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ABSTRACT Edge computing recently is increasingly popular due to the growth of data size and the need of
sensing with the reduced center. Based on Edge computing architecture, we propose a novel crowdsensing
framework called Edge-Mediated Spatial-Temporal Crowdsensing. This algorithm targets on receiving the
environment information such as air pollution, temperature, and traffic flow in some parts of the goal area,
and does not aggregate sensor data with its location information. Specifically, EdgeSense works on top of a
secured peer-to-peer network consisted of participants and propose a novel Decentralized Spatial-Temporal
Crowdsensing framework based on Parallelized Stochastic Gradient Descent. To approximate the sensing
data in each part of the target area in each sensing cycle, EdgeSense uses the local sensor data in participants’
mobile devices to learn the low-rank characteristic and then recovers the sensing data from it. We evaluate
the EdgeSense on the real-world data sets (temperature [1] and PM2.5 [2] data sets), where our algorithm
can achieve low error in approximation and also can compete with the baseline algorithm which is designed
using centralized and aggregated mechanism.

INDEX TERMS Edge computing, crowdsourcing, and distributed sensing.

I. INTRODUCTION
Mobile Crowdsensing (MCS) leverages consumer-centric
mobile devices, such as smartphones and wearables, as a
scalable data collection platform that measures phenom-
ena of common interest [3], [4]. Typically, MCS appli-
cations focus on community sensing tasks for large-scale
phenomena that cannot easily be measured by a single indi-
vidual. Instead, these phenomena can only be measured accu-
rately when data are aggregated spatio-temporally frommany
individuals.

Extensive works have been done to study
MCS-empowered applications, including environment mon-
itoring (e.g. noise and air pollutions [5]–[9]), mobility
(e.g. trajectories [10] and place characterization [11]),
transportation (e.g. traffic dynamics [12]), road conditions
(e.g. potholes [13], [14]), public health (e.g. mood and
behavioral wellbeing [15], [16]), and wireless network
monitoring [17], [18].

To the best of our knowledge, all existing MCS works
assume a cloud-centric approachwhere participant selection
algorithms make global decisions based on various coverage
and incentivemodels. This creates two significant challenges
for any large-scale MCS task deployment. First, the existing
cloud-centric MCS system aggregates sensor data from users
to a centralized cloud server, which bottlenecks scalability
of the system to monitor a large target area by an extremely
large number of mobile users participating in the MCS tasks.
Further, the existing solution localizes the collected sensor
data by tracking the real-time location of each participant,
which raises serious location privacy concerns. The real-time
locations of a participant might be identified by other parties
(e.g., the cloud server collecting the data).

On the other hand, as aforementioned, to enable the effi-
cient environment monitoring, MCS applications usually use
spatial-temporal coverage of the collected sensor data as
the objective for data collection. Given a target region split
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FIGURE 1. EdgeSense : The edge-mediated secure P2P network for
crowdsensing.

into multiple subareas and a sensing task divided into a
sequence of equal-length sensing cycles, the spatial-temporal
coverage of a MCS task coverage refers to a type of metrics
that characterize the proportion of subareas covered by at
least one sensor data in each sensing cycle. For example,
[19], [20] proposed to use the full spatial-temporal coverage
as the criterion of the participants selection for crowdsensing,
while [21], [22] studied the partial spatial-temporal coverage
as the objective of the optimization for budget-constrained
participant selection. With the sensor data that partially cover
the target area, our previous work [23]–[25] proposed com-
pressive crowdsensing, which is capable of recovering the
missing sensor data of the uncovered subareas from the col-
lected data. Through compressive crowdsensing, it is possible
to accurately monitor the target area with even lower spatial-
temporal coverage, thus resulting in reduced cost on par-
ticipant incentives as fewer participants are selected. Please
provide the in-text citation for Fig. 1.

To monitor the environment of a target region, the tra-
ditional MCS systems are designed to collect sensor data
from mobile users while tracking their real-time locations
(e.g., GPS or WiFi). Such sensor/location data aggregation
design raises the serious location privacy concerns, as the
real-time location or past trajectories of each participant
might be identified by other participants or organizations.

