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Control of light diffusion in a disordered photonic waveguide
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We control the diffusion of light in a disordered photonic waveguide by modulating the waveguide

geometry. In a single waveguide of varying cross-section, the diffusion coefficient changes

spatially in two dimensions due to localization effects. The intensity distribution inside the

waveguide agrees with the prediction of the self-consistent theory of localization. Our work shows

that wave diffusion can be efficiently manipulated without modifying the structural disorder.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891757]

The concept of diffusion is widely used to study the

propagation of light through multiple scattering media such

as clouds, colloidal solutions, paint, and biological tissues.1–4

Diffusion, however, is an approximation as it neglects wave

interference effects.5 Most of the scattered waves follow

independent paths and have uncorrelated phases, so their

interference is averaged out. However, a wave may return to

a position it has previously visited after multiple scattering,

and there always exists the time-reversed path which yields

identical phase delay. Constructive interference between the

waves traveling in the time-reversed paths increases the

energy density at the original position, thus suppressing dif-

fusion6 and eventually leading to localization.7 This effect

has been accounted for by a renormalized diffusion coeffi-

cient D in the self-consistent theory of localization.8,9 The

amount of renormalization depends on the return probability,

which is determined by the size of a random medium as well

as the position inside.10–13 We recently reported a direct

observation of the position-dependent diffusion coefficient in

disordered waveguides.14 By changing the waveguide length

and width, we tuned the diffusion coefficient by varying the

strength of wave interference. However, the width of each

waveguide was kept constant, and we switched between the

waveguides to control diffusion.

In this Letter, we fabricate disordered waveguides with

a variable cross-section and thus achieve control of light

transport in the same system. In these structures that we have

designed, it is necessary to account for spatial variation of

diffusion coefficient D in two dimensions (2D) due to the

modulation of the waveguide width. Experimentally we fab-

ricate a random array of air holes in a waveguide geometry

on a silicon wafer, and probe light propagation inside the

2D structure from the third dimension. The measured spatial

distribution of light intensity inside the disordered wave-

guide agrees well with the prediction of the self-consistent

theory of localization.11,13 Instead of changing the degree of

disorder, we demonstrate that the wave diffusion can be

manipulated by changing the geometry (cross-section) of the

random waveguide nanostructures.

The proposed approach of using geometry to control the

interference effects in multiple scattering media is of both a

fundamental and a practical importance. For example, coher-

ent control of the total transmission of light through three

dimensional random media was demonstrated by shaping the

wave front of the input light.15 The degree of such coherent

control is limited by the number of modes that can be con-

trolled. For 2D planar waveguide structures, the overall ge-

ometry can provide additional degree of freedom and can be

used along with wavefront shaping techniques to more effi-

ciently control the total transmission through the random

media. Understanding the effect of geometry on transport

through disordered media is also important to explore new

functionalities of on-chip photonic devices using random

media. For example, a two-dimensional disordered media

has been proposed to provide efficient broad band coupling

of light to a thin film at a wide range of incident angles for

solar cell applications.16 Our experiments demonstrate that

for fixed disordered structures, coherent control of light dif-

fusion in the plane of the film is possible simply by varying

the geometry. In addition, on-chip multiple scattering media

have also been recently applied to spectrometer applica-

tions.17 Studying the effect of geometry of the random struc-

ture is important to enhance the sensitivity and resolution of

such devices.

The disordered waveguides in this experiment were fab-

ricated with a silicon-on-insulator (SOI) wafer where the

thickness of the silicon layer and the buried oxide were

220 nm and 3 lm, respectively. The patterns were written by

electron beam lithography and etched in an inductively

coupled-plasma (ICP) reactive-ion-etcher (RIE). Figure 1 is

a scanning electron microscope (SEM) image of a fabricated

sample. The waveguide contained a 2D random array of air

holes. The hole diameters were 120 nm, and the average

(center-to-center) distance of neighboring holes was about

385 nm. The total length L of the random waveguide was

120 lm, and the waveguide width W was changed from

W1¼ 40 lm to W2¼ 5 lm via a tapered region. The lengths

of wider (W1) and narrower (W2) sections were L1¼ 52 lm

and L2¼ 58 lm, respectively. The tapered section was 10 lm

long, with a tapering angle of 60�. The waveguide walls

were made of a triangular lattice of air holes (lattice constant

440 nm, hole radius 154 nm) that produced a complete 2D

photonic bandgap.

In the optical experiment, we used a lensed fiber to

couple monochromatic light (wavelength� 1500 nm) from a
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tunable CW laser source (HP 8168F) into the waveguide

[Fig. 2(a)]. The polarization of input light was transverse-

electric (TE) (electric field parallel to the waveguide plane).

