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Distortional Buckling of Cold-Formed Steel Flanges 
Under Stress Gradient 

 
Robert S. Glauz, P.E.1 

 
Abstract 
 
The strength of cold-formed steel beams with stiffened flanges may be controlled 
by distortional buckling. Buckling stress prediction methods have been developed 
for flanges under uniform compression. However, channel sections are commonly 
used where bending occurs about the minor axis with flanges under stress 
gradient, such that the edges are in compression and the flanges may experience 
distortional buckling. Current design specifications do not explicitly address this 
failure mode, which could lead to unsafe designs. This paper presents and verifies 
an analytical approach for distortional buckling stress prediction for flanges under 
stress gradient. The approach is consistent with the design method used for flanges 
under uniform compression to facilitate straightforward incorporation into design 
specifications. 
 
Introduction 
 
Distortional buckling is a potential failure mode for cold-formed steel members 
of open cross-sections, where an entire stiffened compression flange becomes 
unstable. Analytical methods for predicting this complex behavior have been 
developed for compression members by Lau and Hancock (1987) and extended 
to flexural members by Hancock (1995, 1997). Subsequent work by Schafer and 
Peköz (1999), Schafer (2002), and Schafer et al. (2006) provided more rigorous 
treatments for distortional buckling strength prediction. 
 
The American Iron and Steel Institute (AISI) Specification for the design of cold-
formed steel structural members (AISI 2016) supports two methods of predicting 
the elastic distortional buckling stresses of stiffened flanges. Numerical methods 
such as finite strip analysis provide elastic buckling solutions for any general case, 
but require specialized software not yet widely used in cold-formed steel design.  
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AISI also provides analytical solutions which permit the direct (although 
complex) calculation of distortional buckling stress predictions, based on the work 
by Schafer et al. (1999, 2002, 2006). Currently, these hand methods are given for 
compression members, and for flexural members having a flange under uniform 
compression. They are commonly used for channel section studs, girts, and joists. 
 
Channels, hat sections, and many custom shapes can experience bending about 
the axis perpendicular to the flange, which may also be subject to distortional 
buckling. Figure 1(a) illustrates distortional buckling for major axis bending, 
where the flange has uniform compression. Figures 1(b) and 1(c) show examples 
of minor axis bending with the flanges under stress gradient. 
 

 
 (a) (b) (c) 

 
Figure 1. Distortional buckling of flanges under major and minor axis bending 

 
Teng et al. (2003) studied distortional buckling behavior for channel section 
beam-columns with particular attention to bending in the plane of symmetry. This 
theoretical work provided a complex analytical approach and requires iteration on 
the half-wavelength to establish the critical buckling moment. 
 
The lack of a direct hand solution for these minor axis bending cases may result 
in oversight by the engineer of this potential distortional buckling failure mode. 
This paper presents an analytical method for the prediction of elastic distortional 
buckling stresses for flanges under stress gradient, with verification against 
numerical solutions permitted by the AISI Specification. 
 
Distortional Buckling Prediction 
 
Distortional buckling involves primarily rotation of the flange and distortion of 
the web. Prediction of the elastic distortional buckling stress requires analysis of 
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the flexural-torsional buckling behavior of the flange, combined with the 
rotational resistance provided by the web. The method used in Schafer and Peköz 
(1999) was to analyze the flange as a column and the web as a finite strip element. 
The same approach is extended here for the case of a flange under a stress 
gradient. 
 
