare to the radiative decay of local phonons
due to the coupling to light!. It is important to emphasize,
however, that the electromagnetic component of the local
polaritons remains localized even when there is leakage
through the phonon component. The phonon radiative decay
broadening of local polaritons~and the respective lifetime! is
determined by the density of LO phonon states within the
restrahlen. In some cases this DOS is large enough to sup-
press the local polaritons. At the same time, there exists a
broad range of materials~for instance, NaF, NaBr, RbF,
etc.37! that have a relatively low DOS inside therestrahlen,
so one could expect that local polaritons can survive the
presence of LO phonons and affect significantly the transport
properties of the system. In fact, the local states inside the
restrahlenobserved in Ref. 21 resided in the frequency re-
gion with a rather large DOS, and still could be observed
both in reflection and Raman spectra.

Since the fundamental assumptions incorporated into the
model presented in this paper are based upon existence of
long-living local polaritons, it is of great importance to study
their lifetime in realistic polar crystals. Our consideration of
the question about the ‘‘phonon radiative decay’’ time of the
local polaritons is based upon results of Ref. 27. It was
shown that the frequency of the local polariton is determined
by

152
dm

m
v2E r i~z!12r'~z!

v22z2
dz , ~18!

where m5(m21m1) /(m2 /m1) , m1 and m2 are the
masses of positive and negative ion sublattices, respectively,
dm is the difference between masses of the defect and the
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host atom replaced by the defect, andr i(v) andr'(v) are
densities of states of LO and TO phonons, respectively. If
the LO DOS differs from zero in therestrahlenregion where
we expect the local state to reside, the respective integral in
Eq. ~18! acquires an imaginary part equal toipvr i(v). For
a light impurity (dm,0) this equation would have a real
solutionv l if r i(v)50.27 The presence of LO modes makes
the solution complex valued,v l85v l2 ig. The phonon com-
ponent becomes delocalized, although the electromagnetic
component remains localized.

If, as we assume,g/v1!1, thenv1 can be considered to
be the solution of Eq.~18! with the imaginary part dropped
andg can be found as the first order correction to it,

g

v1
5

pv1r i~v1!

2v1
2R~v1!1v1

3 dR~v1!

dv1

, ~19!

whereR(v1) is a principal value of the integral entering Eq.
~18!. The derivative ofR(v1) can be estimated using the
explicit form of this function asv1dR(v1)/dv152R(v1)
1O„(v1a/c)2

…. Finally one obtains

g

v1
5

p

4 S 2dm

m21m1
D m2

m1
v1r i~v1!. ~20!

It follows from Eq. ~20! that there are three factors affecting
the lifetime of the polariton states. First of all, it is the den-
sity of LO phonon statesv1r i(v1) in the restrahlen. As
mentioned above, due to the strong dispersion of the LO
branch, the density of states in many alkali halides37 between
V (TO)(0) andV (LO)(0) can be less than 10% of the maxi-
mum DOS at TO frequency. Unfortunately, the experimental
data on the phonon DOS known to us do not provide its
value in absolute units, and in order to obtain an estimate for
this quantity in the region of interest, we have to rely upon
some assumptions. To this end we use the Debye model for
the DOS of theacousticphonons in order to establish a scale
for the experimental results listed in Ref. 37. This choice
seems reasonable because the Debye model gives a fairly
good description of the low-temperature thermodynamic
properties of crystals, and the parameters of the model for
most of the crystals of interest are established with good
accuracy. Having the scale for the phonon DOS, one can
assess the numerical value of the dimensionless quantity
v1r i(v1). Our estimates show that this parameter in the
spectral region of interest can take values between 0.2 and
0.6 in different systems.

The next factor affecting the lifetime of the local polari-
tons is the defect parameterdm. This parameter cannot be
assumed to be too small since we would like to have our
local state farther away from the TO boundary of there-
strahlen, and as was shown in Refs. 25 and 27, the frequency
of the local polariton state moves deeper into therestrahlen
with increase of the defect strengthdm. At the same time, it
is clear that the factor2dm/(m21m1) is at least less than
unity. The third factorm2 /m1 ~or m1 /m2 when the nega-
tive atom is replaced!, can be as small as 0.2 for RbF or even
0.06 in the case of LiI. Combining all terms we find that in a

number of crystals~NaBr, NaCl, RbF, etc.! the dissipation of
the local polariton state is rather small,g/v1,0.1. In fact, it
appears to be of the same order of magnitude as anharmonic
absorption, and later in the paper we will introduce both
these relaxation channels phenomenologically using just one
parameter of relaxation. The presented estimates show that
local polaritons can actually survive even in materials with
the restrahlenfilled with LO phonons, and provide, there-
fore, a foundation for the model presented in the previous
section. Now we can start discussing the results following
from this model.

IV. IMPURITY-INDUCED POLARITON BAND IN MIXED
POLAR CRYSTALS

A. Dispersion laws of impurity polaritons

In this section we discuss properties of polariton excita-
tions in our system neglecting relaxations. Effects of the dis-
sipation will be incorporated in our treatment of reflection
spectra in the next section. The dispersion of the transverse
polaritons is determined by the equation

k5Ae~v!
v

c
, ~21!

while the longitudinal excitations obey the equatione(v)
50 and are dispersionless within the present model. The
sign of e(v) determines the structure of the spectrum. The
bands of propagating electromagnetic waves coupled to the
lattice vibration appear at frequencies wheree(v) is posi-
tive, and band gaps arise where the dielectric function~15! is
negative. The change of the sign ofe(v) occurs when
e(v)50 and when 1/e(v)50. In the electrostatic approxi-
mation, the first of these conditions determines the LO fre-
quenciesvLO , while the second gives the frequencies of TO
phonon modes,vTO . With retardation taken into account for
regular polaritons in pure crystals, the latter becomes the
short-wave limit of the lower transverse polariton branch,
while vLO determines thek50 frequency of the upper po-
lariton transversal branch degenerate with the longitudinal
phonon mode. As we shall see in this section for the
impurity-induced polaritons, the interpretation of the bound-
ary frequencies is quite different.