Light was scattered by the air holes inside the waveguide

and underwent diffusion. The waveguide walls provided in-

plane confinement of the scattered light. However, some of

the light was scattered out of the waveguide plane. This

leakage allowed us to observe light propagation inside the

disordered waveguide from the vertical direction. The spatial

distribution of light intensity across the waveguide was

projected by a 50� objective lens [numerical aperture

(NA)¼ 0.42] onto an InGaAs camera (Xeva 1.7–320).

Figure 2(b) shows a typical optical image from which we

extracted the 2D intensity distribution inside the waveguide

I(y,z).

The ensemble averaging was done over three random

configurations of air holes and 25 input wavelengths equally

spaced between 1500 nm and 1510 nm. The wavelength

spacing was chosen to produce different intensity

distributions. Further averaging was done by slightly moving

the input beam position along the transverse y direction.

Nevertheless, the front surface of the random structures was

always uniformly illuminated by the incident light.

The relevant parameters for light propagation in the dis-

ordered waveguide are the transport mean free path ‘ and the

diffusive dissipation length na. The transport mean free path

‘ depends on the size and density of the air holes. The dissi-

pation mostly comes from out-of-plane scattering as the

silicon absorption at the probe wavelength is negligible. As

shown in our previous work,14 this vertical loss of light can

be treated as dissipation (or absorption) and described by the

characteristic length na ¼
ffiffiffiffiffiffiffiffiffiffi
D0sa

p
, where sa is the ballistic

dissipation time and D0 is the diffusion coefficient without

localization corrections.

There are three main advantages of using the planar

waveguide geometry. First, it allows a precise fabrication of

the designed structure so that the parameters such as the

transport mean free path can be accurately controlled.

Second, we can easily monitor the in-plane diffusion by col-

lecting the out-of-the-plane scattered light. Third, the local-

ization length n can be tuned by changing the waveguide

width W, because n ¼ ðp=2ÞN‘, where N ¼ 2W=ðk=neÞ is

the number of propagating modes in the waveguide, which is

proportional to W. By varying the width of a single wave-

guide, we adjust the strength of the localization effect along

the waveguide. The localization length in the wider section

of the waveguide (W1¼ 40 lm) is 8 times longer than that in

the narrower section (W2¼ 5 lm). Hence, the suppression of

diffusion by wave interference is enhanced approximately 8

times in the narrower section of the waveguide.

For a quantitative description of light transport in a

random waveguide of variable width, we used the self-

consistent theory of localization to calculate the diffusion

coefficient D(y,z) inside the waveguide. The renormalization

of D depends on the return probability, which is position

dependent.10–12 The maximum renormalization happens

inside the random media at a location where the return prob-

ability is the highest, and the renormalization is lowest near

the open boundaries of the random media. As shown below,

the return probability takes the maximum value in the narrow

portion of the structure and not at the geometrical center as

in waveguides with a uniform cross-section. The renormali-

zation of the diffusion coefficient also depends on the

amount of dissipation, which suppresses feedback from long

propagation paths and sets an effective system size beyond

which the wave will not return.18,19

In order to compare the experimental results with the

self-consistent theory, we computed D(y,z) using the com-

mercial package Comsol Multiphysics after setting the

values of the transport mean free path ‘ and the diffusive dis-

sipation length na. First, the return probability was calculated

at every point in the waveguide.13 This was done by moving

a point source throughout the structure and by calculating

the light intensity at the source for each source position. This

intensity was taken as the return probability which was then

used to renormalize D(y,z). The modified D(y,z) was then

used to recalculate the return probability. Several iterations

of this procedure were performed until the changes in D(y,z)

between iterations became small enough to be negligible.

FIG. 1. Top-view SEM image of a quasi-2D disordered photonic waveguide.

Light is injected from the left end of the waveguide and incident onto the

random array of air holes. The waveguide wall is made of a triangle lattice

of air holes which forms a 2D photonic bandgap to confine light inside the

waveguide. The width of the random waveguide is changed gradually from

40 lm to 5 lm through a tapered region.

FIG. 2. (a) A schematic of the experimental setup. A lensed fiber couples

the light to the structure and another 50� objective lens (NA¼ 0.42) collects

the light scattered by the air holes out of the waveguide plane and projects

onto a camera. (b) Optical image of the intensity of light scattered out-of-

plane from the disordered waveguide. The wavelength of the probe light is

1505 nm.
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Once we obtained the final value of D(y,z), it was used to

calculate the intensity I(y,z) inside the waveguide.

The calculation of D(y,z) was repeated for various com-

binations of ‘ and na until the calculated I(y,z) matched the

measured intensity distribution. The parameters that gave the

best agreement were ‘¼ 2.9 lm and na¼ 35 lm. Figure 3(a)

plots the calculated return probability, which is greatly

enhanced by the stronger transverse confinement (along the y
direction) in the narrower section of the waveguide.

