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Effects of resonant tunneling in electromagnetic wave propagation through a polariton gap

Lev I. Deych
Department of Physics, Seton Hall University, South Orange, New Jersey 07079

A. Yamilov and A. A. Lisyansky
Department of Physics, Queens College of City University of New York, Flushing, New York 11367

~Received 6 July 1998; revised manuscript received 9 November 1998!

We consider tunneling of electromagnetic waves through a polariton band gap of a one-dimensional chain of
atoms. We analytically show that a defect embedded in the structure gives rise to the resonance transmission
at the frequency of a local polariton state associated with the defect. Numerical Monte Carlo simulations are
used to examine properties of the electromagnetic band arising inside the polariton gap due to finite concen-
tration of defects.@S0163-1829~99!03418-9#

I. INTRODUCTION

The resonant tunneling of electromagnetic waves through
different types of optical barriers is a fast developing area of
optical physics. This effect was considered for photonic
crystals,1,2 where forbidden band gaps in the electromagnetic
spectrum form optical barriers. Macroscopic defects embed-
ded in the photonic crystal give rise to local photon
modes,3–7 which induce the resonant transmission of electro-
magnetic waves through the band gaps.

A different type of photonic band gaps arises in polar
dielectrics, where a strong resonance interaction between the
electromagnetic field and dipole active internal excitations of
a dielectric brings about a gap between different branches of
polaritons. Recently it was suggested that regular micro-
scopic impurities embedded in such a dielectric give rise to
local polariton states,8–10 where a photon is coupled to an
intrinsic excitation of a crystal, and both these components
are localized in the vicinity of the defect.11 The main pecu-
liarity of the local polaritons is that their electromagnetic
component is bound by amicroscopicdefect whose size is
many order of magnitude smaller then the wavelengths of
respective photons. Another important property of these
states is the absence of a threshold for their appearance even
in three-dimensional~3D! isotropic systems, while for all
other known local states the ‘‘strength’’ of a defect must
exceed a certain critical value before the state would split off
a continous spectrum. The reason for this peculiar behavior
is a strong van Hove singularity in the polariton density of
states in the long-wave region, caused by a negative effective
mass of the polariton-forming excitations of a crystal.

The feasibility of resonant electromagnetic tunneling in-
duced by local polaritons, however, is not self-evident. The
idea of a microscopic defect affecting propagation of waves
with macroscopic wavelength seems to be in contradiction
with common wisdom. Besides, it was found that the energy
of the electromagnetic component of local polaritons is very
small compared to the energy of its crystal counterpart. The
existence of the tunneling effect was first numerically dem-
onstrated in Ref. 9, where a 1D chain of dipoles interacting
with a scalar field imitating transverse electromagnetic
waves was considered. It was found that a single defect em-

bedded in such a chain results in near 100% transmission at
the frequency of local polaritons through a relatively short
chain ~50 atoms!. The frequency profile of the transmission
was found to be strongly assymetric, in contrast to the case
of electron tunneling.16

In most cases~at least for a small concentration of the
transmitting centers! one-dimensional models give a reliable
description of tunneling processes, because by virtue of tun-
neling, a wave propagates along a chain of resonance cen-
ters, for which a 1D topology has the highest probability of
occurrence.17 In our situation, it is also important that the
local polariton states~transmitting centers! occur without a
threshold in 3D systems as well as in 1D systems. This en-
sures that the transmission resonances found in Ref. 9 are not
artifacts of the one-dimensional nature of the model, and
justifies a further development of the model. In the present
paper we pursue this development in two interconnected di-
rections. First, we present an exact analytical solution of the
transmission problem through the chain with a single defect.
This solution explains the unusual asymmetric shape of the
transmission profile found in numerical calculations9 and
provides insight into the phenomenon under consideration.
Second, we carry out numerical Monte Carlo simulation of
the electromagnetic transmission through a macroscopically
long chain with a finite concentration of defects, and study
the development of a defect-induced electromagnetic pass
band within the polariton band gap. The analytical solution
of a single-defect model allows us to suggest a physical in-
terpretation for some of the peculiarities of the transmission
found in numerical simulations. As a by product of our nu-
merical results we present an algorithm used for the compu-
tation of the transmission. This algorithm is based upon a
blend of the transfer-matrix approach with ideas of the
invariant-embedding method,18 and proves to be extremely
stable even deep inside the band gap, where traditional meth-
ods would not work.

Though we consider the one-dimensional model, the re-
sults obtained are suggestive for experimental observation of
the predicted effects. Actually the damping of the electro-
magnetic waves is more experimentally restrictive than the
topology of the system. We, however, discuss the effects due
to damping and come to the conclusion that the effects under
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discussion can be observed in regular ionic crystals in the
region of their phonon-polariton band gaps.