To protect the location privacy of participants, we pro-
pose to study a novel Edge-Mediated Mobile Crowd Sensing
system, namely EdgeSense, which is designed to obtain the
real-time spatial-temporal environmental information of the
target area, through message-passing between participants’
trusted edge services (for distributed optimization and learn-
ing), without aggregating or collecting the sensor/location
data from participants.

As shown in Fig. 2, in the proposed system, each par-
ticipant carries a sensor-equipped mobile device, such as a
smartphone or a tablet, to collect spatial-temporal sensor data,
e.g., temperature, PM 2.5 (for air quality) and road traffic
(GPS with speed information). Each participating mobile

device is paired with a trusted edge server/device via a wire-
less network such as a Cellular orWiFi networks. Participants
are free to select their home/office machines or cloudlets that
they trust as their trusted edge server. The trusted edge servers
will be exposed to public and other participants.

These edge services/devices then organize and operate a
Virtual Secure Peer-to-Peer Network connecting the MCS
participants, as shown in Figure 2.With the virtual secure P2P
network, EdgeSense recovers the spatial-temporal informa-
tion of sensor data using Gossip algorithms [26], while each
trusted edge server does not share the participant’s location
and sensor data to others. The proposed system provides two
levels of participant-location de-identification:

• System Level: The location of each participant can be
(re)-identified by addressing his/her mobile devices in
wireless communication. Thus, in our system, we sepa-
rate each participant with their trusted edge server. Only
the trusted edge server can address the paired participant
through wireless communication. All communications
between participants are proxied through the paired
trusted edge servers, so as to avoid location informa-
tion leakages (to other participants) caused by wireless
communication (e.g., IP address tracking). In this way,
we can de-identify each participant with his/her real-
time location (e.g., IP address) in the network of wireless
communications; and

• Data Level: The traditional MCS mechanism aggre-
gates sensor and location data from each participant,
which causes serious location privacy concerns. Instead
of aggregating the sensor/location data from each par-
ticipant (or edge server), EdgeSense leverages a decen-
tralized stochastic low-rank approximation procedure to
recover the spatial-temporal matrix of sensor data, over
Gossip-based optimization. In each round of gossiping,
each trusted edge server updates the latent space of the
low-rank approximation, with explicit noise, according
to their locally stored location/sensor data. This design
de-identifies each participant’s location from the spatial-
temporal data aggregation.

With above two levels of de-identification, EdgeSense offers
the following features: 1) each participant’s locations are not
shared to any other participant or any central component;
2) thanks to the low-rank approximation, EdgeSense can
accurately recover the sensor data of each subarea in each
sensing cycle (i.e., full spatial-temporal coverage), while the
full coverage of participants’ mobility is not required; 3) in
each sensing cycle, the number of subareas where are covered
by the participants are not known.

The rest of the paper is organized as follows. In the
Preliminaries and Problem formulation section, we review
the compressive crowdsensing and the matrix factorization
approach. Then we introduce the parallelized stochastic gra-
dient descent and present the problem formulation. In the
Frameworks and Algorithms section, we propose framework
of EdgeSense and present the algorithms in details. In the
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Experiments section, we evaluate EdgeSense on real-world
datasets and compare it with baseline algorithms. Finally,
in the Conclusion section, we summarize the work in this
paper.

II. PRELIMINARIES AND PROBLEM FORMULATION
In this section, we first briefly introduce the previous work
on the compressive crowdsensing. Then, we formulate the
problem of our research.

A. COMPRESSIVE CROWDSENSING
To derive the target full sensing matrix from partially
collected sensing readings, the compressive crowdsens-
ing [23], [24] is commonly considered to be an effective
approach, which consists of two parts:

1) SENSING DATA AGGREGATION
Given the target region splitting into a set of subareas
(denoted as S) and a set of m participants, in order to obtain
the full picture of the target region for each sensing cycle (e.g.,
the t th cycle), the Compressive Crowdsensing system first
collects the sensing data from all participants. Specifically,
the subareas covered by the jth participant in the t th sensing
cycle (t ∈ T ) is denoted as S tj ⊂ S. Thus, the overall coverage
in the sensing cycle t can be denoted as S t = S t1∪S

t
2∪. . .∪S

t
m.