In the absence of defects,p50, the restrahlenpolariton
band stretches between transverse,

V0
(TO)25V0

22
e`

3
d0

2 ,

and longitudinal,

V0
(LO)25V0

21
2

3
d0

2 ,

frequencies. Introducing defects withV0
(TO)2,V1

2,V0
(LO)2

in the system with concentrations significant enough to sat-
isfy the conditionl / l 0!1 yet still small in the sense thatp
!1, one can rewrite Eq.~15! in the linear inp approxima-
tion:
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e~v!.e`S V0
(LO)22v2

V0
(TO)22v2D v i l

2 2v2

v iu
2 2v2

. ~22!

It can be directly seen from this expression that the impuri-
ties give rise to the band of propagating excitations inside the
restrahl of the original crystal, with boundaries given by

v i l
2 5V1

22pS 2

3
d0

2~V1
22v2!2

2

3
d1

2~V0
22v2!

V0
(LO)22V1

2
D ,

v iu
2 5V1

21pS e`

3
d1

2~v22V0
2!2

e`

3
d0

2~v22V1
2!

V1
22V0

(TO)2
D .

~23!

The width of the band~in terms of squared frequencies! is
linearly proportional to the concentration

D imp
2 .d1

2~V1
22V0

2!

4e`

3
d0

22
e`12

3
~V1

22V0
2!

~V0
(LO)22V1

2!~V1
22V0

(TO)2!
p.0,

~24!

provided that the impurity frequencyV1 is not too close to
V0

(LO) such that

V0
(LO)22V1

2,
2

3
d0d1Ap. ~25!

The lower band boundary, given by Eq.~23!, corresponds to
a dispersionless longitudinal polariton branch

v i
(LO)~k!5v i l , ~26!

while the upper one is the short-wave limit of the branch of
transversal excitations. An approximate dispersion law for
these excitations can be obtained from Eq.~21! if one sub-
stitutesv5V1 everywhere except in terms containing impu-
rity polariton band boundaries:

v i
(TO)~k!5v i l 1d imp

k2l 0
2

11k2l 0
2

. ~27!

We introduced here a new parameterd imp , characterizing
the width of the impurity polariton band in terms of frequen-
cies themselves:d imp.D imp

2 /2v. Parameterl 0 in this equa-
tion is the localization length of a single local polariton with
the frequency equal toV1:

l 0
215S V1

2

c2
e`

V0
(LO)22V1

2

V1
22V0

(TO)2D 1/2

. ~28!

Excitations described by Eqs.~26! and~27! demonstrate a
number of peculiarities. First, one can note that the mutual
positions of longitudinal and transverse modes are reversed
compared to the regular polaritons: the longitudinal mode
has lower frequency than the transverse one. However, if one
takes the original polariton branches of the host crystal into
consideration, the normal sequence of transverse and longi-
tudinal modes is restored: the host transverse polariton

branch is followed by the impurity longitudinal mode, which
is followed by the impurity transverse mode. The last modes
in the sequence are the LO mode and upper transverse po-
lariton branch of the host. Second, the single transverse im-
purity polariton mode combines properties of lower and up-
per regular polariton modes. Indeed, atk50 this mode
becomes degenerate with the impurity longitudinal mode
akin to the upper branch of regular polaritons. At the same
time the short-wave limitk→` of the same mode corre-
sponds to the TO frequency of the electrostatic approxima-
tion, and sets the upper boundary of the propagating band
similar to the regular lower polariton branch.

The dispersion curves of the transverse excitations, ob-
tained from the general equation~21! for several concentra-
tions, are shown in Fig. 1. Similar dispersions were observed
experimentally by means of Raman spectroscopy in the
mixed crystal Ga/InP in Ref. 28. Originally, the interpreta-
tion of these observations was based upon a phenomenologi-
cal dielectric function with multiple resonances, while it
seems clear now that they provide solid support for the con-
cept of impurity polaritons.

From the dispersion law described by Eq.~27! one can
obtain an expression for the group velocity of the respective
excitations,

vg~v!

c
5

l 0

l

~v22v i l
2 !1/2~v iu

2 2v2!3/2

v2D imp
2

, ~29!

FIG. 1. Dispersion curves of the transverse~solid! and longitu-
dinal ~dashed! optic defect modes in therestrahl for four different
concentrations. The inset depicts the dispersion curves of the pure
crystal. Frequency and wavenumber are given in the same units,
cm21.
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which reaches its maximum value of

vg~vmax!

c
5

l 0

l

33/2

8

d imp

v
;

d imp

v
~30!

at

vmax
2 5v i l

2 11/4D imp
2 .