The rotational stiffness demanded by the flange involves an elastic rotational 
stiffness component (kϕfe) and a stress-dependent geometric rotational stiffness 
component (k̃ϕfg), which takes the form shown in Eq. 1. This is the negative of 
the stiffness provided by the flange. The rotational stiffness provided by the web 
also involves an elastic rotational stiffness component (kϕwe) and a stress-
dependent geometric rotational stiffness component (k̃ϕfg), as shown in Eq. 2. 
 
 kϕf = k̃ϕfgfcrd − kϕfe (1) 
 kϕw = kϕwe − k̃ϕwgfcrd (2) 
 
Equating the rotational stiffness demanded by the flange to the rotational stiffness 
provided by the web gives the critical distortional buckling stress of the 
flange/web system. 
 fcrd =

kϕfe+kϕwe

k̃ϕfg+k̃ϕwg
 (3) 

 
Flange Rotational Stiffness 
 
The flange is analyzed as a beam-column as illustrated in Figure 2. The 
flange/web juncture at h is resisted rotationally by a spring of stiffness kf, and is  

 
Figure 2. Flange under stress gradient 
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supported in the direction of the web with force Ry. An axial force P is applied at 
point e, producing the stress distribution equivalent to bending about the 
centroidal y axis of the entire section. 
 
The centroid of the flange is identified as cg, the shear center of the flange is at o, 
and the extreme compression fiber of the flange is at c. The differential equations 
of equilibrium are: 
 
 EIyfu

′′′′ + EIxyfv
′′′′ + Pu′′ + P(yo − ey)ϕ′′ = 0 (4) 

 EIxfv
′′′′ + EIxyfu

′′′′ + Pv′′ − P(xo − ex)ϕ′′ − Ry = 0 (5) 
 ECwfϕ

′′′′ − (GJf − 2βyfPey − 2βxfPex −
Iof

Af
P) ϕ′′ 

+ P(yo − ey)u′′ − P(xo − ex)v′′ + Ry(xo − xh) + kϕfϕ = 0 (6) 
 
where Af, Ixf, Iyf, Ixyf, Iof, Cwf, Jf, xf, and yf are section properties of the flange. 
The following shape functions are assigned, consistent with a simply supported 
column: 
 
 ϕ = A1 sin

πz

L
,      u = A2 sin

πz

L
,      v = (xo − xh)A1 sin

πz

L
 (7a,b,c) 

 
The stresses f1 and f2 can be expressed in terms of P, ex, and flange section 
properties as shown in Eq. 8. It is also convenient to define expressions for flange 
stress gradient f and flange stress ratio f. 
 
 f1 =

P

Af
+

Pexxc

Iyf
,      f2 =

P

Af
+

Pexxh

Iyf
 (8a,b) 

 ξf = (f1 − f2)/f1 (9) 

 ψf =
fcg

f1
= 1 − ξf

xc

xc−xh
 (10) 

 
From these relationships, the applied axial force and moments can be stated as: 
 
 P = Afψff1,      Pex =

Iyf

xc−xh
ξff1,      Pey =

Ixyf

xc−xh
ξff1 (11a,b,c) 

 
Substituting the shape functions from Eq. 7 into Eq. 4 provides a relationship 
between the magnitudes of translation (u) and rotation () shown in Eq. 12. The 
denominator consists of an Euler buckling term and the flange load P. This flange 
load is generally much less than the flange buckling load about the y axis, and can 
be neglected to simplify the solution. 
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 A2

A1
=

π2

L2EIxyf(xo−xh)−Afyoψff1+
Ixyf

xc−xh
ξff1

π2

L2EIyf−Afψff1

 (12) 

 
Eq. 5 provides an expression for Ry which can be substituted into Eq. 6. Then 
substituting the shape functions from Eq. 7 into the result, utilizing Eq. 12 with 
the simplified denominator, and neglecting the f1² terms produces an expression 
for kf in the form of Eq. 1. The resulting rotational stiffness components are: 
 

 kϕfe =
π4

L4 [ECwf + EIxf(xo − xh)2 (1 −
Ixyf
2

IxfIyf
)] +

π2

L2 GJf (13) 

 
 k̃ϕfg =

π2

L2 [Ixf + Iyf + Af(yo
2 + xh

2) − 2Afyo(xo − xh)
Ixyf

Iyf
] ψf  

 +
π2

L2 [2Iyf (
βxf+xo−xh

xc−xh
) + 2Ixyf (

βyf+(xo−xh)Ixyf/Iyf

xc−xh
)] ξf (14) 