Due to the limited mobility of each participant and limited
number of participants involved, the overall coverage can
usually include a subset of subareas, i.e., S t ⊆ S. Given
the collected sensing data, the compressive crowdsensing
system aggregates the data and assigns each covered subarea
an unique sensor data value. For example, if multiple sensor
data values are collected (from multiple participants) that
cover the same subarea in a sensing cycle, the averaged value
would be used as the value of such subarea in the sensing
cycle. In this way, each subarea s ∈ S t has been covered
with one sensor data value, through data aggregation, and the
compressive crowdsensing system needs to infer the missing
sensor data of the subareas in S\S t to obtain the sensor data
of the whole target area.

2) MISSING DATA INFERENCE
Given the aggregated sensor data of the covered subareas (S t ),
there exists a wide-range of inferring techniques to infer the
missing data of the uncovered subareas, such as expectation
maximization [27] and singular spectrum analysis [28]. One
of the powerful approach is the spatial-temporal compressive
sensing [29], [30]. The essential idea of this approach is based
on the nonnegative matrix factorization (NMF) [31], [32].
Given the aggregated sensor data of recent sensing cycles (the
number of recent sensing cycles used for NMF is denoted as
w), this approach first sorts the subareas using their indices
from 1 . . . to |S|, then maps the data into a |S| × w matrix
denote as R, where the element Ra,t ( 1 ≤ a ≤ |S| and
1 ≤ t ≤ w) refers to the aggregated sensing value of the ath

subarea and t th sensing cycle (in the window). To recover the
missing values in R, this approach obtains two non-negative

matrix factors P ∈ R|S|×l and Q ∈ Rl×w such that R ≈ PQ,
through NMF, where l stands for the Size of Latent Space
of NMF.

Typically, there are four key factors affecting the per-
formance of the compressive community sensing: (1) The
Number of Subareas that each participant covers in each
sensing cycle; (2) The Number of Participants (m) which,
together with the number of subareas per participant, can
determine the coverage of collected sensor data; (3) The Size
of Windows (w) that refers to the number of past sensing
cycles used for matrix recovery (i.e., the width of the matrix
for matrix completion); (4) The Size of Latent Space (l) that
determines the rank of matrices for low-rank matrix recov-
ery/completion.

B. PROBLEM FORMULATION
Given a set of participants, where each participant’s mobile
device stores the raw sensor data locally (without raw data
sharing), our proposed work intends to recover the sensing
data of the target area while assuming that the organizer is not
allowed to aggregate the sensor data from any participants.
Specifically, we make following assumptions:
• For all the sensing cycles in T and subareas in S, there
exists an unknown spatial-temporal sensor data matrix
R∗ (R∗ ∈ R|S|×T ), where each element R∗a′,t ′ (1 ≤
a′ ≤ |S| and 1 ≤ t ′ ≤ |T |) refers to the real value of
sensor data in the corresponding subarea a′ and sensing
cycle t ′.

• In each sensing cycle (e.g., the t th cycle), each partici-
pant (e.g., the jth participant) covers a subset of subareas
(i.e., S tj ⊆ S) in the target area. Thus, all the collected
sensor data from the 1st to the t th sensing cycle of the jth

participant can be represented as a matrix Rj ∈ R|S|×t ,
where each element refers to the value of the sensor data
collected in the corresponding subarea and cycle. Note
that, to protect the location privacy, Rj is not known by
the organizer.