The paper is organized as follows. The Introduction is
followed by an analytical solution of the transmission prob-
lem in a single-impurity situation. The next section presents
results of Monte Carlo computer simulations. The algorithm
used in numerical calculations is derived and discussed in the
Appendix. The paper concludes with a discussion of the re-
sults.

II. DESCRIPTION OF THE MODEL AND ANALYTICAL
SOLUTION OF A SINGLE-DEFECT PROBLEM

A. The model

Our system consists of a chain of atoms interacting with
each other and with a scalar ‘‘electromagnetic’’ field. Atoms
are represented by their dipole momentsPn , where the index
n represents the position of an atom in the chain. Dynamics
of the atoms is described within the tight-binding approxi-
mation with an interaction between nearest neighbors only,

~Vn
22v2!Pn1F~Pn111Pn21!5aE~xn!, ~1!

whereF is a parameter of the interaction, andVn
2 represents

the site energy. Impurities in the model differ from host at-
oms in this parameter only, so

Vn
25V0

2cn1V1
2~12cn!, ~2!

whereV0
2 is the site energy of a host atom,V1

2 describes an
impurity, cn is a random variable taking values 1 and 0 with
probabilities 12p and p, respectively. Parameterp, there-
fore, sets the concentration of the impurities in our system.
This choice of the dynamical equation corresponds to exci-
tonlike polarization waves. Phononlike waves can be pre-
sented in a form that is similar to Eq.~1! with Vn

25V0
2

1(12cn)(12Mdef/Mhost)v
2, where Mdef and Mhost are

masses of defects and host atoms, respectively.
Polaritons in the system arise as collective excitations of

dipoles~polarization waves! coupled to the electromagnetic
waveE(xn), by means of a coupling parametera. The elec-
tromagnetic subsystem is described by the following equa-
tion of motion:

v2

c2
E~x!1

d2E

dx2
524p

v2

c2 (
n

Pnd~na2x!, ~3!

where the right-hand side is the polarization density caused
by atomic dipole moments, andc is the speed of light in
vacuum. The coordinatex in Eq. ~3! is along the chain with
an interatomic distancea. Equations~1! and ~3! present a
microscopic description of the transverse electromagnetic
waves propagating along the chain in the sense that it does
not make use of the concept of the dielectric permeability,
and takes into account all modes of the field including those
with wave numbers outside of the first Brillouin band.

This approach enables us to address several general ques-
tions. A local state is usually composed of states with all
possible values of wave numberk. States with largek cannot
be considered within a macroscopic dielectric function
theory, and attempts to do so lead to divergent integrals that
need to be renormalized.15 In our approach, all expressions
are well defined, so we can check whether a contribution
from largek is important, and if the long-wave approxima-
tion gives reliable results. Calculation of the integrals ap-
pearing in the 3D theory requires detailed knowledge of the
spectrum of excitations of a crystal throughout the entire
Brillouin band. This makes analytical consideration practi-
cally unfeasible. In our 1D model, we can carry out the cal-
culations analytically~in a single-impurity case! and exam-
ine the influence of different factors~and approximations!
upon the frequency of a local state and the transmission co-
efficient. Using caution, the results obtained can be used to
assess approximations in 3D cases.

B. A single impurity problem

The equation for the frequency of the local polariton state
in the 1D chain has a form similar to that derived in Ref. 8

15DV2G~0!, ~4!

where, however, the expression for the polariton Green’s
functionG(n2n0) responsible for the mechanical excitation
of the system can be obtained in the explicit form

G~n2n0!5(
k

cos~ak!2cos~av/c!

@v22V0
222F cos~ka!#@cos~ak!2cos~av/c!#2

2pav

c
sin~av/c!

exp@ ik~n2n0!a#. ~5!

If one neglects the term responsible for the coupling to the
electromagnetic field, the Green’s functionG(n2n0) is re-
duced to that of the pure atomic system. This fact reflects the
nature of the defect in our model: it only disturbs the me-
chanical~not related to the interaction with the field! prop-
erties of the system. A solution of Eq.~4! can be real valued
only if it falls into the gap between the upper and lower

polariton branches. This gap exists if the parameterF in the
dispersion equation of the polariton wave is positive, and the
effective mass of the excitations in the long-wave limit is,
therefore, negative.

The diagonal elementG(0) of Green’s function~5! can
be calculated exactly. The dispersion equation~4! then takes
the following form:
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15DV2
1

2FD~v! F cos~av/c!2Q2~v!

AQ2
2~v!21

2
cos~av/c!2Q1~v!

