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Development of a new beam-column design method for cold-

formed steel lipped channel members 
 

Shahabeddin Torabian1, Baofeng Zheng2, Benjamin W. Schafer3 

 
 
 
Abstract 
 
The structural strength of cold-formed steel lipped channels under combined 
axial force and biaxial bending moments has been predicted by geometric and 
material nonlinear collapse analyses performed in ABAQUS and compared to 
both current, and a newly proposed, beam-column design method. The 
ABAQUS analyses utilizes a validated modeling protocol calibrated against 
previous testing by the authors, and including residual stresses and strains, and 
geometric imperfections; as well as, appropriate cross-section dimensions, 
member length, and boundary conditions. A total of 75 different lipped channel 
cross-sections have been selected and the capacity of the beam-column member 
has been examined under 127 combinations of actions in the P-M1-M2 space 
(axial load, P, and major-axis, M1, and minor-axis, M2, bending moments). The 
results have been used to evaluate the current beam-column design method and 
validate a new Direct Strength Method (DSM) approach for cold-formed steel 
beam-columns. The newly proposed method provides means to incorporate 
more realistic stability analyses of cross-sections under the applied actions, 
where the current design methods include only a linear prediction of the 
combined actions using “column strength” and “beam strength” as anchor 
points. Correspondingly, the reliability of both current and newly proposed 
methods has been evaluated. The newly proposed extensions to the Direct 
Strength Method show a potential to realize a sizeable  strength increase in 
many situations, and follow the overall trends in the data (P-M1-M2 surface) 
well; however, additional advancement is needed to realize the complete 
benefits predicted in the finite element models. 
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Introduction 
 
The Direct Strength Method (DSM) is a recently developed design method for 
cold-formed steel structural members that explicitly takes cross-section stability 
into account through enabling the implementation of advanced computational 
analyses, such as the finite strip method, to determine the elastic buckling loads 
of the member in local, distortional and/or global modes of failure, including 
interactions. The elastic buckling loads drive a series of design strength 
equations to determine both axial and bending moment capacity of cold-formed 
structural members, e.g. lipped channels and Zee sections. Current design codes 
such as the North American Specification of the American Iron and Steel 
Institute (AISI-S100, 2012) and the Australian/New Zealand Standard 
(AZ/NZS) for cold-formed steel structures (AS/NZS 2005) formally provide the 
traditional Effective Width Method (EWM), and the Direct Strength Method 
(DSM) (AISI-S100, 2012; Standards Australia, 2005). See Schafer (2008) for a 
complete review..  
 
Although extensive efforts have been devoted to estimating the capacity of cold-
formed steel members under pure axial or flexural actions (Hancock, 2003; 
Macdonald, Heiyantuduwa, & Rhodes, 2008; Rondal, 2000; Schafer, 2008; 
Young, 2008), the design of structural members under explicit combined actions 
has seen less study in both EWM and DSM (Kalyanaraman & Jayabalan, 1994; 
Loh, 1985; Miller & Pekoz, 1994; Pekoz, 1986; Peterman, 2012; Shifferaw, 
2010; Yiu & Pekoz, 2000). The combined effect of the actions on the member is 
taken into account in the latest design specifications, e.g. in AISI-S100-12, 
through a simple linear combination of the isolated pure axial or flexural design 
previously determined using EWM or DSM. Therefore, the current cold-formed 
steel beam-column design methods ignore any nonlinear interaction in the 
strength between axial load and bending.  
 
In this paper, comprehensive parametric geometric and material nonlinear 
collapse analyses, particularly on lipped channels, have been used to evaluate 
the structural reliability of both current and newly proposed beam-column 
design methods. The newly proposed method includes more realistic stability 
analyses of cross-sections under the applied actions. The analyses follow a 
modeling protocol verified against relevant experimental results. The results 
show the potential to improve the current beam-column design method. The 
newly proposed beam-column DSM has the potential to realize much of the 
strength increase in many situations, and follows the overall trends in the data 
(P-M1-M2 strength surface) well; however, additional advancement is needed to 
realize the complete benefits predicted in the finite element models. The 
following sections include a brief description of the new beam-column DSM, 
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including formal definition of the P-M1-M2 space, elastic stability of the beam-
columns under combined actions and elastic buckling surface in P-M1-M2 space, 
verified modeling protocols for parametric analyses, cross-section and length 
selection criteria for parametric analyses, and the analyses results and the 
reliability analysis and discussions. 
 