The group velocity is linear in concentration and is signifi-
cantly smaller than the speed of light in vacuum. This is an
interesting result, showing that propagation of light through
mixed crystals can be significantly~and controllably! slowed
down. The smallness of the group velocity is also reflected in
the flatness of the dispersion curves presented in Fig. 1, as
well as in experimental results of Ref. 28

The density of polariton states in the impurity band~IP-
DOS! can also be obtained from the dispersion equation, Eq.
~27!:

D~v!.
1

2p2l 0
3
vD imp

2
~v22v i l

2 !1/2

~v iu
2 2v2!5/2

. ~31!

At the low-frequency boundary of the band this DOS repro-
duces the singular behavior characteristics for the lower po-
lariton band of pure polar crystals, while at the high-
frequency edge it resembles the behavior of the regular upper
polariton band. At the center of the impurity band the IPDOS
can be expressed in compact form in terms of the localiza-
tion lengthl 0 and the linear width of the bandd imp :

D~vc!.
1

p2l 0
3d imp

. ~32!

The dependence of the IPDOS upon concentration is differ-
ent at the edges of the band and at the center. The boundary
of the IPDOS depends linearly uponp, and tends to zero
whenp decreases. At the band center the IPDOS is inversely
proportional top, and goes to infinity whenp→0. Such a
behavior has a simple meaning—it describes the collapse of
the band into a single local state with an infinite density.

The linear in concentration approximation for the impu-
rity band fails when the defect frequencyV1 falls close to
the band edge,V0

(LO) , of the pure crystal, so that Eq.~25!
does not hold anymore. In this case, one can obtain approxi-
mate expressions for characteristics of the impurity band us-
ing an expansion of Eq.~15! in powers ofV0

(LO)2V1. The
zeroth order in this parameter leads to a square root depen-
dence of the band width upon concentration:

D imp
2 .

2d0d1

3
Ap. ~33!

It is interesting to note that this situation was probably ob-
served in the one-two-mode mixed crystal Ga/InAs.38 In that
system at small concentration of In the frequenciesv i l (p)
and V (LO)(p) could not be fit with linear inp expressions,
while v iu(p) remained linear. This is exactly what our
model predicts in the case whenV1 approachesV0

(LO) :

v i l
2 5V0

(LO)22
2d0d1

3
Ap,

v iu
2 5V0

(LO)21
2

3

e`

21e`
d1

2p, ~34!

V (LO)25V0
(LO)21

2d0d1

3
Ap.

The DOS in this case is given by the expression

D~v!.
V0

(LO)

2p2l3

~v22V0
(LO)2!21D imp

4

S 21e`

3e`
d0

2D 3/2

~v22v i l
2 !1/2

~v iu
2 2v2!5/2

,

~35!

which has the regular polariton behavior at the boundaries
similar to one described by Eq.~31!, but with a different
prefactor. This prefactor significantly modifies the IPDOS at
the center of the band,

D~vc!.
31/25

p2

1

l3V0
(LO) S V0

(LO)2

21e`

3e`
d0

2D 3/2S d imp

V0
(LO)D 1/2

,

~36!

which is now proportional top1/4. At very small concentra-
tions, however, this dependence will change over to the one
described by Eq.~32! as the condition given by Eq.~25!
becomes valid again.

The dispersion relation for the impurity TO branch be-
comes in this limit more complicated,

v i
(TO)2~k!5v i l

2 1
1

2 F2D imp
2 1k2l2S 21e`

3e`
d0

2D
2Ak4l4S 21e`

3e`
d0

2D 2

14D imp
4 G , ~37!

while it still has the same limitsv i
(TO)(k)2v i l ;k2 for small

k and v i
(TO)(k)5v iu for large k. The crossover parameter,

however, is no longer the localization lengthl 0, but rather a
vacuum wavelength of light at frequencyVLO: l5VLO/c.
The effective mass of the branch at the long-wave boundary
is much larger than in Eq.~27! and does not depend upon
concentration. The LO frequency of the impurity polariton
branch does not show any dispersion,

v i
(LO)~k!5v i l , ~38!

similar to the situation considered before; fork2

.D imp
2 /(l2d0

2) two branches of the impurity band run almost
parallel, showing a very small dispersion.

The group velocity at the boundaries approaches zero at
the same rate as before, but at the center of the band, the
dependence upon the concentration is different:

vg~vc!

c
.

31/2

5 S 21e`

3e`

d0
2

V0
(LO)2D 1/2S d imp

V0
(LO)D 1/2

. ~39!
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It is much larger than the respective quantity, when the linear
in p expansion is valid, and increases much faster;p1/4 with
the concentration.

B. Evolution of the polariton impurity band boundaries with
composition parameter

Further increase of concentration leads to more compli-
cated dependences of the bandwidth, DOS, etc., on concen-
tration and other parameters. In this subsection we shall fo-
cus upon concentration dependences of band boundaries,
which are experimentally identified with TO and LO phonon
frequencies of the electrostatic approximation. These depen-
dences were extensively studied experimentally, as we have
already discussed in the Introduction, and the objective of
this subsection is to show how the concept of impurity-
induced polaritons provides a simple and physically transpar-
ent explanation for the weak mode in one-mode crystals and
for one-two-mode behavior. Analysis of the poles and zeros
of the dielectric function~15! shows that the evolution of the
modes with concentration is determined in our model by a
relative position of the characteristic frequenciesV0 , V1 ,
V0

TO , V0
LO , V1

TO , andV1
LO . The first pair of these frequen-

cies are the initial phonon frequency of the host crystal and
the local polariton mode of the impurity, respectively. The
electrostatic interaction and the local field changeV0 to ac-
tual TO and LO host frequenciesV0

TO and V0
LO . The last

pair of frequencies,V1
TO and V1

LO , corresponds to TO and
LO modes of the crystal made up of impurity atoms only.
The local field, which induces the difference between initial
frequenciesV0,1 and actual TO, LO frequencies, is very im-
portant. In pure crystals~made of initial host atoms or initial
impurities! the relation betweenV0,1 andV0,1

TO andV0,1
LO ,

~21e`!V0,1
2 52V0,1

(TO)21e`V0,1
(LO)2 , ~40!

was originally derived in Ref. 36, and its importance was
stressed in Ref. 20. The same relation exists in our model as
well.