AQ1
2~v!21

G , ~6!

whereQ1,2(v),

Q1,2~v!5
1

2 FcosS av

c D1
v22V0

2

2F G6
1

2
D~v!, ~7!

D~v!5AFcosS av

c D2
v22V0

2

2F G2

2
4pav

Fc
sinS av

c D
~8!

give the poles of the integrand in Eq.~5!. The bottom of the
polariton gap is determined by the conditionD(v)50, yield-
ing in the long-wave limit,av/c!1, for the corresponding
frequencyv l ,

v l
2.Ṽ0

222Ṽ0
2d

AFa

c
, ~9!

where we introduce parametersd254pa/a, Ṽ0
25V0

2

12F, and take into account that the bandwidth of the polar-
ization wavesF obeys the inequalityAFa/c!1. The last
term in this expression is the correction to the bottom of the
polariton gap due to the interaction with the transverse elec-
tromagnetic field. Usually this correction is small, but it has
an important theoretical, and, in the case of strong enough
spatial dispersion and oscillator strength, practical
significance.8 Because of this correction the polariton gap
starts at a frequency, when the determinantD(v) becomes
imaginary, but functionsQ1,2(v) are still less than 1. This
leads to the divergence of the right-hand side of Eq.~6! asv
approachesv l , and, hence, to the absence of a threshold for
the solution of this equation. This divergence is not a 1D
effect since the same behavior is also found in 3D isotropic
model.8,10 An asymptotic form for Eq.~6! when v→v l in
the 1D case reads

Av22v l
2;

DV2

AF
, ~10!

and differs from the 3D case by the factor of (dv la)/(cAF).
The upper boundary of the gapvup is determined by the
conditionQ1(v)50, leading to

vup
2 5Ṽ0

21d2, ~11!

Eq. ~6! also has a singularity asv→vup, but this singularity
is exclusively caused by the 1D nature of the system. We
will discuss local states that are not too close to the upper
boundary in order to avoid manifestations of purely 1D ef-
fects.

For frequencies deeper inside the gap, Eq.~4! can be sim-
plified in the approximation of small spatial dispersion,
AFa/c!1, to yield

v25Ṽ1
22DV2F 12A v22Ṽ0

2

v22Ṽ0
214F

G
2d2

va

2c

DV2

A~v22Ṽ0
2!~Ṽ0

21d22v2!
, ~12!

whereṼ1
25V1

212F is a fundamental (k50) frequency of a
chain composed of impurity atoms only. Two other terms in
Eq. ~12! present corrections to this frequency due to the spa-
tial dispersion and the interaction with the electromagnetic
field, respectively. One can see that both corrections have the
same sign and shift the local frequency into the region be-
tweenṼ0

2 and Ṽ1
2. As we see below, this fact is significant

for the transport properties of the chain.
Transmission through the system can be considered in the

framework of the transfer matrix approach. This method was
adapted for the particular case of the system under consider-
ation in Ref. 9. The state of the system is described by the
vector vn , with components Pn , Pn11 , En , En8/kv ,
which obeys the following difference equation:

vn115Tnvn . ~13!

The transfer matrixTn describes the propagation of the vec-
tor between adjacent sites:

Tn5S 0 1 0 0

21 2
Vn

22v2

F

a

F
coska

a

F
sinka

0 0 coska sinka

0 24pk 2sinka coska

D . ~14!

Analytical calculation of the transmission coefficient in
the situation considered is not feasible even in the case of a
single impurity because the algebra is too cumbersome. The
problem, however, can be simplified considerably if one ne-
glects the spatial dispersion of the polarization waves. In this
case theT matrix can be reduced to a 232 matrix of the
following form:

tn5S coska sinka

2sinka1bn coska coska1bn sinkaD , ~15!

where the parameterbn

bn5
4pav

c~v22Vn
2!

, ~16!

represents the polarizability of thenth atom due to its vibra-
tional motion. In this case the complex transmission coeffi-
cient t can be easily expressed in terms of the elements of the
resulting transfer matrix,T(N)5)1

Ntn ,

t5
2

~T11
(N)1T22

(N)!2 i ~T12
(N)2T21

(N)!
e2 ikL. ~17!

The problem is, therefore, reduced to the calculation ofT(N).
In the case of a single impurity, the product of the transfer
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matrices,t, can be presented in the following form:

T(N)5tN2n03tdef3tn021, ~18!

where the matrixtdef describes the impurity atom withVn

5V1. The matrix product in Eq.~18! is conveniently calcu-
lated in the basis, where the matrixt is diagonal. After some
cumbersome algebra, one obtains for the complex transmis-
sion coefficient:

t5
2eikL exp~2kL !

@12 i /AR~22b cotka!#@~11«!#12i exp~2kL !G cosh@ka~N22n011!#
, ~19!

where R5b214b cot(ak)24, G5«b/@sin(ka)AR#, k is
the imaginary wave number of the evanescent electromag-
netic excitations, which determines the inverse localization
length of the local state, and«5(bdef2b)/2AR. The last
parameter describes the difference between host atoms and
the impurity, and is equal to

«5
2pa

cAR
v

~V1
22V0

2!