The results presented herein are a part of an ongoing comprehensive study 
developing a new explicit DSM prediction for cold-formed steel beam-columns. 
The larger effort includes additional tests and numerical analyses on cold-
formed steel Zee sections and further refinement of the DSM formulation.  

 
 

Figure 1  Normalized P-M1-M2 Space 
 
 
Direct strength prediction for Beam-Columns (DSM Beam-Columns) 
 
Normalized P-M1-M2 Space 
 
The use of a generalized coordinate system is important in the development of 
the new design method. The P-M1-M2 space is implemented to define the state 
of the applied combined actions including bi-axial bending moments (M1, M2) 
and axial force (P) with respect to the corresponding yield strength, as follows 
(also see Figure 1), 

 x  M1

M y1

, , z  P

Py

  (1) 

where, M1 and M2 are two orthogonal (principal) axes of the cross section and 
the denominators (subscript y) are the corresponding yield moments (force). 
 
Points in the normalized P-M1-M2 space are defined by an azimuth angle, MM, 
an elevation angle, PM , and a radial length  : 

y  M2

M y2
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   tan1(y / x) , MM  cos1(z /  ),   x2  y2  z2  (2) 

The normalized axial and bending moment strength of a member are just anchor 
points on the x, y, and z axes. Connecting all the points corresponding to the 
strength of a member associated with a particular MM and PM angles results in 
the strength surface of a member in 3D space.  
 
New Beam-Column Direct Strength Method 
 
The newly proposed beam-column DSM formulation is consistent with DSM for 
the design of beams and columns in AISI-S100-12. The method provides similar 
results for “beams” and “columns” at the anchor points, and more realistic 
strength prediction for the combined actions away from the anchors. Notably, 
anchor points are the points of either pure axial compression (PM=0) or pure 
bending moments about one of the principal axes (PM=90o; MM=0o, 90o, 180o, 
270o). PM determines how much a point is close to either  “beam” or “column” 
conditions. All results are represented in �MM�PMcoordinate, where  
shows how far a loading point can be pushed along the (MM, PM) line in P-M1-
M2 space to reach a particular limit state such as elastic buckling, yield, or 
plastic limits. 
 
Accordingly, for each loading condition such as (Pr, Mr1, Mr2) or 
(��MM�PM), the induced state of stress on the cross-section is used to 
determine elastic buckling loads such as local (��L), distortional (��D) and 
global (��G) buckling loads. Moreover, the stress distribution along the (MM, 
PM) line is used to determine  corresponding to the first yielding of the cross-
section, y. Calculation of the plastic strength of the section, p, is not as trivial 
as the first yield capacity of the cross-section. A fully plastic distribution of 
stress on the cross-section can result in two different axes for the loading axis 
and the neutral axis of the cross-section. This phenomenon provides difficulties 
in finding of plastic surface of the sections, which are not within the scope of 
this paper.  
 
In all buckling modes, the design equations are a function of the associated 
slenderness consistent with DSM “beam” and “column” design equations. The 
proposed method can incorporate inelastic reserve, effects of holes in the design, 
and design under tension force and bending moments. The effects of holes and 
tension are not discussed herein. 
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Global Buckling 
 
The nominal capacity of a beam-column in global buckling, ��, is calculated as 
a function of global slenderness G, defined as follows: 

G  y crG   
(3) 

Since inelastic reserve (capacity greater than first yield) is available only in 
bending, the nominal capacity, ��, is considered to be a function of the 
nominal capacity in axial compression, ��P, and the nominal flexural capacity, 
��M, including inelastic reserve, as follows. 

nG  nGP  (nGM nGP )sinPM
 

(4) 

The proposed DSM equations for global buckling under combined axial load 
and bending are presented in the following, 
 
For compression: 0 PM   / 2  

nGP  0.658G
2

y                             
for G 1.5  

 
(5) 

nGP  0.877crG                              
for G 1.5

 
(6) 

For bending: 0 PM   , 0 MM  2  

nGM  p                                         
for G  0.23

 
(7) 

nGM  p  p  y  G  0.23

0.37       
for 0.23 G  0.60

 
(8) 

nGM  y  
(no inelastic reserve)     for G  0.60

 
(9) 

nGM  10

9
y 1

10y

36crG











                
for 0.60  G 1.34

 
(10)

 
 

nGM  crG                                        
for G 1.34

 
(11) 

  
Local Buckling 
 
Consistent with the DSM method in AISI-S100-12, local-global interaction is 
adopted in the proposed beam-column DSM. The nominal capacity of beam-
columns in local buckling, �L, can be determined here as a function of local 
slenderness L, defined as follows: 