At small concentrationsp!1, the initial impurity-related
frequencyV1 is not renormalized by local-field corrections
because this renormalization is caused by the interaction
with like atoms. At small concentrations an impurity atom is
mostly surrounded by atoms of the host crystal, and renor-
malization does not occur. Similarly, for 12p!1, the local
field turns V1 into V1

TO and V1
LO , while leaving V0 un-

changed as a characteristic frequency of former host atoms.
Equations~23! demonstrate that at smallp the polariton im-
purity band inside therestrahlenof the host arises whenV1
falls inside the hostrestrahlen; see Figs. 2~a!, 2~c!, 2~d!. For
12p!1, host and impurity atoms exchange their roles. In
this case, shouldV0 fall in betweenV1

(TO) and V1
(LO) , it

gives rise to the impurity polariton band induced now by the
‘‘host’’ atoms. Hence, if both V0

(TO),V1,V0
(LO) and

V1
(TO),V0,V1

(LO) conditions are satisfied at the same time,
then the polariton impurity bands exist in bothp→0 andp
→1 limits. This situation is shown in Fig. 2~a!. This is one-
mode behavior with a ‘‘weak’’ mode. One observes strong
TO and LO modes of the original crystal smoothly evolving
into those of the end crystal, while inside therestrahlena
weak additional TO and LO impurity polariton modes arise

with vanishing TO-LO splitting at both ends of the impurity
range. This peculiar behavior occurs due to the interplay be-
tween the external electric field and the polarization, affect-
ing the local field~12!. Experimentally, this type might be
realized in materials where the polariton gap is sufficiently
wide, which may be the case for many alkali halides. How-
ever, because of the weakness of these modes, they are vul-
nerable to any kind of dissipation, as we shall see in the next
section. This fact can explain the absence of the defect mode
in ‘‘classical’’ ~no weak mode inside therestrahlen! one-
mode mixed crystals. At the same time, we can relate the
features presented in Fig. 2~a! to the weak mode observed in
the Ba/SrF2 , Ca/SrF2, and some other one-mode crystals
~see Discussion!. Previously, in order to reproduce the weak
feature observed in spectra of these crystals, one had to use
models with tens of fitting parameters~see Refs. 1 and 2 and
references therein!. The concept of the polariton impurity
band, presented here, gives a transparent and quite general
explanation of this type of spectra.

If the polariton impurity band exists only in one limit, for
example,V0

(TO),V1,V0
(LO) for smallp, butV0 lies outside

the interval (V1
(TO) ,V1

(LO)) when p;1, our model predicts
the one-two-mode behavior@Figs. 2~c! and 2~d!#. Two types
of one-two-mode mixed crystals appear depending upon
whether V0 falls below the interval (V1

(TO) ,V1
(LO)) @Fig.

2~c!# or above it@Fig. 2~d!#. In the first case, the lower mode
weakens with concentration, while in the second case, the
upper one does. Atp.0 the situation remains qualitatively
the same as in the one-mode case. Atp→1, the splitting

FIG. 2. Four different types of the evolution of the transverse
~solid lines! and longitudinal~dashed lines! optic mode frequencies
of the mixed polar crystals with composition parameter. The left-
most and rightmost composition parameters correspond to pure end
crystals.
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between new modes does not vanish, and they form the new
restrahlenof the pure crystal atp51. Strictly speaking, in
this limit we cannot justify our model, since there are no
local modes at this end of the concentration range. Qualita-
tively, however, we can still explain the one-two-mode be-
havior as a result of the presence of the local polaritons at
smallp and the absence of them atp close to 1. If in neither
limit the impurity polariton band appears inside the gap
@V1,” (V0

(TO) ,V0
(LO)) and V0,” (V1

(TO) ,V1
(LO))], our ap-

proach is not applicable at any concentration, although the
absence of the impurity bands at end concentrations, in our
opinion, suggests two-mode behavior@Fig. 2~b!#.

V. TRANSMITTANCE AND REFLECTANCE OF
ELECTROMAGNETIC WAVES FROM MIXED POLAR

CRYSTALS

Having obtained the effective dielectric function of the
mixed polar crystal, one can study their reflection and trans-
mission spectra for a number of different geometries. Among
them, the normal reflection spectrum from a semi-infinite
sample and normal transmission and reflection from a slab of
finite dimensions are of particular interest since they are a
primary source of information about optical properties of

crystals studied in numerous experiments.1,2

A. Reflection spectrum of semi-infinite mixed polar crystals

In this section we phenomenologically incorporate damp-
ing in the dielectric function~15! substitutingv1 ig for v in
the resonance terms of Eq.~15!. As we already discussed it is
sufficient for our qualitative purposes to assume that the
dumping parameter is the same for both host- and impurity-
related modes. We can note, however, that as numerical cal-
culations demonstrated, properties of each mode are deter-
mined primarily by its own relaxation parameters, and
effects due to dumping in the other subsystem are usually
negligible. This means that, in principle, it is possible to
experimentally determine relaxation parameters for each of
the participating oscillators independently. For our calcula-
tions we chose the value ofg such thatg/V0;0.1, which is
a rather conservative estimate. For typical polar crystals the
relaxation parameter ranges fromg/V0 less than 0.01–0.1,
and since the relaxation in the impurity subsystem due to
coupling to LO phonons inside therestrahlenwas estimated
in Sec. III as less than 0.1, our choice for this parameter
seems quite reasonable.