~v22V0
2!~v22V1

2!
. ~20!

We have also neglected here a contribution from the second
eigenvalue of the transfer matrix, which is proportional to
exp(22kL), and is exponentially small for sufficiently long
chains. For«50, Eq.~19! gives the transmission coefficient,
t0, of the pure system,

t05
2eikL exp~2kL !

12 i /AR~22b cotka!
, ~21!

exhibiting a regular exponential decay. At the lower bound-
ary of the polariton gapV0, parametersb and k diverge,
leading to vanishing transmission at the gap edge regardless
the length of the chain. It is instructive to rewrite Eq.~19! in
terms oft0:

t5
t0

~11«!1 i exp~2 ikL !Gt0 cosh@ka~N22n011!#
.

~22!

This expression describes the resonance tunneling of the
electromagnetic waves through the chain with the defect.
The resonance occurs when

11«50, ~23!

the transmission in this case becomes independent of the
system size. Substituting the definition of the parameter«
given by Eq.~20! into Eq. ~23!, one arrives at an equation
identical to Eq.~12! for the frequency of the local polariton
state with the parameter of the spatial dispersionF being set
to zero. The transmission takes a maximum value when the
defect is placed in the middle of the chain,N22n01150,
and in this case

utmaxu25
1

G2
<1. ~24!

The width of the resonance is proportional toGt0 and de-
creases exponentially with an increase of the system’s size.
In the long-wave limit,ak!1, Eq. ~24! can be rewritten in
the following form:

utmaxu2512S 122
v r

22V0
2

d2 D , ~25!

wherev r is the resonance frequency satisfying Eq.~23!. It is
interesting to note that the transmission coefficient becomes
exactly equal to one if the resonance frequency happens to
occur exactly in the center of the polariton gap. This fact has
a simple physical meaning. Forv r

25V0
21d2/2 the inverse

localization lengthk becomes equal to the wave number
v r /c of the incoming radiation. Owing to this fact, the field
and its derivative inside the chain exactly match the field and
the derivative of the incoming field as though the optical
properties of the chain are identical to those in vacuum. Con-
sequently, the field propagates through the chain without re-
flection.

Having solved the transmission problem we can find the
magnitude of the field inside the chain in terms of the inci-
dent amplitudeEin at the resonance frequency. Spatial distri-
bution of the field in the local polariton state can be found to
have the formE5Ed exp(2un2n0uka). Matching this expres-
sion with the outcoming field equal toEint exp(ikL) one has
for the field amplitude at the defect atom,Ed ,

Ed5Eintexp~2 ikL ! exp@~N2n0!ka#. ~26!

For utu being of the order of one in the resonance this expres-
sion describes the drastic exponential enhancement of the
incident amplitude at the defect side due to the effect of the
resonance tunneling.

Equations~22! and ~24! demonstrate that the resonance
tunneling via local polariton states is remarkably different
from other types of resonance tunneling phenomena, such as
electron tunneling via an impurity state,16 or through a
double barrier. The most important fact is that the frequency
profile of the resonance does not have the typical symmetric
Lorentzian shape. Atv5V1 the parameter« diverges caus-
ing the transmission to vanish. At the same time the reso-
nance frequencyv r is very close toV1 as it follows from
Eq. ~12!. This results in strongly asymmetric frequency de-
pendence of the transmission, which is skewed toward lower
frequencies.
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The transmission vanishes precisely at two frequencies: at
the low-frequency band edgeV0 and at the frequencyV1
associated with the vibrational motion of the defect atom. At
the same time, the behavior of the transmission coefficient in
the vicinities of these two frequencies is essentially different:
at the band edge it is (v22V0

2)2 exp(21/Av22V0
2), while

at the defect frequency the transmission goes to zero as
(v22V1

2)2. These facts can be used to predict several effects
that would occur with the increase of the concentration of the
defects. First, one can note that with the increase of concen-
tration of the impurities frequencyV1 becomes eventually
the boundary of the new polariton gap when all the original
host atoms will be replaced by the defects atoms. One can
conclude then that the zero of the transmission atV1 instead
of being washed out by the disorder, would actually become
more singular. More exactly one should expect that the fre-
quency dependence of the transmission in the vicinity ofV1
will exhibit a crossover from the simple power decrease to
the behavior with exponential singularity associated with the
band edge. Second, if one takes into account such factors as
spatial dispersion or damping, which prevent transmission
from exact vanishing, one should expect that the above-
mentioned crossover to the more singular behavior would
manifest itself in the form of substantial decrease of the
transmission in the vicinity ofV1 with an increase of the
concentration. Numerical calculations discussed in the next
section of the paper show that this effect does take place
even at rather small concentration of the defects.