Consequently, the renormalized diffusion coefficient D(y,z),

shown in Fig. 3(b), reaches the minimum value close to the

middle of the narrower section. Note that in the tapered

region, D changes not only along z but also along y. The

smaller D near the boundary is attributed to the enhancement

of return probability due to reflection from the photonic crys-

tal wall. Figure 3(c) shows the spatial distribution of in-plane

diffusive light intensity I(y,z) inside the waveguide.

From the experimentally measured I(y,z), we computed

the cross-section integrated intensity ItðzÞ ¼
ÐWðzÞ=2

�WðzÞ=2
Iðy; zÞdy

and the cross-section averaged intensity IvðzÞ ¼ ItðzÞ=WðzÞ.
The former quantity is proportional to the z-component of

total energy flux through the cross-section of the waveguide,

while the latter quantity, Iv(z), is related to the energy density.

As shown in Fig. 4(a), It(z) decays more slowly with z in

the wider section of the waveguide than in the narrower one.

The narrowing of the waveguide width leads to a sharp drop

of It (energy flux), as part of the diffusive light is reflected

back. The dashed curve in Fig. 4(a) is the calculated It(z)

using self-consistent theory, which agrees well with the ex-

perimental data. The inset of Fig. 4(a) plots the experimental

data of Itð~zÞ for the wider (dashed line) and narrower
sections (solid line) on top of each other. The maximum

intensity of both cases are normalized to 1. For the wider

section, ~z ¼ z=L1 and for the narrower section, ~z
¼ ðz� ðL1 þ 10ÞÞ=L2. We can clearly see the difference in

the exponential decay (slope) of Itð~zÞ for the two cases. This

difference can be attributed to two factors: (i) reflection from

the boundary of the tapered region and (ii) enhanced local-

ization effect in the narrower section of waveguide.

Reflection only modifies the decay in the wider section of

the waveguide. However, this modification is only dominant

towards the end of the wider section as can be seen by a flat-

tening of It(z) near z¼ 50. From the experimental data (see

inset of Fig. 4(a)), we observe that the decays of the wider

and narrower section are different from the beginning (i.e.,

~z � 0:1). This is a clear indication of the finite size effects or

enhanced localization effect in the narrow section of the

waveguide. In the absence of localization effects, the inten-

sity decays for both sections will be similar till at least

~z � 0:5, beyond which the decay in the wider section will be

slightly reduced due to reflection from the boundary of the

tapered section.

Figure 4(b) plots the measured Iv(z) together with the

calculated one. Similar to previous case, Iv(z) also decays

more slowly with z in the wider section of the waveguide

than in the narrower one. Again we see a good agreement

except at z� 60 lm. The optical image [Fig. 2(b)] reveals

that near the photonic crystal wall of the tapered section, the

abrupt backward scattering leads to the formation of a stand-

ing wave, thus the intensity is enhanced compared to the

FIG. 3. (a) Calculated return probability in the disordered waveguide shown

in Fig. 1. ‘ ¼ 2:9lm and na ¼ 35lm. (b) 2D renormalized position depend-

ent diffusion coefficient D(y,z)/D0 for the same structure as in (a). (c)

Intensity distribution I(y,z)/I0 inside the random structure obtained from

D(y,z)/D0 in (b).

FIG. 4. (a) Comparison of the measured cross-section integrated intensity

It(z) of the entire structure (solid blue line) to numerical calculations based

on self-consistent theory (dashed red line). The inset plots the measured

Itð~zÞ for both the wider (dashed line) and narrower (solid line) sections of

the waveguide on top of each other. ~z ¼ z=L1 for the wide section and

~z ¼ ðz� ðL1 þ 10ÞÞ=L2 for the narrow section. In the inset, for both cases,

Itð~zÞ is normalized to 1 to demonstrate the clear difference in the exponential

decay rate (slope). (b) Measured cross-section averaged intensity Iv(z) (solid

blue line) in comparison with the results of self consistent theory (dashed

red line). The vertical dotted lines in (a) and (b) marks the starting point and

the end point of the tapered region.
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diffusive prediction. The spatial extent of this effect is deter-

mined by the transport mean free path ‘ beyond which the

direction of the reflected wave is randomized. The inherent

inability of a diffusive description to describe transport on

scales shorter than ‘ explains the deviation of the experimen-

tally measured intensity from the theoretical prediction, as

exhibited in Fig. 4(b) by a small bump at z� 60 lm.

In conclusion, we demonstrated an effective way of

manipulating light diffusion in a disordered photonic wave-

guide. Instead of changing the degree of structural disorder,

we varied the waveguide geometry (its cross-section). By

modulating the width in a single waveguide, we manipulated

the interference of scattered light and made the diffusion

coefficient vary spatially in two dimensions. We measured

the intensity distribution inside the quasi-2D random struc-

tures by probing from the third dimension and the experi-

mental results agreed well with the predictions of the

self-consistent theory of localization. Although, the experi-

ments in this work were done with light, the outlined

approach to control diffusion is also applicable to other types

of waves, such as acoustic waves, microwaves, and the de

Broglie waves of electrons.
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