L 
nG

crL

 for nG  y  ; L 
y

crL

 for  nG  y   
(12) 
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As local buckling equations for “beams” and “columns” are of the same format 
in DSM, the new equations for beam-column DSM also provide a consistent set 
of equations including local-global interaction and inelastic reserve as follows, 
  
for L  0.776   

Inelastic reserve capacity for symmetric members or when the first yield is 
in compression ( nG  y ): 

nL  y  11 / CyL
2  p  y  , CyL  0.776 / L  3

   
(13) 

Inelastic reserve capacity the first yield is in tension, conservative approach  
( nG  y ): 

nL  y  11 / CyL
2  p  y   yt3  

yt3  y 8 9 p y 
 

(14)
 

 

Ignoring inelastic reserve capacity: 
 nL  y  , nG  y    

nL  nG  , nG  y  
(15)

 
 

 
for L  0.776   

nL  1 0.15
crL

nG











0.4










crL

nG











0.4

nG

 

for nG  y  

nL  1 0.15
crL

y











0.4












crL

y











0.4

y

  

for nG  y  

 
Distortional Buckling 
 
Consistent with the DSM method in AISI-S100-12, distortional-global 
interaction is ignored in the proposed beam-column DSM. The nominal capacity 
of beam-columns in distortional buckling, �D, is determined here as a function 
of distortional slenderness D calculated as follows, 

D 
y

crd  
(16)

  

As distortional buckling equations for “beams” and “columns” are almost 
consistent in DSM, the new equations for beam-column DSM provides a set of 
equations with the slenderness limits dependent on PM, as follows, 
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for D  0.561 0.112 sinPM   

Inelastic reserve capacity for symmetric members or when the first yield is 
in compression: 

nD  y  11 / CyD
2  p  y     

CyD  0.561 0.112 sinPM  / crD  3
       

(17) 

Inelastic reserve capacity the first yield is in tension, conservative approach  
( nG  y ): 

nD  y  11 / CyD
2  p  y   yt3  

yt3  y 8 9 p y 
 

(18)
 

 

Ignoring inelastic reserve capacity: 
nD  y  

 
(19)

 
 

 
for D  0.561 0.112 sinPM    

nD  1 c1
crd

y











c2












crd

y











c2c2

y  

c1  0.25 0.03sinPM , c2  0.6 0.1sinPM  
 

(20)
 

 

 
Design Check 
 
The nominal capacity of the beam-column at the particular direction (MM, PM) 
in P-M1-M2 can be calculated as follows, 

n  min nL ,nD,nG 
 

(21)
  

For design purposes, the capacity of the member including the resistance factor 
���LRFD method or safety factor �� allowable stress design method 
should satisfy the following design equations,

 r n  or r  n /
 

(22)
  

 
Elastic buckling analysis 
 
The proposed beam-column DSM requires elastic buckling analysis under any 
required action. All elastic critical surfaces are determined from stability 
analysis using CUFSM 4.06 (Schafer & Adany, 2006) assuming the actual stress 
distribution. Specifically, each desired point on the P-M1-M2 surface is on a line 

365



 

 
 
 

defined by azimuth (MM) and elevation (PM) angles. The elastic critical load 
factor for a particular point in the P-M1-M2 space is a normalized distance, ��, 
between that point and the origin along the (MM, PM). The required actions (Pr, 
Mr1, Mr2) or (��MM�PM), induce a state of axial stress, fr, on the cross-
section as follows,  

 fr 
Pr

A
 Mr1ycx

I1

 Mr2xcx

I2  
(23)

 
 

where, I1 and I2 are principal moment of inertia, ycx and xcx are the distance to the 
centroidal principal axes, and A is the cross-sectional area. The cross-section 
stability analysis (using CUFSM) performed on fr provides, buckling load 
factors (crL, crD, crG) for local (L), distortional (D), and global (G) buckling. 
These factors may be resolved back into the P-M1-M2 space simply as 
 crL crLr ,    crD crDr ,    crG crGr

 
(24)

  
 

 

 
Figure 2  Elastic (blue) and nominal strength (red) surfaces under the combined actions-

600S137-54 (L=12 inches): (a) local buckling; (b) distortional buckling 
 
To automatically identify local and distortional buckling and avoid the problems 
of non-unique minima in conventional finite strip models, the newly proposed 
“FSM@cFSM-Lcr” method is used (Li & Schafer, 2010). “FSM@cFSM-Lcr” 
utilizes a straight-line cross-section and a constrained finite strip method (cFSM) 
analysis to determine buckling half-wave lengths (Lcr) for pure local and pure 
distortional buckling. These lengths are then used to uniquely identify the local 
and distortional buckling response and crL, and crD. 
  