Resonance tunneling is very sensitive to the presence of
relaxation, which phenomenologically can be accounted for
by adding 2igv to the denominator of the polarizabilityb,
whereg is an effective relaxation parameter. This will make
the parametere complex valued, leading to two important
consequences. First, the resonance condition becomes
Re(«)521, and it can be fulfilled only if the relaxation is
small enough. Second, the imaginary part of« will prevent
the exponential factort0 in Eq. ~22! from canceling out at the
resonance. This restricts the length of the system in which
the resonance can occur and limit the enhancement of the
field at the defect. These restrictions though are not specific
for the system under consideration and affect experimental
manifestation of any type of resonant tunneling phenom-
enon.

Since we are only concerned with a frequency region in
the vicinity of V1, real«1 and imaginary«2 parts of« can be
approximately found as

«1.d2
V1a

2c
A DV2

d22DV2

v22V1
2

~v22V1
2!214g2v2

, ~27!

«2.
2gv

v22V1
2
«1 . ~28!

It follows from Eq. ~27! that the resonance occurs only if
(4gc)/(ad2),1. This inequality has a simple physical
meaning: it ensures that the distance between the resonance
frequencyv r andV1, where the transmission goes to zero, is
greater than the relaxation parameter,g. This is a rather strict
condition that can only be satisfied for high-frequency oscil-
lations with large oscillator strength in crystals with large

interatomic spacinga. The spatial dispersion, however,
makes conditions for the resonant tunneling much less re-
strictive. In order to estimate the effect of the dissipation in
the presence of the spatial dispersion one can rely upon Eq.
~22! assuming that the dispersion only modifies the param-
eter «, but does not effect the general expression for the
transmission. This assumption is justified by the numerical
results of Ref. 9 and the present paper, which show that the
transmission properties in the presence of the spatial disper-
sion do not differ significantly from the analytical calcula-
tions performed for the chain of noninteracting dipoles. Ac-
cording to Eq.~12!, the interatomic interaction moves the
resonance frequency further away fromV1 undermining the
influence of the damping and leading to a weaker inequality:
(gV1)/F,1. This condition can be easily fulfilled, even for
phonons with a relatively small negative spatial dispersion.
For the imaginary part«2 at the resonance one can obtain
from Eq. ~28! the following estimate:

«2;min@~4gc!/~ad2!,~gV1!/F#. ~29!

The requirement that«2 be much smaller thant0 leads to the
following restriction for the length of the systemL
!(1/k)u ln@«2#u, with «2 given above. The maximum value of
the field at the defect site attainable for the defect located in
the center of the chain is then found asuEdu;uEinuutu/A«2.

III. ONE-DIMENSIONAL DIPOLE CHAIN WITH FINITE
CONCENTRATION OF IMPURITIES

In this section we present results of numerical Monte
Carlo simulations of the transport properties of the system
under consideration in the case of randomly distributed iden-
tical defects. If spatial dispersion is taken into account the
regular Maxwell boundary conditions must be comple-
mented by additional boundary conditions regulating the be-
havior of polarizationP at the ends of the chain. In our
previous paper9 we calculated the transmission for two types
of boundary conditions:P05PN50, which corresponds to
the fixed ends of the chain, andP05P1 , PN215PN , which
corresponds to the relaxed ends. We reported in Ref. 9 that
the transmission is very sensitive to the boundary conditions
with fixed ends being much more favorable for the reso-
nance. Our present numerical results obtained with an im-
proved numerical procedure and the analytical calculations
do not confirm this dependence of the resonant tunneling
upon the boundary conditions. In the case of a single impu-
rity we find that for both types of the boundary conditions
the transmission demonstrates sharp resonance similar to that
found in Ref. 9 for fixed ends. Similarly, for a finite concen-
tration of impurities we did not find any considerable differ-
ences in the transmission for both types of boundary condi-
tions. We conclude that the actual form of the boundary
conditions is not significant for the resonant tunneling.

The transfer matrix, Eq.~13!, along with the definition of
the transfer matrix, Eq.~14!, and the boundary conditions
chosen in the form of fixed terminal points, provides a basis
for our computations. However, it turns out that straightfor-
ward use of Eq.~13! in the gap region is not possible because
of underflow errors arising when one pair of eigenvalues of
the transfer matrix becomes exponentially greater than the
second one. In order to overcome this problem we develop a
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computational approach based upon the blend of the transfer-
matrix method with the invariant embedding ideas. The cen-
tral element of the method is a 434 matrix S(N) that de-
pends upon the system sizeN. The complex transmission
coefficient t is expressed in terms of the elements of this
matrix as

t52 exp~2 ikL !~S111S12!. ~30!

The matrixS(N) is determined by the following nonlinear
recursion:

S~N11!5TN3J~N!3S~N!, ~31!

where matrixJ(N) is given by

J~N!5$I 2S~N!3H3@ I 2T~N!#%21. ~32!