 
Eq. 13 is identical to that used in the AISI Specification. A special case of Eq. 14 
with uniform compression on the flange, where f = 1 and f = 0, is shown as 
Eq. 15. This is the same as the equation in the AISI Specification, except one 
negligible term is omitted here due to the simplification made using Eq. 12. 
 
 k̃ϕfg =

π2

L2 [Ixf + Iyf + Af(yo
2 + xh

2) − 2Afyo(xo − xh)
Ixyf

Iyf
] (15) 

 
The properties xf and yf can be difficult to calculate for complex flanges, so it 
is beneficial to make some simplifying approximations if the error is small. For a 
typical flange as shown in Figure 2, xf + xo – xh is generally slightly less than 
0.5(xc – xh), and the Ixyf term is small relative to the Iyf term. From these 
observations, Eq. 14 can be simplified to the following with reasonable accuracy: 
 
 k̃ϕfg =

π2

L2 [Ixf + Iyf + Af(yo
2 + xh

2) − 2Afyo(xo − xh)
Ixyf

Iyf
] ψf +

π2

L2 Iyfξf (16) 

 
Web Rotational Stiffness 
 
Utilizing the same approach as Schafer and Peköz (1999), the rotational resistance 
provided by the web is derived using a single finite strip as shown in Figure 3. For 
the common case of a symmetrical channel or hat section, the web is under 
uniform tension where f3 = f2 and 2 = –1.  
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Following the same development, M1 and M2 are the nodal moments calculated 
by Eq. 17 and Eq. 18, using the stiffness coefficients for a finite strip as defined 
in Cheung (1976). The following stiffness coefficient equivalencies are also 
recognized: k24e = k42e, k24g = k42g, k22e = k44e. 
 

 
Figure 3. Web finite strip 

 
 M1 = (k22e − k22g)θ1 + (k24e − k24g)θ2 (17) 
 M2 = (k42e − k42g)θ1 + (k44e − k44g)θ2 (18) 
 
For the symmetrical case, the rotational stiffness provided by the web is straight-
forward, and separation into the elastic stiffness and geometric stiffness 
components is evident. 
 
 M1 = (k22e − k22g)θ1 − (k24e − k24g)θ1 =

L

2
kϕwθ1 (19) 

 kϕwe =
2

L
(k22e − k24e) (20) 

 kϕwg =
2

L
(k22g − k24g) (21) 

 
Incorporating the expressions for the stiffness coefficients using Poisson’s ratio 
for steel of 0.3 provides the following relationships: 
 

 2

L
k22e =

Et3

12h(1−μ2)
[4 +

4

15
(

πh

L
)

2

+
1

105
(

πh

L
)

4

] (22) 

 2

L
k24e =

Et3

12h(1−μ2)
[2 −

1

15
(

πh

L
)

2

−
1

140
(

πh

L
)

4

] (23) 

 2

L
k22g =

π2th3

1680L2
[10 + 6(1 − ξw)]f2 (24) 

 2

L
k24g = −

π2th3

1680L2
[6 + 6(1 − ξw)]f2 (25) 
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The web stress gradient w is defined as (f2 – f3) / f2, and is zero for the 
symmetrical case. The stress f2 can be expressed as (1 – f)f1. The resulting 
stiffness components are then given as: 
 

 kϕwe =
Et3

6h(1−μ2)
[1 +

1

6
(

πh

L
)

2

+
1

120
(

πh

L
)

4

] (26) 
 
 k̃ϕwg =

π2

L2

th3

60
(1 − ξf) (27) 

 
Critical Buckling Length 
 
The rotational stiffness components derived for the flange and web are functions 
of the half-wavelength L, as shown in condensed form below. Substituting these 
into the critical buckling stress Eq. 3 results in Eq. 30. 
 
 kϕfe = C1L−4 + C2L−2,      k̃ϕfg = C3L−2 (28a,b) 
 
 kϕwe = K1 + K2L−2 + K3L−4,      k̃ϕwg = K4L−2 (29a,b) 
 
 fcrd =

C1L−2+C2+K1L2+K2+K3L−2

C3+K4
 (30) 