The elastic buckling load factors are used for predicting the design strength in 
accordance with the proposed formulas of the previous section. Figure 2 
illustrates the elastic surfaces (in blue) for local (Figure 2a), and distortional 
buckling (Figure 2b) for an example cross-section. To enable comparison, the 
corresponded strength surface (in red) is also mapped into the space for a 

	

(a) (b) 

P" Mx""(major)" My"(minor)"
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600S137-54, L=12 inches. Strength may be less than, or greater than, the elastic 
buckling response, as dictated by the slenderness. 
 
Numerical Modeling 
 
The general-purpose finite element program ABAQUS is employed to perform a 
comprehensive parametric nonlinear collapse analyses on lipped channel beam-
columns to evaluate the newly proposed beam-column DSM. The modeling 
protocols used in the parametric analyses are verified against experimental 
results as discussed in (Torabian, Zheng, & Schafer, 2014a, 2014b). The 
modeling protocols and assumptions in the analysis are briefly discussed in the 
following. 
 

 
Figure 3 (a) Typical mesh topology (Maximum mesh size is 15mm); (b) Boundary conditions in 

the parametric study 
 
Modeling protocols  
 
Element, mesh properties and boundary conditions 
 
The 9-node quadratic shell element, S9R5, is used as the computational element 
in the models. The maximum size of the element is assumed to be 
15mm×15mm; the corners of the cross-section are meshed with 4 elements 
(transversally); the minimum number of transverse elements in the web, flange, 
and lip is considered to be 4, 2 and 2, respectively. The typical mesh topology 
for different size of specimens in the parametric study, and the assumed 
boundary conditions are shown in Figure 3a and Figure 3b, respectively. 
 

 

(a) 

(b) 

Ref. Node

Ref. Node
Ex Ez

EzEx

P

P

Centroid

Centroid

Ux=0; Uy=0; 
Uz=0; Ry=0;

Ux=0; 
Uz=0; Ry=0;

xy
z
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Material model 
 
Two nominal yield strengths of 33 ksi (228 MPa) and 50 ksi (345 MPa) are used 
in this study corresponding to the available strength of the products. An elastic-
perfectly-plastic material model is adopted as a conservative model for the 
parametric analyses. The elastic Young’s modulus and the Poisson’s ratio are 
29500 ksi (2.03×105 MPa) and 0.3, respectively. For the plastic behavior, von 
Mises yield criterion and associated flow are adopted.  
 
Cold roll-forming effects 
 
To include the cold roll-forming effects thirty-one through thickness integration 
points are required, which results in a large increase in computational effort. 
However, it has been shown that the cold roll-forming effect increases the 
member strength about 2% on average (Torabian et al., 2014a). Therefore, the 
cold roll-forming effect is ignored in the parametric study reported herein and no 
residual stress is introduced into the finite element models. This assumption can 
lead to make the parametric study modeling protocol modestly biased 
(conservatively) on the strength prediction (about -2%), which can be 
considered in the interpretation of the results. 
 
Geometrical imperfections 
 
To employ a generalized imperfection pattern in the parametric analysis, global, 
distortional, and local buckling modes are introduced into the finite element 
models consistent with the verification studies. As discussed in Torabian et al., 
(2014a) the finite element models with the “PGPDPL” imperfection pattern, 
which is defined as positive global, positive distortional, and positive local 
buckling shape pattern under uniform compression (see Figure 4 for the 
“positive” sign convention), provides a lower-bound prediction of the capacity 
for lipped channels. The positive imperfection makes the flanges of the lipped 
channel cross-section move outward at the mid-height, which provides lower 
post-buckling strength (Dinis, Camotim, & Silvestre, 2007). Accordingly, the 
PGPDPL imperfection pattern is adopted as a lower-bound assumption for 
performing parametric analyses. The positive sign for the global imperfection 
(bow and camber) is always defined to insure that the eccentricities are 
maximum at the mid-height of the specimen. The selected shapes of the 
imperfections are schematically shown in Figure 4. The 50% CDF values are 
used for the imperfection magnitude (Torabian et al., 2014a; Zeinoddini & 
Schafer, 2012). These assumptions on the imperfection result in a biased model 
(conservatively) for the strength prediction (at least -3%), which can be 
considered in the interpretation of the results. 
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Figure 4  Imperfections pattern (positive sign convention) used in the parametric study  