The initial condition to Eq.~31! is given by

S~0!5~G1H !21, ~33!

where matricesG andH are specified by the boundary con-
ditions. The derivation of Eqs.~30!–~33! and more detailed
discussion of the method is given in the Appendix. The test
of the algorithm based upon recursion formula~31! proves
the method provides accurate results for transmission coeffi-
cients as small as 10215.

In our simulations we fix the concentration of the defects
and randomly distribute them among the host atoms. The
total number of atoms in the chain is also fixed; the results
presented below are obtained for a chain consisting of 1000
atoms. For the chosen defect frequency,V1.1.354V0, the
localization length of the local polariton statel ind is approxi-
mately equal to 150 interatomic distances. The transmission
coefficient is found to be extremely sensitive to a particular
arrangements of defects in a realization exhibiting strong
fluctuations from one realization to another. Therefore, in
order to reveal the general features of the transmission inde-
pendent of particular positions of defects, we average the
transmission over 1000 different realizations. We have also
calculated the averaged Lyapunov exponent~the inverse lo-
calization lengthl chain characterizing transport through the

entire chain! to verify that the averaged transmission reveals
a reliable information about the transport properties of the
system.

The results of the computations are presented in the fig-
ures below. Figures 1 –3 show an evolution of the transmis-
sion with the increase of the concentration of the impurities.
In Fig. 1 one can see the change of the transport properties at
small concentrations up to 1%. The curve labeled~1! shows,
basically, the single impurity behavior averaged over random
positions of the defect. With an increase of the concentration
there is a greater probability for two~or more! defects to
form a cluster resulting in splitting a single resonance fre-
quency in two or more frequencies. The double-peak struc-
ture of the curves~2! and ~3! reflects these cluster effects.
With the further increase of the concentration the clusters’
sizes grow on average leading to multiple resonances with
distances between adjacent resonance frequencies being too
small to be distinguished. Curve~5! in Fig. 1 reflects this
transformation, which marks a transition between individual
tunneling resonances and the defect-induced band. The con-
centrations in this transition region is such that an average
distance between the defects is equal to the localization
length of the individual local statesl ind . The collective lo-
calization length at the frequency of the transmission peak
l chain
max becomes equal to the length of the chain at approxi-

mately the same concentration that allows us to suggest a
simple linear relationships between the two lengths. The nu-

FIG. 1. Frequency dependence of the averaged transmission co-
efficient for small concentrations of the defects. The frequency is
normalized by the fundamental (k50) frequency of the pure chain,
V0. The low-frequency boundary of the polariton gap is atv
'1.3 and is not shown here.

FIG. 2. The same as in Fig. 1 but for intermediate concentra-
tions.

FIG. 3. The same as in Fig. 1 but for large concentrations.
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merical results presented in Fig. 4 clearly demonstrate this
linear concentration dependence ofl chain

max at small concentra-
tions. For larger concentrations one can see from Figs. 2 and
3 that the peak of the transmission coefficient develops into a
broad structure. This marks further development of the de-
fect pass band. Curves in Fig. 2 show the transmission coef-
ficient at intermediate concentrations, where localization
length l chain is bigger than the length of the system only in a
small frequency region around the maximum of the transmis-
sion, and Fig. 3 presents a well developed pass band with
multipeak structure resulting from geometrical resonances at
the boundaries of the system.

These figures reveal an important feature of the defect
polariton band: its right edge does not move with increase of
the concentration. The frequency of this boundary is exactly
equal to the defect frequencyV1 ~which is normalized byV0
in the figures!, and the entire band is developing to the left of
V1 in complete agreement with the arguments based upon an
analytical solution of the single-impurity problem. More-
over, the magnitude of the transmission in the vicinity ofV1
decreases with an increase of the concentration also in agree-
ment with our remarks at the end of the previous section.
Figure 5 presents the inverse localization lengthl chain, nor-
malized by the length of the chain for three different concen-
trations. It can be seen thatl chain

21 (V1) significantly grows

with an increase of the concentration, reaching the value of
approximately 17/L at a concentration as small as 3%. Such
a small localization length corresponds to the transmission of
the order of magnitude of 10217, which is practically zero in
our computation. Further increase of the concentration does
not change the minimum localization length. These results
present an interesting example of the defects building up a
boundary of the forbidden gap.

This figure also shows the development of the pass band
to the left ofV1 presented above in Figs. 1–3, but at a larger
scale. We cannot distinguish here the details of the frequency
dependence, but the transition from the single resonance be-
havior to the pass band, marked by the significant flattening
of the curve, is clear.

Figure 6 presents the concentration dependence of the
semiwidthdv of the defect band. The semiwidth is defined
as the difference between the frequency of the maximum
transmission and the right edge of the band. One can see that
all the points form a smooth line with no indication of a
change of the dependence with the transition between differ-
ent transport regimes. Attempts to fit this curve showed that
it is excellently fitted by the power lawdv}cn with n.0.8
in all studied concentration range. The reason for this behav-
ior and why it is insensitive to the change of the character of
the transport requires further study.