After accounting for the dumping, the effective dielectric
function ~15! becomes

e~v!5e`

11
2

3 F ~12p!
d0

2

V0
22v212igv

1p
d1

2

V1
22v212igv

G
12

e`

3 F ~12p!
d0

2

V0
22v212igv

1p
d1

2

V1
22v212igv

G . ~41!

For normal incidence, the reflection coefficient from the
semi-infinite crystal is equal to

R~v!5U12e1/2~v!

11e1/2~v!
U2

. ~42!

In the absence of dumping, the original dielectric function
~15! has a peculiar property, which is specific only for the
model with the impurity polariton band within therestrahlen
of the host. Inside this band, the dielectric function goes
from zero to infinity, and hence, necessarily passes through
unity. At a frequency where this happens, the reflection co-
efficient must become zero, since for this frequency the me-
dium becomes transparent. At small concentrations, this fre-
quencyvT51 is determined by the equation

vT51
2 5

l1
2v i l

2 1 l 0
2v iu

2

l1
21 l 0

2
, ~43!

and sincel 0&l15V1 /c, it lies slightly off the center of the
band, closer tov i l . When relaxation is accounted for, the
zero of reflection is not reached, but the reflection still can
have a minimum at a certain frequency. The magnitude of

reflection at this frequency is determined by relaxation, and
can be used for independent measurements of the latter.

We used typical values of the parameters in Eq.~41! to
plot normal reflection spectra for semi-infinite mixed crys-
tals. The optic frequenciesV0,1

(TO,LO) of such systems are
about a few hundred cm21; the widths of their polariton gaps
range from ;10% for III/V group polar crystals up to
;30% for alkali halides. The high limit dielectric constant
lies within the range of;3 –5. Figure 3 presents three
graphs corresponding to three different types of spectra,
which can be described within the model of impurity polari-
tons. Each graph shows curves obtained forp50%, 25%,
50%, 75%, 100%.

Figure 3~a! depicts the reflection spectrum of the one-
mode crystal. As can be seen from the plot, for all concen-
trations there is one dominating absorption band. Neverthe-
less, for intermediate concentrations one can notice a weak
mode inside this band. This mode is quite weak, in accor-
dance with the discussion of the previous section, and can be
smoothed away by the absorption. Whether this mode will be
observed in a concrete material depends upon the interplay
of several parameters. At the same time, since we have used
realistic values of parameters characteristic for the one-mode
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group of mixed crystals, our calculations show that the im-
purity polaritons can indeed be used to explain this feature of
one-mode type spectra. Reflection spectra corresponding to
one-two-mode behavior are shown in Figs. 3~b! and 3~c!.
There are two types of such spectra, which are very much
alike. At smallp, the spectra look akin to the one-mode type,
but with an increase of the concentration two modes appear-
ing, with the one-mode growing stronger and the second one
diminishing. Spectra 3~b! and 3~c! correspond to phase dia-
grams shown in Figs. 2~c! and 2~d!, respectively. It is seen
that the presence of dumping does not prevent one-two-mode
behavior predicted by our model to be observed in reflec-
tance experiments.

B. Slab of finite dimensions

In this subsection we consider normal reflection and trans-
mission spectra of a mixed-crystal slab. The width of the slab
is assumed to be much greater than the average distance
between the impurities, so that our averaging procedure can
be applied. At the same time we do not consider samples
thicker than several wavelengths, so that the dumping does
not suppress transmission completely.

The transmission coefficient through a slab of widthL for
normal incidence is given by

T~v!5U12

~e1/221!2cosS v

c
e1/2L D

2e1/2cosS v

c
e1/2L D2 i ~e11!sinS v

c
e1/2L DU

2

.

~44!

In the absence of dumping, the transmission coefficient turns
to unity when eithere51 or ve1/2L/c5p(m11/2), where
m is an integer. The first case corresponds to the frequency
determined by Eq.~43!, when the medium becomes optically
transparent, while the second condition corresponds to the
usual geometrical resonances.

The width of geometrical resonances decreases as 1/e(v)
with v→v iu because of the divergence of the dielectric
function at this frequency. Figure 4 depicts the transmission
spectrum of the 10% impure slab of the widthL5l in the
absence of absorption, where the lower plot shows the
broader frequency interval covering the entirerestrahlenof
the host crystal. One can see the impurity-induced polariton
band inside the forbidden gap at the frequency;180 cm21.
The wide flat-top resonance at 181.7 cm21 corresponds to
the frequency~43!, where the dielectric function becomes 1,
and all the other peaks represent geometrical resonances.

FIG. 3. Normal reflection spectra from semi-infinite mixed crys-
tals. Three graphs correspond to one-mode@graph~a! in Fig. 2# and
two types of one-two-mode@graphs~c! and~d! in Fig. 2# behaviors.
The parameters used to generate these graphs~including absorption!
are typical parameters for polar crystals.