 
Setting the derivative equal to zero provides the buckling length at which the 
buckling stress is minimized. Substituting the appropriate terms for C1, K3, and 
K1 gives the critical buckling length as Eq. 32. 
 

 dfcrd

dL
=

−2C1L−3+2K1L−2K3L−3

C3+K4
= 0 ⟶  Lcrd = (

C1+K3

K1
)

1/4 

 (31) 
 

 Lcrd = πh {
6(1−μ2)

t3h3 [Cwf + Ixf(xo − xh)2 (1 −
Ixyf
2

IxfIyf
)] +

1

120
}

1/4

 (32) 

 
Web in Tension 
 
Numerical analyses of various sections with flanges under stress gradient revealed 
that the web depth, h, has little influence on either the critical buckling length or 
the elastic buckling stress. The above derived equations did not reflect that trend 
and overestimated the buckling stress. 
 
Figure 4(a) shows the relationship between rotational stiffness and longitudinal 
strain based on a single finite strip, for h/t = 80 and various values of h/L. The 
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rotational stiffness is quantified as the dimensionless kwh/D, where D is the plate 
rigidity Et³/12(1–²). Teng et al. (2003) developed a more comprehensive solution 
for the web rotational stiffness based on the plate theory work by Timoshenko 
(1959). Figure 4(b) plots this solution and illustrates how the rotational stiffness 
is much different from the single finite strip simplification in the tension region. 
 

 
 

 
Figure 4. Web rotational stiffness: (a) Finite strip model (b) Teng et al. solution 

 
The direct solution approach utilizing Eq. 3 requires a linear relationship between 
stress and stiffness in the tension region. At first glance, a linear approximation 
seems feasible, although the stiffness equation is quite complex. 

(b) 

(a) 
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 kϕw =
D

h

2αβ[1+tanh2(α/2) tan2(β/2)]

α[1−tanh2(α/2)] tan(β/2)+β[1+tan2(β/2)] tanh(α/2)
 (33) 

 

where α =
π

√2

h

L
[1 + √1 + K(L h⁄ )2]

1/2

 (34) 

 β =
π

√2
√K [1 + √1 + K(L h⁄ )2]

−1/2

 (35) 

 K = −
th2f

π2D
 (36) 

 
Some simplification can be achieved by observing the stiffness relationship where 
 is a multiple of  (=n). For even values of n, tan(/2) vanishes. For odd values 
of n, 1/tan(/2) vanishes. Then the following relationships exist: 
 
 α =

πh

2nL
√K = nπ√1 + (h/nL)2 (37) 

 
 f =

−4π2n4L2D

th4 [1 + (h/nL)2] (38) 
 
 kϕw =

D

h
2α tanh±1(α/2) ≅

D

h
2α =

D

h
2nπ√1 + (h/nL)2 (39) 

 
 k̃ϕwg = −

dkϕw

df
≅

kϕw

4f
 (40) 

 
For /2 > , the hyperbolic tangent is nearly 1 and the approximation used in 
Eq. 39 is applicable. As n increases, the stiffness becomes proportional to Dn/h, 
and utilizing Eq. 38, it becomes proportional to t5/2L-1/2E3/4f1/4. The stiffness is 
independent of h, which agrees with findings from numerical analyses. The 
geometric stiffness can be determined as the derivative with respect to stress, and 
the same approximations have been applied in Eq. 40. The geometric stiffness 
therefore becomes proportional to t5/2L-1/2E3/4f -3/4, and is also independent of h.  
To establish a linear relationship, a representative stress must be chosen, and error 
increases as the stress deviates from the chosen value. 
 