IV. CONCLUSION

In this paper, we considered one-dimensional resonance
tunneling of scalar ‘‘electromagnetic waves’’ through an op-
tical barrier caused by a polariton gap. The tunneling is me-
diated by local polariton states arising due to defect atoms
embedded in an otherwise ideal periodic chain. We also nu-
merically studied how a defect-induced propagating band
emerges from these resonances when the concentration of
defects increases.

It is important to emphasize the difference between the
situation considered in our paper and other types of tunneling
phenomena discussed in the literature. The tunneling of elec-
tromagnetic waves through photonic crystals and electron
tunneling, despite all the difference between these phenom-
ena, share one common feature. In both cases, the resonance

FIG. 4. Concentration dependence of the collective localization
length l chain normalized by the system’s sizeL.

FIG. 5. Frequency dependence of the Lyapunov exponent of the
entire chain for several concentrations in the frequency region of
the defect band.

FIG. 6. Concentration dependence of the semiwidth of the de-
fect band. The solid line represents fit with power functioncn,
wheren'0.8.
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occurs due to defects that have dimensions comparable with
wavelengths of the respective excitations~electrons interact
with atomic impurities, and long-wave electromagnetic
waves interact with macroscopic distortions of the photonic
crystals!. In our case the wavelength of the propagating ex-
citations is many orders of magnitude greater than dimen-
sions of the atomic defects responsible for the resonance.
The physical reason for such an unusual behavior lies in the
nature of local polaritons. These states are formed owing to
the presence of internal polariton-forming excitations. The
spatial extent of these states is much larger than the geo-
metrical dimensions of atomic defects and is comparable to
the wavelength of the incident radiation.

We presented an exact analytical solution of the tunneling
of electromagnetic waves through a chain of noninteracting
atoms with a single defect. This solution provides insight
into the nature of the phenomenon under consideration and
allows one to obtain an explicit expression for the magnitude
of the electromagnetic field at the defect site. The expression
derived demonstrates that the field is strongly enhanced at
the resonance with its magnitude growing exponentially with
an increase of the length of the system. This effect is an
electromagnetic analog of the charge accumulation in the
case of electron tunneling, where it is known to cause inter-
esting nonlinear phenomena.19–23

An analytical solution of the single-defect problem al-
lowed us to make predictions regarding the transport proper-
ties of the system with multiple randomly located defects.
The most interesting of these is that the dynamical frequency
of the defectsV1, sets a high-frequency boundary for the
defect-induced pass band, which does not move with increas-
ing concentration of defects. Numerical Monte Carlo simu-
lations confirmed this assumption and showed that the direct
interaction between the atoms~spatial dispersion! does not
affect resonance tunneling considerably, though it adds inter-
esting features to it. One of them is the behavior of the trans-
mission in the vicinity ofV1. In absence of the spatial dis-
persion, the transmission at this point is exactly equal to
zero, and remains small when the interaction is taken into
account. The interesting fact revealed by the numerical
analysis is that the transmission atV1 decreases with an
increase in the concentration of the defects and nearly ap-
proaches zero at concentrations as small as 3%. This fact can
be understood in light of the transfer-matrix approach: if the
frequencyV1 corresponds to the eigenvalue of the defect’s
transfer matrix, which significantly differs from one, the
transmission will diminish strongly each time the wave en-
counters a defect site, regardless the order in which the de-
fects are located. Numerical results also demonstrated a tran-
sition between two transport regimes: one associated with
resonance tunneling and the other occurring when the reso-
nances spatially overlap and a pass band of extended states
emerges. The transition occurs when the average distance
between the defects becomes equal to the localization length
of the single local state. At the same time the collective
localization length at the peak transmission frequency, char-
acterizing the transport properties of the entire chain, be-
comes equal to the total length of the system. This result
assumes the linear dependence of this collective localization
length upon concentration, which we directly confirm for
small concentrations. Numerical results also showed that the

width of the resonance, which develops into a pass band with
an increase in concentration, does not manifest any transfor-
mation when the character of transport changes. The concen-
tration dependence of the width was found to be extremely
well described by a power law with an exponent approxi-
mately equal to 0.8. The nature of this behavior awaits an
explanation.

APPENDIX: INVARIANT EMBEDDING ALGORITHM
FOR THE TRANSFER-MATRIX EQUATION

In this appendix we develop an invariant embedding ap-
proach to transfer-matrix equations of a general form and
deduce Eqs.~30!–~33! used for Monte Carlo calculations in
our paper. We consider a typical difference equation of the
transfer-matrix method,

un115Tnun , ~A1!

with boundary conditions of a general form:

Gu01HuN5v. ~A2!