FIG. 4. Transmittance spectrum through a slab of one wave-
length width with typical parameters, plotted as a function of fre-
quency. The lower graph shows the full frequency range, while the
upper one is restricted to the polariton defect band atp510%.
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The different natures of the resonances affect their re-
sponse to damping. The narrow comb of geometrical reso-
nances washes out first even when damping is relatively
small. This occurs due to the fact that the geometrical reso-
nances are in essence standing waves that experience mul-
tiple reflections and therefore are strongly damped. Thee
51 resonance, to the contrary, is much less affected by the
relaxation because polaritons pass through the sample only
once. Figure 5 depicts the transmission~solid line! and re-
flection~dashed line! coefficients for a narrow slab with 20%
impurities and the same set of parameters, which was used to
generate Fig. 3~c!. It is clearly seen that even despite the high
absorption rateg/V050.1, the peak in the transmission co-
efficient survives, and can be associated with the minimum
in reflection. It allows us to suggest that the reflection anti-
resonance observed in many systems can be associated not
only with the impurity induced absorption, but also with the
impurity induced transmission. A similar transmission maxi-
mum was observed experimentally in CuCl,30 where the role
of defects was played by some Cu atoms occupying off-
center positions. The maximum in the transmission is direct
evidence of the impurity-induced polariton band. It would be
of great interest to carry out transmission measurements for
different groups of mixed crystals in order to verify predic-
tions of the current paper. We believe that time-resolved
measurements could also provide important information, par-
ticularly regarding group velocities of these excitations.

VI. SCATTERING IN THE IMPURITY-INDUCED
POLARITON BAND

In previous sections we considered the optical properties
of mixed polar crystals neglecting fluctuations of the concen-
tration function p(r ). Results obtained for the one-
dimensional model considered in our previous paper, Ref.
34, suggest that this approximation is a zero-order term in
the series expansion in terms of the parameterl / l 0!1, where
l is an average distance between defects andl 0 is the local-
ization length of the single local polariton. In this section we

take into account fluctuations of concentration in the first
nonvanishing order in terms of the parameterdp5p(r )2p,
and show that the actual small parameter of this approxima-
tion is indeedl / l 0!1. The main result of this section is to
demonstrate that the scattering of impurity polaritons in-
duced by concentration fluctuations is decreasing with an
increase of the average concentration, and is actually negli-
gible on the background of absorption. This fact provides a
justification for the results obtained in the previous sections
of the paper, where these fluctuations are neglected.

We shall employ the Green’s function formalism in order
to calculate the scattering length of the impurity-induced po-
laritons due to concentration fluctuations. The Green’s func-
tion of the inhomogeneous dielectric medium can be pre-
sented as

FGag
(0)21~r ,r 8!2

v2

c2
@e„v,p~r !…2e~v,p!#dagGGgb~r ,r 8!

5dabd~r2r 8!, ~45!

whereGag
(0) is the Green’s function of the system with homo-

geneous dielectric functione(v,p) given by Eq.~15!. This
zeroth-order Green’s function can be written down ink space
in terms of the projection operatorsêab

' 5dab2kakb /k2 and

êab
i 5kakb /k2 as

Gab
(0)~k!5

êab
'

k22k0
2

2
êab

i

k0
2

, ~46!

wherek0
2(v)5v2e(v)/c2. Since we search for the leading

corrections to the Greens’ function of the system, we expand
e„v,p(r )… in terms ofdp(r ) and keep only the linear term:

e„v,p~r !…2e~v,p!5
v2

c2

de„v,p1dp~r !…

dp~r !
U

dp(r )[0

•dp~r !

5k2~v,p!•dp~r !.

Statistical properties of the random functiondp(r ) can be
described in this approximation by its momenta up to second
order:

^dp~r !&[0,

^dp~r !dp~r 8!&5K~ ur2r 8u!. ~47!

The second-order correlator depends only upon the distance
between two points in space, since the system is assumed to
be homogeneous and isotropic on average. After standard
transformations to thek representation one obtains

Gab
21~k!5~k22k0

2!êab
' 2k0

2êab
i

2k4E d3k8

~2p!3 S êab
'

k822k0
2

2
êab

i

k0
2 D S~k2k8!

5@k22k0
22S'~k!#êab

' 2@k0
21S i~k!#êab

i , ~48!

whereS(k) is the Fourier transform of the correlator~47!.
The new Green’s function can be expressed using the trans-
verse and longitudinal mass operatorsS'(k),S i(k):

FIG. 5. Transmission~solid line! and reflection~dashed line!
coefficients of a thin mixed crystal atp520% in the presence of
absorption.
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Gab~k!5
êab
'

k22k0
22S'~k!

2
êab

i

k0
21S i~k!

. ~49!

The real parts of the mass operators determine the renormal-
ization of the spectrum, and are neglected below. We shall
only consider the imaginary parts of the transverse mass op-
erators, which determine the scattering length~mean free
path! of the transverse modes, and in the lowest approxima-
tion read as

Im S'~k0~v!,v!5 i
k4

2p
k0E SS 2k0sin

u

2Dd cosu, ~50!

whereu is scattering angle betweenk and k8. The explicit
form of the integral scattering cross section depends on the
particular choice of the correlator~47!. In our case, however,
when the wavelength of the considered excitations is as-
sumed to be much greater than the characteristic size of the
inhomogeneities, the difference between different choices of
the correlation function is mostly reduced to a numerical
factor of the order of unity. One can choose the correlator,
for example, in the standard Gaussian form39

K~ ur2r 8u!5^dp2&e2ur2r8u2/ l c
2
, ~51!

with its respective Fourier transform

S~k!5
^dp2&p3/2l c

3

8
e2k2l c

2/4. ~52!