At lower stresses (<) and for determining the elastic stiffness (at =0), the 
above approximations cannot be used. It is observed in Figure 4(b) that for larger 
h/L values, the stiffness increases roughly proportional to h/L, and the slopes are 
roughly parallel. This complicates the direct calculation of the critical buckling 
length. In place of Eq. 29, the forms kϕwe=K1+K2L–1 and k̃ϕwg=K4L-1/2 or 
k̃ϕwg=K4 produce a higher order polynomial for Lcrd which prevents a direct 
solution. Due to these complications, an entirely different approach was pursued. 
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Since the web depth has little influence on the critical buckling length, an effective 
web depth can be back-calculated for a given flange configuration using Eq. 32 
with the critical buckling length from numerical analysis. This effective web 
depth can then be used in Eq. 26 to determine kwe (at zero stress). For a web in 
tension, the geometric stiffness is relatively small and can conservatively be 
approximated as zero. This is particularly true for small h/L which was generally 
the case for the effective web depth. 
 
A method of estimating the effective web depth is required. Parametric analysis 
showed that the effective web depth correlates predominantly with the size of the 
flange. Various measures of flange size were evaluated and the best prediction 
utilized the radius of gyration of the flange about the axis of the web. An effective 
web depth of 3.5 times this radius of gyration provided good results. 
 

 h = 3.5√
Iyf

Af
+ xh

2 (41) 

 
Web under Stress Gradient 
 
Some shapes can experience stress gradients in both the flange and web, such as 
those in Figure 5. It is therefore important to understand how the web stress 
gradient affects these distortional buckling predictions. 
 

 
Figure 5. Shapes having web under stress gradient 

 
The derivations above for the web rotational stiffness components relied on 
symmetry and uniform stress. For a web under stress gradient, an approximation 
could be made by carrying the w terms from Eq. 24 and 25 into Eq. 27. This 
results in a multiplier of (1 −

3

7
ξw), which is only accurate for symmetrical 

buckling where 2 = –1. The equations shown in Table 1 demonstrate that as the 
magnitude of 2 decreases, the elastic stiffness increases, and the geometric 
stiffness may decrease or increase depending on the signs of (2 – w) and (1 – f). 
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Table 1: Relationship between node rotation and web stiffness 

2/1 kϕwe k̃ϕwg 

–1.0 
Et3

12h(1 − μ2)
[2 +

10

30
(

πh

L
)

2

+
14

840
(

πh

L
)

4

] π2

L2

th3

1680
[4 + 12(2 − ξw)](1 − ξf) 

–0.5 
Et3

12h(1 − μ2)
[3 +

9

30
(

πh

L
)

2

+
11

840
(

πh

L
)

4

] π2

L2

th3

1680
[4 + 9(2 − ξw)](1 − ξf) 

0 
Et3

12h(1 − μ2)
[4 +

8

30
(

πh

L
)

2

+
8

840
(

πh

L
)

4

] π2

L2

th3

1680
[4 + 6(2 − ξw)](1 − ξf) 

 
Incorporating the relative node rotation into concise equations for the rotational 
stiffness components is challenging. Consider the web behavior where only one 
flange buckles. The moment M2 in Eq. 18 is zero and the rotation relationship is: 
 
 θ2 =

−(k42e−k42g)

(k44e−k44g)
θ1 (42) 

 
The solution requires some simplification and approximation to be useful. Schafer 
and Peköz (1999) used a rational approach, but alternate approaches may offer 
some improvements. Substituting Eq. 42 into Eq. 19 gives Eq. 43, where the 
elastic component at zero stress is Eq. 44. 
 
 kϕw =

2

L
[(k22e − k22g) −

(k24e−k24g)2

k22e−k44g
] (43) 

 kϕwe =
2

L
(k22e −

k24e
2

k22e
) (44) 

 
Simplification is realized using polynomial division with Eq. 23 squared and 
Eq. 22 to produce Eq. 45. The last term was adjusted to compensate for dropped 
higher order terms. The resulting Eq. 46 closely matches Eq. 44 for h/L values 
less than 2. 
 