Hereun is a vector of an appropriate dimension that charac-
terizes the state of the system at thenth site,Tn is a respec-
tive transfer matrix;G and H are matrices of the same di-
mension as the transfer matrix, together with the vectorv
they specify boundary conditions at the left and right bound-
aries of the system~cites 0 andN, respectively!. The regular
Maxwell boundary conditions and the fixed ends boundary
condition for polarization can be presented in the form Eq.
~A2! with the following matricesG,H, and vectorv:

G5S 1 2 i 0 0

1 2 i 0 0

0 0 1 0

0 0 1 0

D , H5S 1 i 0 0

21 2 i 0 0

0 0 0 1

0 0 0 21

D ,

v5S 2

2

0

0

D . ~A3!

These matrices are singular, but one should not worry about
this, because we will only need to invert their sum, which
has a nonzero determinant. In accordance with the ideas of
the invariant embedding method18 we consider the dynamic
vectorun as a function of the current siten, the length of the
systemN, and the boundary vectorv:

un[u~n,N,v ![S~n,N!v. ~A4!

In the last equation we use the linear nature of Eq.~A1! in
order to separate out the dependence upon the vectorv. Sub-
stituting Eq.~A4! into Eqs.~A1! and ~A2! we have the dy-
namical equation and boundary conditions for the matrixS:

S~n11,N!5Tn3S~n,N!, ~A5!

G3S~0,N!1H3S~N,N!5I , ~A6!
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whereI is a unit matrix. The matrixS(n,N11), which de-
scribes the system with one additional scatterer, obviously
satisfies the same equation~A5! as S(n,N). Relying again
upon the linearity of Eq.~A5! we conclude thatS(n,N) and
S(n,N11) can only differ by a constant~independent ofn)
matrix factorL(N):

S~n,N11!5S~n,N!3L~N!. ~A7!

In order to findL(N) we first substitute Eq.~A7! into bound-
ary conditions Eq.~A6! which yield

L~N!5G3S~0,N11!1H3S~N,N11!. ~A8!

Boundary conditions Eq.~A6! do not change ifN is replaced
by N11, therefore we can write down that

G3S~0,N11!5I 2H3S~N11,N11!. ~A9!

Substituting this expression into Eq.~A8! we have for the
matrix L(N):

L~N!5I 1H3@S~N,N11!2S~N11,N11!#.
~A10!

The quantity S(N11,N11) can be eliminated from this
equation by means of Eq. ~A1!: S(N11,N11)
5TN S(N,N11), and we have forL(N)

L~N!5I 1H3@ I 2T~N!#3S~N,N11!. ~A11!

Substituting this formula into Eq.~A7! we obtain the equa-
tion that governs the evolution of the matrixS(n,N) with the
change of the parameterN:

S~n,N11!5S~n,N!1S~n,N!3H3@ I 2T~N!#

3S~N,N11!. ~A12!

This equation, however, is not closed because of an unknown
matrix S(N,N11). This matrix can be found by settingn
5N in Eq. ~A12!:

S~N,N11!5$I 2S~N,N!3H3@ I 2T~N!#%21S~N,N!.
~A13!

Introducing notation

J~N!5$I 2S~N,N!3H3@ I 2T~N!#%21 ~A14!

the previous expression can be rewritten in the following
compact form:

S~N,N11!5J~N!3S~N,N!. ~A15!

Inserting Eq.~A15! into Eq. ~A12! we finally obtain

S~n,N11!5S~n,N!1S~n,N!3H3@ I 2T~N!#3J~N!

3S~N,N!. ~A16!

This equation still has an unknown quantityS(N,N) which
must be determined separately. We achieve this by combin-
ing the original transfer-matrix equation~A1! and Eq.~A15!
to obtain the following:

S~N11,N11!5TN3J~N!3S~N,N!. ~A17!

Equation~A17! is a nonlinear matrix equation with an initial
condition given by

~G1H !3S~0,0!5I . ~A18!

Equations~30!–~33! of the main body of the paper coincide
with Eqs.~A16!–~A18! with simplifyed notation for the ma-
trix S, where we dropped the second argument. They consti-
tute the complete set of embedding equations for the
transfer-matrix problem. In order to find the transmission
coefficient one has to multiply the matrixS(N,N) by the
boundary vectorv; the first component of the resulting vec-
tor is equal totexp(ikL), wheret is the complex transmission
coefficient. If one is interested in the distribution of the state
vectoru(n,N) throughout the entire system, one has to find
S(N,N) and then to solve Eq.~A16!.

The presented algorithm was proved to be extremely
stable, it produced reliable results for transmission as small
as 10217. This stability is due to the operation of inversion
involved in the calculations@see Eq.~A14!#. This operation
prevents elements of the matrixS to grow uncontrollably in
the course of the calculations.
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