In the spirit of our general approach, the concentration fluc-
tuations must be considered with regard to the smoothing
volume dV, so that the respective variance^dp2& is calcu-
lated using the Poisson distribution of independent impurities
inside the volumedV:

^dp2&5
p~12p!

N~dV!
. ~53!

The correlation lengthl c , then, should be identified with the
l dV-smoothing length we employed in Eqs.~5! and~6!. How-
ever, as will be seen below, the same results can be obtained
if one considers initial distribution of discrete impurities and
chooses the interatomic distancea as the correlation length.
In any case,k0l c!1, and the expression for the complex
wave numberk(v) determined from the pole of the respec-
tive Green’s function takes the form

k~v!5k0~v!1 i
Ap

16
^dp2&k4l c

3 . ~54!

Using Eq.~53! and the identification ofl c one can obtain for
the scattering length

l s
21.

p1/2

16
p~12p!a3Fv2

c2

de„v,p~r !…

dp~r ! G 2

. ~55!

In the limit of small concentrationsp!1, the derivative of
e(v,p) with respect top can be evaluated in different re-
gions of the spectrum.

To assess the value of the scattering length inside the
impurity band we pick the center of the defect bandvc

2

5(v i l
2 1v iu

2 )/2. For small concentration one obtains

l s
21~vc!.

p1/2

4

l 3

l 0
4~V1!

a1
2;

1

p
, ~56!

where

a15
V1

22V0
2

4e`

3~21e`!
d0

21
22e`

21e`
~V1

22V0
2!

does not depend upon the concentration. In the last expres-
sion the anticipated small parameterl / l 0 has appeared raised
to the third power. Taking into account typical values of this
parameter for realistic mixed crystals, one can see that this
scattering is completely negligible. One may also note that
this scattering length increases with concentration, which has
a simple physical explanation—the greater the concentration,
the greater the overlap of individual local states, and the
closer the system is to a uniform continuous medium.

For frequencies from host bands, the situation is qualita-
tively different:

l s
21~v&V (TO)!.Fp1/2

16
a2

2S V0
(TO)2

v22V (TO)2D 4G pa3

l4~V0
(TO)!

;p,

l s
21~v*V (LO)!.Fp1/2

16
a3

2G pa3

l4~V0
(LO)!

;p , ~57!

where

a25e`

e`

3
d0

2~V0
(LO)22V0

(TO)2!~V1
(TO)22V0

(TO)2!

V0
(TO)4~V1

22V0
(TO)2!

and

a35e`

2

3
d0

2~V1
(LO)22V0

(LO)2!

~V (LO)22V (TO)2!~V0
(LO)22V1

2!

are constants. This scattering length is much smaller than for
impurity polaritons, and is decreasing with the increase of
concentration, which is quite a regular behavior. Indeed, the
perfectly ordered at thep50 system experiences increasing
scattering due to the impurities. This difference between
scattering properties of regular and impurity polaritons ex-
plains why our approach can be justified to describe the
properties of the former, while the latter requires a more
elaborate treatment of disorder.

VII. DISCUSSION

In this paper we suggested that certain features of the
optical spectra of mixed crystals in therestrahlenregion can
be explained if, along with standard optical phonon vibra-
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tions, one introduces additional impurity-induced oscillators
with the frequency falling into therestrahlen of the host
crystal. The justification for this assumption comes from the
concept of local polaritons introduced earlier in Refs. 24–27
and studies of one-dimensional models,31–34 which showed
how local polaritons develop into an impurity-induced band.
Local polaritons are significantly different from local
phonons, which were extensively studied in connection with
the optical properties of mixed crystals. First, they are as-
sumed to exist in therestrahlenregion, which in many cases
is filled with phonons. Therefore, it is not exactly a spectral
gap, which is necessary for local states to exist. However, the
dielectric function within therestrahlen remains negative,
which means that electromagnetic excitations cannot exist in
this frequency region, which is therefore a gap for electro-
magnetic excitations. This situation is reversed compared to
the case of pure phonon gaps, which are deprived of phonon
states, but contain electromagnetic ones. Because of the non-
zero electromagnetic DOS, local phonons acquire their elec-
tromagnetic radiation width, and because of the nonzero pho-
non DOS, the local polaritons acquire their ‘‘phonon
radiation’’ width. A significant difference between these two
situations is that the density of electromagnetic states in the
phonon gap is so small that the radiative broadening of local
phonons is negligible, while the density of phonon states in
the restrahlenis large, and local polaritons may or may not
survive it. Analyzing known phonon DOS, we found that for
some crystals like GaP, ZnS, CuBr, ZnTe, CuI, SrF2 , BaF2 ,
PbF2 , UF2, and CaF2,37 there are actually frequency regions
with zero phonon DOS, though often quite narrow ones.
Therefore, the right impurity could in principle give rise to a
local state considered in Refs. 24–27. However, there-
strahlenregion of a much broader class of crystals like NaCl,
NaBr, KCl, RbCl, and many others37 is filled with LO
phonons whose DOS within certain regions is relatively
small. In the present paper we studied the lifetime of local
polaritons due to an interaction with these LO phonons, and
found that under regular circumstances this lifetime is no
shorter than the one due to anharmonicity. We argued, there-
fore, that local polaritons can actually survive an interaction
with restrahlenphonon states, and contribute to the optical
properties of the crystals. Moreover, the presence of some
local states within therestrahlenwas confirmed experimen-
tally in Ref. 21, where neutral dopants~S,Sn,Te! give rise to
the local electron-phonon state at the frequency slightly be-
low LO of GaP. What is interesting is that the region where
these states reside has a relatively high density of phonon
states, which obviously did not preclude them from exis-
tence. All these arguments justify the use of local polaritons
to describe properties of therestrahlenof mixed crystals.