• We denote the value of the sensor data collected by
the jth participant in sensing cycle t at subarea a as Rja,t .
Each sensor datum obtained is assumed to be the
true value with (unknown) random noise, i.e., Rja,t =
R∗a,t + ε

j
a,t . For any two participants (i.e., the jth and

k th participants), they might cover the same subarea
(say, atj ∩ S

t
k 6= ∅ is possible), but are with different

sensor data value obtained, due to the noise.
Our problem is that, in each sensing cycle t , with Rj

(1 ≤ j ≤ N ) locally stored on each participant’s device,
there needs to estimate R̂a,t to

minimize
|S|∑
a=1

(̂Ra,t − R∗a,t )
2 for 1 ≤ t ≤ T ,

while ensuring that the organizer is prohibited to aggregate Rj

from any participant and the raw sensor/location data sharing
is not allowed between the participants.
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FIGURE 2. Overall Framework of EdgeSense. (a) Phase I: Secured P2P Network Establishment and Initialization. (b) Phase II: Distributed
Compressive Crowdsensing over Secured P2P. (c) Phase III: Spatial-Temporal Data Recovery.

III. FRAMEWORK AND ALGORITHMS
In this section, we present the proposed framework of Edge-
Sense and the underlying algorithms. Specifically, we intro-
duce a novel Decentralized Spatial-Temporal Compressive
Sensing framework based on Parallelized Stochastic Gradi-
ent Descent.

A. FRAMEWORK DESIGN
Before elaborating the proposed framework and algorithms,
we make the following settings: (1) In order to simu-
late a secure peer-to-peer network over the participants,
we define a set of participants, where these participants can
receive or send messages (factor matrices) to each other trust-
fully and randomly; (2) When passing the message between
two participants, the receiver can not send the updated matrix
factors back to the sender, while the sender can easily recover
the receiver’s local sensing data by recalculating the return
messages; (3) The organizer can only receive or access the
related message when the updates (message passing) are
finished. In this way, the private information such as real-
time locations of the participants in each sensing cycle can
be protected from the organizer.

The overall framework of EdgeSense consists of the fol-
lowing three phases (as illustrated in Figure 2):

1) PHASE I: SECURE P2P NETWORK ESTABLISHMENT
AND INITIALIZATION
Prior to initializing the batch on the organizer, we first estab-
lish a secure peer-to-peer (P2P) network among m partici-
pants, while all the collected sensor data on the jth participant
are mapped to a local data matrix Rj. Then, as shown in
Algorithm 1, EdgeSense randomly picks a set of participants
which is the batch (denoted as the set L with size N ) from the
secure network of m participants. Next, given the target data
matrix R ∈ R|S|×w, EdgeSense extracts the row and column
number of R to construct the initial matrix factors P̂ and Q̂
on the organizer. Specifically, P̂j is generated by a |S| × l
Gaussian Random Matrix on the jth participant. Similarly,
Q̂j is generated by a l × w Gaussian Random Matrix on the
same jth participant. To avoid the aforementioned message

Algorithm 1 Initializing Batch and Matrix Factors (P̂, Q̂)
on Organizer
Data:
R|S|×w — the target data matrix
Parameter:
/* Subareas covered by per participant */

|S|— the maximum numbers of subareas
w— the size of windows
l — the size of latent space
begin

/* Predefine a set of participants */

Randomly Draw N Participants into Set L
/* L = {I1, I2, . . . , IN } */

for each Ij ∈ L do
/* Initialize matrix factors P,Q on Ij */

P̂j← |S| × l Gaussian Random Matrix
Q̂j← l × w Gaussian Random Matrix
/* Initialize the counter and the previous

participant index */

SEND (P̂j, Q̂j, 0,null) to L;
end

end

transferring back between two participants, we initialize a
counter i to record passing times (iterations) among partic-
ipants and set jp to mark the last participant’s index, where
the (i, jp) will be transferred along with the updated matrix
factors so that the participant who receives the message can
randomly select the next one excluding participant jp. When
the initialization ends, each participant (Ij) in the predefined
set L (batch) will be assigned a pair of starting matrix
factors P̂j and Q̂j.