 
Loading and solution method 
 
Including one specimen for pure axial loading, 127 evenly distributed P-M1-M2 

load combinations (30o intervals in azimuth and 5o in elevation direction) are 
considered for each beam-column model. Displacement is applied at the 
reference node (see Figure 3b) for most of the specimens except for the 
specimens that has large eccentricity (more like a beam). For those specimens, 
force and moment are applied at the reference node. In the parametric study, the 
arc-length (Riks) method is implemented for the equilibrium solver. 
 

Parametric analysis matrix: Cross-section selection 

There are 364 structural stud cross-sections in the SFIA product list for 
structural lipped channels (SFIA, 2012). Depths of the cross-sections vary from 
2.5 to 16 inches. To select a representative subset, several dimensionless 
parameters are considered to characterize the cross-sections in the product list. 
Accordingly, 75 cross-sections covering the range of variations of the selected 
dimensionless parameters are employed in the parametric analyses. 
 
The dimensionless parameters considered are depth-to-width ratio (Figure 5a), 
flange-to-lip ratio (Figure 5b), local (Figure 5c) and distortional (Figure 5d) 
slenderness, and the ratio of local to distortional nominal axial capacity (Figure 
5e and 5f). The popularity of the cross-sections in construction, and cross-
sections used in previous experiments are also considered in selecting the final 
cross-sections for the parametric study. 
Local (Pcrl) and distortional (Pcrd) axial buckling loads and the corresponding 
half-wave lengths, Lcrl and Lcrd are calculated using CUFSM 4.06. Assuming the 

Local Distor onal Global(Major + Minor) 

CUFSM+cFSM 
Sine func on 

Point 
load 

369



 

 
 
 

yield load for column global buckling, Pne=Py, the local (l) and distortional (d) 
slenderness are determined for all cross-sections.  
 

 
Figure 5  Selecting cross-sections for parametric study based on the dimension parameters 

 
Using the calculated local and distortional slenderness, the axial nominal 
capacity of the cross section is also determined to identify the governing mode 
of failure of the specimens. To account for the clamped distortional buckling 
end condition, an empirical relationship developed for boosting the distortional 
buckling critical load is implemented to the elastic distortional buckling load 
and the associated distortional slenderness (Moen, 2008; Torabian et al., 2014a). 
A length of 3Lcrl is assumed for short specimens which provides a large increase 
above the simply supported distortional buckling minimum, and a length of 3Lcrd 
is assumed for longer specimens which provides minimal increase to the simply 
supported elastic distortional buckling load. The axial capacity of the specimens 
having both lengths is calculated for all cross-sections. The Pcrl/Pcrd ratio is used 
to identify whether the local or the distortional buckling governs the specimen 
strength. As a summary, the parametric analysis matrix is consisted of 75 cross-
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sections, 2 different lengths (3Lcrl and 3Lcrd) and 127 load combinations for each 
model. Accordingly, 19,050 different beam-column models have been analyzed 
to failure to evaluate the prediction methods. 
 
FEM results and reliability analysis  
 
To study the results more quantitatively, the reliability index or safety index, β0, 
which is a measure of the reliablity or safety of the structural member, is 
determined based on the available parametric study results and the 
corresponding predicted results. Pridiction methods include current AISI-S100-
12 (DSM method) and the proposed beam-column DSM presented herein. These 
two methods share common anchor points for isolated P, M1 and/or M2. Larger 
β0 implies higher reliability and lower probabilty of failure.. The reliability index 
is calculated using the method described in Chapter F of AISI-S100 (2012) 
(AISI-S100, 2012). Correspondingly, the strength of the tested member should 
satisfy Eq. F1.1-1a of AISI-S100 (for LRFD) as follows (AISI-S100, 2012), 

 iQi Rn
 

(25)
  

where  iQi  is the required strength (factored loads) based on the most critical 

load combination determined in accordance with Section A5.1.2 for LRFD;  is 
the resistance factor and Rn is the average value of all test results. The resistance 
factor   can be calculated as follows (AISI-S100, 2012), 

 C (MmFmPm )e
0 V 2

mV 2
FCPV 2

PV 2
Q

 
(26)