 2

L

k24e
2

k22e
=

Et3

12h(1−μ2)
[1 −

2

15
(

πh

L
)

2

+
3

560
(

πh

L
)

4

] (45) 

 kϕwe =
Et3

4h(1−μ2)
[1 +

2

15
(

πh

L
)

2

+
1

720
(

πh

L
)

4

] (46) 
 
For the geometric stiffness, it can be assumed that k44g << k22e at the stresses of 
interest, and can be neglected. Then disregarding the k24g

2  stress term reduces the 
geometric stiffness to Eq. 47, which permits direct derivation of Eq. 48. 

47



 
 kϕwg =

2

L
(

k22ek22g−2k24ek24g

k22e
) (47) 

 

 k̃ϕwg =
π2

L2

th3

1680
[4 +

5040+84(
πh

L
)

2
−3(

πh

L
)

4

420+28(
πh

L
)

2
+(

πh

L
)

4 (2 − ξw)] (1 − ξf) (48) 

 
For many cases, Eq. 48 is more accurate than the current AISI equation. But for 
large values of h/L (greater than 2), Eq. 48 produces more error. The minimum 
value of Lcrd is πh/ √720

4 , or h/L < 1.65, so the above equation is quite suitable. 
But an alternative is to simplify the AISI equation by dropping a negligible w 
term and using the form: 
 

 k̃ϕwg =
π2

L2

th3

240
[

1920−810ξw+8(
πh

L
)

2
+(

πh

L
)

4

420+28(
πh

L
)

2
+(

πh

L
)

4 ] (1 − ξf) (49) 

 
It should also be noted that sections with sloped webs as in Figure 5 require the 
flange stiffness components to be determined using a local x axis for the flange 
which is perpendicular to the web. This ensures that the equations of equilibrium 
(4-6) for the flange are still satisfied. 
 
Verification 
 
Distortional buckling predictions using the analytical equations developed above 
were compared to numerical analysis results for a variety of sections. The AISI 
Specification permits the use of numerical methods, so it is important for the 
analytical method to produce similar results. The verifications performed in this 
study used the finite strip method (FSM) in the CFS® software for comparison. 
 
The first set of verifications used symmetrical channel sections having flanges 
with simple lip stiffeners. Table 2 enumerates the geometry for 60 sections with 
a material thickness of 1 mm (0.0394 in). This is the same set of sections used in 
the Schafer and Peköz (1999) study. 
 
Table 3 summarizes the results of the verifications using three sets of equations 
for the stiffness components. Equation set 1 uses the derived equations in 
unaltered form, which revealed the flaws in using a single finite element for a web 
in tension. Equation set 2 applies the effective web depth concept and uses 
k̃ϕwg = 0. Equation set 3 uses the simplified form for k̃ϕfg in Eq. 16, which resulted 

48



in a more accurate average Fpred and an improved standard deviation. This 
equation set was then used for verifying other sections. 
 

Table 2: Simple lip section dimensions 
Web 
(mm) 

Flange 
(mm) 

Lip 
(mm) 

 
(deg) 

50 25 6.25, 12.5 45, 90 
100 25 6.25, 12.5 45, 90 

 50 6.25, 12.5, 25 45, 90 
150 25 6.25, 12.5 45, 90 

 50 6.25, 12.5, 25 45, 90 
 75 6.25, 12.5, 25, 37.5 45, 90 

200 25 6.25, 12.5 45, 90 
 50 6.25, 12.5, 25 45, 90 
 75 6.25, 12.5, 25, 37.5 45, 90 
 100 6.25, 12.5, 25, 37.5, 50 45, 90 