2) PHASE II: DISTRIBUTED COMPRESSIVE COMMUNITY
SENSING VIA PARALLELIZED LOW-RANK APPROXIMATION
Given the mapped local data matrix Rj on jth participant,
EdgeSense intends to approximate the optimal estimation of
matrix factors P̂j and Q̂j via parallelized stochastic gradient
descent on top of non-negative matrix factorization algo-
rithm. Specifically, the initialized (P̂j, Q̂j, 0,null) has been
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allocated on the jth participant, where 0 refers to the fact that
no update has been executed and ‘‘null’’ refers to there is no
previous participant (coming from the organizer) which has
updated the matrix factors (the index of previous participant
is empty). Then the algorithm processes the updating task on
each participant from the predefined batch (L) in parallel.
Suppose two dense matrix factors are P ∈ R|S|×l and

Q ∈ Rl×w, the target minimization loss function over m par-
ticipants through parallelized stochastic gradient descent is as
follow:

P̂, Q̂ ← argmin
P∈R|S|×l ,Q∈Rl×w

{
1
m

m∑
j=1

∥∥∥Fj ◦ (Rj − PQ)∥∥∥2
F

+ λP ‖P‖2F + λQ ‖Q‖
2
F

}
, (1)

where l is the size of latent space, "◦" means element-wise
matrix multiplication, ‖·‖F is the Frobenius norm, λP and λQ
are regularization parameters. Particularly, parallelly starting
on each participant Ij, Algorithm 2 first receives the input
(P̂j, Q̂j) from the last involved participant in the secure net-
work (or initialized from the organizer in the first run). Next
it updates the (P̂j, Q̂j) using the mapped local data matrix Rj

with the missing-value filter matrix Fj, and randomly picks
up the next participant except the previous one (jp) from the
secure participants network and sends the updated (P̂j, Q̂j)
to this chosen participant. The matrix Fj is a matrix filling
with 0 (missing) and 1 (collected) which can set the missing
elements in matrix Rj to zero by the element-wise multiplica-
tion.Wemainly use it to prevent the missing value in the local
datamatrixRj from affecting the gradient updating in (P̂j, Q̂j).
In addition, we leverage the Truncate() function, where the
negative values in matrix factors (P̂j, Q̂j) will be set to zero,
then ensuring the non-negativeness of (P̂j, Q̂j) when finishing
each update.

Algorithm 2 keeps picking up the next participant for
updating, until the times of updates i exceeds the maxi-
mal number of updates, or the updating process converges
(i.e., max

{∣∣gp∣∣∞ , ∣∣gq∣∣∞} ≤ 1max). Similar procedures are
starting on each participant Ij and the related matrix fac-
tors keep updating independently. Once the updating process
completes on each participant, Algorithm 2 sends (P̂j, Q̂j)
where j = 1, 2, . . . ,N to the organizer. When all the parallel
processes are finished, the organizer has received N pairs of
the estimated (P̂, Q̂) for recovery of the target data matrix.

3) PHASE III: SPATIAL-TEMPORAL DATA RECOVERY
As we have introduced in the Preliminaries, the organizer
can recover the target data matrix R̂ based on the optimal
estimated matrix factors (P̂, Q̂).

Given the received matrix factors (P̂j, Q̂j) which are from
the batch, Algorithm 3 first separately average the P̂ and Q̂
from j = 1 to N . Then, to recover the target data matrix,
the algorithm multiplies the averaged matrix factors (P̄, Q̄)
and obtains the well-estimated target data matrix R̂.

Algorithm 2 Parallelized Optimization on the jth

Participant
Data:
Rj — the local data matrix on the jth participant
Fj — the filter matrix on the jth participant
Parameter:
i— the number iterations
jp, j— the index of previous and current participant
η— step size
1min — the minimum allowed perturbation
tmax — the maximum number of allowed updates
λP, λQ — regularization parameter on P and Q matrices
begin