The second important property of local polaritons is that
their spatial extent is of the order of optic wavelengths in the
restrahl (;1023 cm), which is much larger than the size of
local phonons ~several interatomic distances!. This fact
means that even at residual concentrations of impurities, lo-
cal polaritons overlap, forming a well-developed band. We
showed in this paper that this band can be described using
the continuous medium approximation for the impurity sub-
system. Neglecting fluctuations of impurity concentration,
we derived an effective dielectric function for our model, and
used it to analyze the structure of the optical spectra of

mixed crystals. This dielectric function describes new
impurity-induced polariton bands, which arise inside there-
strahlenof the host crystal.

The first problem we set out to consider using the concept
of impurity polaritons was the weak features in the spectra of
the so-called one-mode crystals Ba/SrF2 , Ca/SrF2,11,12 Zn/
CdS, Mn/ZnTe,2 and the one-two-mode behavior of a differ-
ent group of crystals In/GaP,13 PbSe/Te,14 K/RbI,15,16 RbBr/
Cl, GaAs/Sb, InAs/Sb, AgBr/Cl,2 and In/GaAs.38 The
existing descriptions of these types of spectra2 require a great
number of fitting parameters. Our model allowed us to ex-
plain these types of spectra naturally as manifestations of the
impurity polariton mode, which reveals itself differently de-
pending upon the relation between fundamental frequencies
of crystals at both ends of the concentration range and the
frequency of the local polariton. Introducing relaxation in a
phenomenological way, we considered reflection and trans-
mission spectra, and demonstrated that our model survives
rather strong dumping, and reproduces spectra closed to ex-
perimental observations. For rather thin samples our model
predicts a resonant enhancement in the transmission at the
frequency of the impurity polaritons, which accompanies an
antiresonance in reflection. The latter was observed in many
papers,1,2 but was mostly attributed to impurity-induced ab-
sorption. The only transmission measurements known to us
were performed on pure CuCl,30 where transmission was
found to exhibit a maximum similar to one predicted in our
paper. CuCl is a peculiar material, since Cu atoms at low
temperature can occupy several nonequivalent positions,
thereby creating internal defects.28,29 These off-center Cu at-
oms can be responsible for the impurity polariton band, and
therefore, transmission spectra of CuCl can be considered as
the first evidence of this band.

Since we took the retardation into account, we were able
consider not only boundaries of the spectra but also disper-
sion laws, DOS, and group velocities of the impurity induced
polaritons. One of the most remarkable properties of these
excitations is that their group velocity is proportional to the
concentration, and can be thousands of times smaller than
the speed of light in vacuum. The smallness of the group
velocity makes dispersion curves of the excitation look al-
most flat. Rather similar dispersion curves were measured
experimentally in Ref. 28 in the one-two-mode mixed crystal
Ga0.70In0.30P with the use of Raman spectroscopy. It would
be interesting to carry out additional steady state and time-
resolved experiments in this material, which could verify the
predictions of our theory and provide more solid support for
our concept of impurity-induced polaritons. Our approach
also allowed us to study the scattering of impurity polaritons
due to fluctuations of concentrations. We found that their
scattering length is significantly different from the similar
characteristics of regular polaritons of the host material. The
scattering length of impurity polaritons is proportional to the
concentration, making the scattering less efficient with an
increase of concentration. Quantitatively, the scattering
length is very large, much larger than the attenuation length
due to inelastic dumping, making scattering due to concen-
tration fluctuations negligible for impurity polaritons. This
finding is in agreement with the results obtained for the one-
dimensional model,34 and provides a firm foundation for our
approach. The scattering length for regular host polaritons, at
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the same time, is inversely proportional to the concentration,
and is rather short. Therefore, studying optical properties re-
lated to these excitations requires more elaborate theoretical
approaches used in many papers on the subject~see, for in-
stance, Ref. 20!.

We hope that the present results will revive the interest of
experimentalists in the properties ofrestrahlen of mixed
crystals. In our opinion, it would be interesting to study
transmission spectra through thin slabs of one-two-mode
crystals in both continuous-wave and time-resolved experi-
ments. Such experiments could provide additional insight
into properties of impurity polaritons, and elucidate their dy-
namic properties, such as group velocities. Comparing ex-
periment and present theoretical results, one can obtain ad-
ditional information about the material parameters of these
systems.

Note added in proof. A. J. Sievers drew our attention to an
alternative explanation of the IR reflection spectra of CuCl.
In Ref. 40, an additional absorption line inside the gap was

attributed to the interaction of TO phonons with acoustic
phonons arising from strong anharmonic terms in the poten-
tial of Cu atoms, rather than due to an additional polariton
band associated with the off-center ions. Although there ex-
ists strong evidence in favor of the model discussed in Ref.
40, it does not explain, however, the enhanced transmission
observed in Ref. 30.
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