 
Table 3: Performance of distortional buckling prediction equations 

  
Simple Lip Stiffener 

Intermediate 
Stiffener 

Complex 
Stiffener 

Web 
Hole 

Equation Set: 1 2 3 3 3 3 
kϕfe  Eq. 13 Eq. 13 Eq. 13 Eq. 13 Eq. 13 Eq. 13 
k̃ϕfg  Eq. 14 Eq. 14 Eq. 16 Eq. 16 Eq. 16 Eq. 16 
kϕwe  Eq. 26 Eq. 26a Eq. 26a Eq. 26a Eq. 26a Eq. 26a 
k̃ϕwg  Eq. 27 0 0 0 0 0 
Fpred/FFSM 1.437 0.918 0.940 0.987 0.961 0.922 
Std Dev 0.719 0.069 0.048 0.036 0.067 0.050 

 a using Eq. 41 for h  
 

 
Figure 6. Intermediate stiffener geometry 

 
The sections in Table 2 were analyzed with intermediate flange stiffeners. Figure 
6 illustrates the geometry of the stiffener at the middle of the flange, where the 
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depth of the stiffener is half the lip length. The same equation set 3 produced good 
results with an average ratio to FSM near 1.0 and a low standard deviation. 
 
A variety of complex flange stiffeners are often used to enhance the stability of 
the lip, such as those shown in Figure 7. These shapes are also susceptible to 
distortional buckling when bending about the minor axis. Equation set 3 was 
utilized again for these shapes, where two flange lengths and two web depths were 
considered for each. The predictions for these 32 sections also produced good 
results with a slightly conservative average ratio and a satisfactory standard 
deviation, as shown in Table 3. 
 

 
Figure 7. Complex stiffener examples 

 
The AISI Specification has provisions for reducing the distortional buckling stress 
for webs with holes. The method is to reduce the effective thickness of the web 
based on the hole length and the distortional buckling half-wavelength. This 
approximation is applied to both numerical and analytical methods for flanges 
under uniform compression. It is important to check this method as applied to 
flanges under stress gradient. 
 
Each of the sections in Table 2 was analyzed with a web hole having a width of 
¼ the web depth and a length of 50 mm (1.97 in). The results compared to FSM 
are listed in Table 3, where the average ratio was slightly more conservative and 
the standard deviation was similar to that for the sections without the holes. The 
analytical approach provides similar results to FSM using the same web thickness 
approximation. 
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A separate set of verifications were performed with the sections in Table 2 for 
bending about the major axis. The objective was to identify the equation set best 
suited for this prediction. Table 4 summarizes the results of these analyses.  
 

Table 4: Prediction equation comparison for major axis bending 
Equation Set: 1 2 3 4 5 6 

kϕfe  2.3.1.3-3a 2.3.1.3-3a 2.3.1.3-3a 2.3.1.3-3a 2.3.1.3-3a 2.3.1.3-3a 
k̃ϕfg  2.3.1.3-5a Eq. 15 Eq. 15 Eq. 15 Eq. 15 Eq. 16 
kϕwe  2.3.3.3-5a 2.3.3.3-5a Eq. 46 Eq. 46 Eq. 46 Eq. 46 
k̃ϕwg  2.3.3.3-6a 2.3.3.3-6a 2.3.3.3-6a Eq. 49 Eq. 48 Eq. 49 
Fpred/FFSM 0.925 0.948 0.967 0.966 0.982 0.987 
Std Dev 0.096 0.086 0.097 0.096 0.106 0.087 

 a AISI (2016) Equation 
 
Equation set 1 represents the current AISI provisions. Equation set 2 implements 
Eq. 15 for k̃ϕfg, which improves the average prediction and reduces the standard 
deviation. Equation set 3 incorporates Eq. 46 for kϕwe, which also improves the 
prediction but with a slightly higher standard deviation. Equation set 4 utilizes Eq. 
49 for k̃ϕwg which is a minor simplification to the AISI equation without loss of 
accuracy. 
 
Equation set 5 uses Eq. 48 in place of Eq. 49, which improves the average 
prediction but with a slightly higher standard deviation. Finally, equation set 6 is 
the same as equation set 4, but uses Eq. 16 to adjust k̃ϕfg for the stress at the 
centroid of the flange. This provides the greatest accuracy but adds complexity. 
 
Impact on Design 
 
The lack of specific distortional buckling provisions for minor axis bending makes 
it unlikely this failure mode is considered in common design practice. A study 
was performed to determine the impact of distortional buckling on the design 
strength, which is summarized in Table 5. 
 