/* On receiving the message from the previous
participant */

RECEIVE (P̂j, Q̂j, t, jp)
/* Noting that “A ◦ B" means element-wise matrix

multiplication */

gp← (Fj ◦ (Rj − P̂jQ̂j))Q̂Tj − λP · P̂j
gq← P̂Tj (Fj ◦ (R

j
− P̂jQ̂j))− λQ · Q̂j

P̂j← P̂j − η · gp
Q̂j← Q̂j − η · gq
/* Set the negative elements to zero */

P̂j, Q̂j← Truncate(P̂j, Q̂j)
i← i+ 1
/* Checking convergence conditions */

1 = max
{∣∣gp∣∣∞ , ∣∣gq∣∣∞}

if 1 ≥ 1maxANDi ≤ tmax then
/* Not converged, continuing the algorithm */

jnext ← Draw a random number from 1 to m
except jp;
SEND (P̂j, Q̂j, i, j) to the jthnext Participant;

else
/* Converged, find out the optimal estimates

*/

SEND (P̂j, Q̂j) to the Organizer;
end

end

Algorithm 3Mobile Sensing Recovery on the Organizer
Data:
P̂j, Q̂j — the received matrix factors from the batch
begin

/* Average all P̂j, Q̂j on organizer */

P̄← 1
N

∑N
j=1 P̂j

Q̄← 1
N

∑N
j=1 Q̂j

/* Recover the target overall data matrix */

R̂← P̄Q̄
end

4) ALGORITHM ANALYSIS
In this section, we brief the analytical results of the proposed
algorithms.

Given the overall set of subareas (S), the size of the
latent space (l), the size of the windows (w), in each
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iteration, N participants in the system would send out mes-
sages, while each participant sends a |S| × l matrix and a
l×wmatrix (i.e., P and Qmatrices). In this way, the system-
wide communication complexity in the worst-case (after the
completion of tmax iterations of message-passing) should be
O ((|S| · l + l · w) · tmax · N ).
Suppose P∗ and Q∗ are the optimal solutions of the

problem listed in Eq. 1, while P̄ and Q̄ (appeared in
Algorithm 3) are two approximation results obtained by
our algorithm. According to [33], the approximation error
of ||P∗−P̄||F → 0 and ||Q∗−Q̄||F → 0, when tmax→+∞ and
N is sufficiently large. Note that with a largerN , the proposed
algorithm can achieve a faster rate of convergence of the
approximation error with increasing tmax . For more theoreti-
cal analysis, please refer to [33].

IV. EXPERIMENTS
In order to evaluate the EdgeSense algorithm, we use the
Temperature (TEMP) and PM 2.5 air quality (PM25) dataset,
where the Experimental Setup section will cover all the set-
tings and assumptions. Based on the above dataset, we first
introduce the baseline algorithms which are commonly used
in sensor data recovery. Specifically, the baseline algorithms
adopt the matrix completion method and leverage the cen-
tralized computing patterns to recover the target sensing
data. Then, we compare the performance of EdgeSense with
baseline algorithms on two real-world datasets.

A. EXPERIMENTAL SETUP
For TEMP [1] and PM25 [2] datasets, the sensing value of
temperature (◦C)/PM2.5 (air quality index) are located on
each participant’smobile sensor in varying time slots (sensing
cycle) and at different subareas. In details, the TEMP dataset
contains the temperature readings in 57 cells (Subareas) and
each sensing cycle lasts for 30 minutes. The PM25 dataset
includes the PM2.5 air quality values on 36 stations (Subar-
eas) with the same sensing cycle.

In order to simulate the settings of the centralized com-
puting patterns, we aggregate the collected sensing data from
each participant. In details, we follow the aforementioned
three phases to set the appropriate value of four key factors:
the Number of Participants (m), the Number of Subareas
that each participant covers in each sensing cycle, the Size
of Windows (w) and the Size of Latent Space (l). Note that
each participant can sense the temperature/PM2.5 at a subset
of subarea. Specifically, we use the maximum number of
subareas s (1 ≤ s ≤ |S|) in the experiments, assuming the
participant can cover no more than s subareas. To simulate
the scenario that each participant can cover various number
of subareas, the actual number of subareas covered by the par-
ticipant will follow the discrete uniform distribution U{1, s}.

B. BASELINE ALGORITHMS
In this section, we briefly introduce three baseline algorithms,
where their advantages and drawbacks are listed as compared
to EdgeSense algorithm.