The Steel Stud Manufacturers Association (SSMA) publishes a technical guide 
(2015) containing standardized stud shapes with web holes. These shapes were 
analyzed using equation set 3 as defined in Table 3 to determine the minor axis 
elastic distortional buckling bending stress. The AISI (2016) provisions were then 
used to calculate the nominal flexural strength Mnd. This was compared to the 
nominal minor axis flexural strength for yielding and local buckling Mnlo. 
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Table 5: Impact on SSMA structural studs 
 Grade 33 Grade 50 

Number of sections  241 189 
Sections controlled by Mnd 169 161 
Average Mnd/Mnlo 0.834 0.789 
Minimum Mnd/Mnlo 0.701 0.617 

 
About ¾ of the sections were controlled by distortional buckling, and of those the 
average strength reduction was nearly 20%. Several sections had a strength 
reduction of more than 25%. The Grade 50 sections were impacted more than the 
Grade 33 sections. These results demonstrate the need to explicitly address this 
failure mode in design specifications. 
 
Conclusions 
 
Distortional buckling can be a controlling failure mode for minor axis bending of 
channel sections, hat sections, and many other shapes, where a stress gradient 
exists in the flanges. Current design specifications do not explicitly address this 
buckling mode, which could result in unsafe designs. 
 
An analytical method was developed to predict the elastic distortional buckling 
stress. The method was verified for simple lip stiffeners, intermediates stiffeners, 
complex stiffeners, and perforated webs. Comparisons were made to finite strip 
solutions with reliable results. 
 
This analytical approach is consistent with other AISI distortional buckling 
provisions, permitting a clean implementation for bending about the axis 
perpendicular to the flange. The flange/web rotational stiffness components 
defined as equation set 3 in Table 3 are recommended for inclusion in the AISI 
Specification. 
 
In addition, the current AISI equations for distortional buckling of flexural 
members bending about the axis perpendicular to the web were reviewed. Some 
opportunities for simplification and improvement in accuracy were identified. The 
flange/web rotational stiffness components defined as equation set 4 in Table 4 
are recommended as modifications to the current AISI provisions. 
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Notation 
 
Af Cross-sectional area of flange 
Cwf Torsional warping constant of flange 
E Modulus of elasticity 
ex, ey Eccentricity of axial force in the x and y directions 
f1 Bending stress at extreme compression fiber of flange 
f2 Bending stress at flange/web juncture 
f3 Bending web stress opposite the flange/web juncture 
fcg Bending stress at centroid of flange 
fcrd Critical distortional buckling stress 
G Shear modulus of elasticity 
h Web depth 
Iof Polar moment of inertia of flange about x and y axes 
Ixf, Iyf Moment of inertia of flange about x and y axes 
Ixyf Product of inertia of flange about x and y axes 
Jf Saint-Venant torsion constant for flange 
kf Rotational stiffness demanded by the flange 
kfe, k̃ϕfg Elastic and geometric components of flange rotational stiffness 
kw Rotational stiffness provided by the web 
kwe, k̃ϕwg Elastic and geometric components of web rotational stiffness 
kije, kijg Finite strip coefficients for elastic and geometric stiffness 
L Distortional buckling half-wavelength 
M1, M2 Nodal moments at edges of web finite strip 
P Axial force on flange producing stress gradient 
Ry Reaction force on flange provided by web at flange/web juncture 
u, v Flange buckling displacement in x and y directions 
 Flange buckling angle of twist 
xc x coordinate of extreme compression fiber of flange relative to 

flange centroid 
xh x coordinate of flange/web juncture relative to flange centroid 
xof, yof Coordinates of shear center of flange relative to centroid of flange 
xf, yf Geometric properties of flange cross-section used for beam-column 

flexural-torsional buckling determination 
 Poisson’s ratio 
1, 2 Node rotations at edges of web finite strip 
f Flange stress gradient 
w Web stress gradient 
f Flange stress ratio 
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