• Spatio-Temporal Compressive Sensing (STCS) –
STCS [23], [30] leverages the sparsity regularizedmatrix
factorization to fill in the missing values in a certain
matrix accounting for spatial-temporal properties. Based
on the low-rank nature of real-world data matrices,
STCS first exploits global and subarea structures in
the data metrics. Then, it recovers the original matrices
throughmatrix factorization under spatial-temporal con-
straints. Indeed, STCS advances ideas from compressive
sensing and provides a highly effective (high accuracy
and robustness) approach to solve the problem of miss-
ing data interpolation.

• Robust Principle Component Analysis (RPCA) and
Truncated Singular Value Decomposition (TSVD) –
RPCA [34] is derived from a widely used statistical pro-
cedure of principal component analysis (PCA), where
RPCA performs well on solving the problem of matrices
recovering. With respect to a mass of missing observa-
tions, RPCA aims to recover a low-rank matrix through
random sampling techniques [35]. TSVD [36] is also
commonly used to approximate a low-rank matrix. Dif-
ferent from the traditional singular value decomposition,
TSVD sets all but the first k largest singular values equal
to zero and use only the first k columns of the corre-
sponding unitary matrices. With the optimality property,
this method provides an efficient way to recover the
target sensing matrix.

C. EXPERIMENTAL RESULTS
In this section, we report the performance of EdgeSense and
other three baselines on TEMP and PM25 datasets. Specif-
ically, we use the Absolute Error, which is the averaged
element-wise difference

(∑|S|
a=1

∑|T |
t=1

∣∣̂Ra,t − R∗a,t
∣∣/(|S| ·

|T |)
)
between the recovered matrix (̂R) and the original data

matrix (R∗), as the indicator of the performance.

1) TEMP DATASETS
First, we present a comparison of algorithms with the set-
tings of the maximum number of subareas (covered by
each participant) ranging from 1 to 5 in Fig. 3. Due to
the overall better performances of EdgeSense and STCS,
we present the entire comparison in (a) and only compare
EdgeSensewith STCS in other three settings (the same in Fig-
ures 4, 5 and 6 as well). Specifically, in Fig. 3(a), 10 partici-
pants are involved. Then we vary the number of participants
from 10 to 40 in the increment of 10 in Figs. 3(b), (c) and (d).
We observe that the error is around 0.2 to 0.45 with vary-
ing maximum number of subareas from 1 to 5. It is note-
worthy that EdgeSense can compete to STCS under these
settings.

Second, we also compare EdgeSense with baseline algo-
rithms by varying the number of participants in the secure
P2P network. In Fig. 4(a), the maximum number of subar-
eas is 1. Then we increase it from 1 to 4 in the increment
of 1 in Figs. 4(b), (c) and (d). In each comparison between
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FIGURE 3. On TEMP Datasets, we compare the performance of increasing Max Number of Subareas (s) from 1 to 5 with different number of participants
in each cycle. (We remove the significantly poor algorithms in (b), (c), (d) and (e), the same as following experiments.)

FIGURE 4. On TEMP Datasets, we compare the performance of increasing Number of Participants (m) from 10 to 30 with different max number of
subareas in each cycle. (a) s = 1 (Maximum Number of Subareas). (b) s = 1 (Maximum Number of Subareas). (c) s = 2 (Maximum Number of Subareas).
(d) s = 3 (Maximum Number of Subareas). (e) s = 4 (Maximum Number of Subareas).

FIGURE 5. On TEMP Datasets, we compare the performance with the increasing Size of Window (w) from 20 to 50 with different size of latent space in
each cycle. (a) l = 2 (Size of Latent Space). (b) l = 2 (Size of Latent Space). (c) l = 4 (Size of Latent Space). (d) l = 6 (Size of Latent Space).
(e) l = 8 (Size of Latent Space).

FIGURE 6. On TEMP Datasets, we compare the performance with the increasing Size of Latent Space (l ) from 2 to 10 with different size of windows in
each cycle. (a) w = 20 (Size of Windows). (b) w = 20 (Size of Windows). (c) w = 30 (Size of Windows). (d) w = 40 (Size of Windows).
(e) w = 50 (Size of Windows).

EdgeSense and STCS, the error decreases when the number of
participants increases for both of these two algorithms. This
demonstrates that the larger group of participants can improve
the performance of the matrix recovery, where intuitively
the participants can cover more subareas and sensing cycles.

Similar to the previous setting, EdgeSense can approximate
the performance of STCS as well.

Further, we alter the values of two aforementioned key
factors, such as Size of Windows and Size of Latent Space,
to observe the variation of the error. Fig. 5 shows that the error

95128 VOLUME 6, 2018



S. Yang et al.: EdgeSense: Edge-Mediated Spatial-Temporal Crowdsensing

decreases when the window size increases from 20 to 50.
Note that for each size of latent space in Figs. 5(b), (c) and (d),
the decreasing trends of the error are almost the same and
the performance of EdgeSense still can compete with STCS.
Fig. 6 exhibits that the error increases when the size of the
latent space increases from 2 to 10. Thus, for TEMP datasets,
the small size of latent space can better approximate the
original data matrix when it is low-rank. Thus the perfor-
mance of EdgeSense is still competitive to STCS, as shown
in Figs. 6(b), (c) and (d).

TABLE 1. On PM25 Datasets, we compare the (Absolute Error ) with
Varying Number of Participants (m) and Size of Windows (w).

2) PM25 DATASETS
We conduct experiments with similar settings as TEMP
datasets. Since the performances of RPCA and TSVD are
still not as good as the other two algorithms, we only present
the comparison between the proposed EdgeSense and STCS
here. Specifically, in Table 1, we list the Absolute Error of
these two algorithms with varying number of participants (m)
and the window size (w). When the number of participants
increases, the error is decreasing intuitively. On the contrary,
the error increases with increased size of the window. How-
ever, EdgeSense performs comparably to STCS, sometimes
even better (e.g., for m = 20). In Table 2, we show the per-
formance with varying size of latent space and the number of
subareas covered by each participant. The results reveal that
the number of subareas does not affect the error significantly,
while with the larger latent space the error is smaller with
PM25 datasets. Under these two settings, the performance of
EdgeSense can still compete with STCS. Note that for each
setting, we present the performance on the varying factor
while keeping the other factor at optimal value. Also it is
worth noting that the overall error is small on the average
(10 with PM2.5 index ranging from 1 to 500) in both of
EdgeSense and STCS.

TABLE 2. on PM25 Datasets, we compare the Absolute Error with Varying
Size of Latent Space (l ) and Maximum Number of Subareas (s).

3) SUMMARY
With two real-world datasets, we compared the proposed
EdgeSense with the baseline algorithms STCS, RPCA
and TSVD. For both of the datasets, EdgeSense significantly

outperforms RPCA and TSVD in most cases. Moreover,
compared to the centralized algorithm STCS, EdgeSense also
presents its competitiveness, with a low approximation error
(0.2◦ in city-wide temperature and 10 units of PM2.5 index in
urban air quality). Even in some settings, the EdgeSense has
a lower approximation error than STCS, which demonstrates
the superiority of EdgeSense.

V. CONCLUSION
In this paper, we proposed EdgeSense – a novel crowdsensing
paradigm.EdgeSense is designed to extract the environmental
information in each subarea, without aggregating sensor and
location data from the participants who partially cover the
monitored area. On top of a secure peer-to-peer network
over the participants, EdgeSense proposes a novel Decentral-
ized Spatial-temporal Compressive Sensing framework based
on Parallelized Stochastic Gradient Descent. Specifically,
through learning the low-rank matrix structure via distributed
optimization, EdgeSense approximates the value of sensor
data in each subarea (both covered and uncovered) for each
sensing cycle using the sensor data that locally stored in
each participant’s mobile device. According to the theoretical
analysis on the parallelized stochastic gradient decent [33],
EdgeSense is capable of recovering the Spatial-Temporal
information with bounded approximation error using the P2P
communications of controllable complexity. The experiment
results based on real-world datasets demonstrates that Edge-
Sense has low approximation error and performs comparably
to (sometimes even better than) state-of-the-art algorithms
based on the data aggregation and centralized computation.
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