 
 

where, C, the calibration factor is 1.52 for LRFD method (see more details in 
Meimand and Schafer, 2014); Mm is the mean material factor (Mm = 1.05); Fm is 
the mean fabrication factor (Fm = 1.00); Pm is the mean value of the professional 
factor (Pm is the mean of the test-to-predicted ratio); 0 is the target reliability 
index which is assumed to be 2.5 for structural members (LRFD); Vm is the 
coefficient of variation for the material factor (Vm = 0.10); VF is the coefficient 
of variation for the fabrication factor (VF = 0.05); Cp=(1+1/n)/m/(m-2) is the 
correction factor, where n in the number of the tests (simulations) and m is the 
degrees of freedom (=n-1), since a large number of simulations have been done, 
CP is assumed to be 1.0; VP is the coefficient of variation for the professional 
factor (Vp is the coefficient of variation of the test-to-predicted ratio); VQ is the 
coefficient of variation for the load effect (VQ=0.21 for the LRFD method). 
 
Mean test-to-predicted ratios (i.e., FEM-to-predicted ratio in this study) and the 
associated standard deviations for both current AISI-S100-12 (DSM method) 
and the proposed beam-column DSM are summerized in Table 1 for all 
specimens. Figure 6 illustrates the FEM-to-predicted ratio (FEM/n) scatter vs. 
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local slenderness for short specimens and vs. distortional slenderness for long 
specimens. 
  
In Table 1a and 1b, the reliability index is back calculated from Eq. 5.2 for two 
different resistance factors; and the resistance factor is also calculated based on 
the target reliability of 2.5. Two resistance factors 0.85 (typical for columns) and 
0.9 (typical for beams) have been investigated for the beam-column member. 
 

 
Figure 6  Results of the parametric study: (a) All points; (b) non-anchor points 

 

As the anchor points are common between the proposed method and the current 
AISI-S100-12 method, evaluation at the anchor points provides the same 
reliability. Accordingly, in Table 1 two data sets are considered: Data set “All” 
that includes all data points (anchor and non-anchor points, see Figure 6a) and 
data set “15o<��<75o” that includes just results away from the anchor points 
(Figure 6b). Although the difference is small, the non-anchor results provide a 
more reasonable reliability assessment for the newly proposed method. 
 
The reliability analysis in Table 1a shows that the current beam-column design 
method in AISI-S100-12 is conservative. The calculated reliability indices of the 
AISI-S100-12 linear interaction equation for “15o <��<75o” are 3.17 (=0.85) 
and 2.96 (=0.90), which are larger than the target reliability index of 2.5. The 
calculated reliability index of the newly proposed beam-column DSM method is 
2.47 (=0.85) and 2.27 (=0.90); close to the target reliability index. As 
discussed previously, the modeling protocols used for simulation are a minimum 
of -5% biased in strength. Revising the mean values by 5% increase and 
recalculating the reliability indexes results in the reliability index of 2.64 
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(=0.85) and 2.44 (=0.90) for the newly proposed beam-column DSM method 
(Table 1b), which satisfies the target reliability index. 
 
Table 1  Reliability analysis on design methods : (a) AISI-S100-12; (b) New DSM beam-column 

 
*
5% increase in Pm due to biased modeling assumptions 

 

Future Work 
 
Work on an additional 36 Zee-section tests, refining and extending the 
parametric studies with the FE model, finalizing the design equations, and user-
friendly computational design tools are ongoing. 
 
Conclusions 
 
A new design formulation that directly incorporates stability under the actual 
applied P-M1-M2 action and inelastic reserve in bending is proposed. This new 
Direct Strength Method (DSM) for beam-columns provides capacity predictions 
on average 20% higher than current design formulations, but still remains 
conservative - future improvements are also still desired. A comprehensive 
parametric analysis on lipped channels using a verified modeling protocol has 
been performed to evaluate the current beam-column design method and the 
proposed beam-column DSM. The parametric analysis includes 19,050 capacity 
points for 75 independent beam-column members. Reliability analyses of the 
current beam-column design method in the AISI specification and the newly 
proposed beam-column DSM using both test results and parametric analyses 
results show that the current method is a conservative design method and the 
new proposed method can provide a more reasonable strength prediction. 
 

(a) 
No. of 
spec. 

AISI-S100-12 Linear Interaction 

Pm Vp 
0 

Data Set =0.85 =0.9   0=2.5 

All 19050 1.27 0.17 2.99 2.80   0.98 

15o<PM<75o 13650 1.31 0.14 3.28 3.07 1.05 

	
(b) 

No. of 
spec. 

New Beam-Column DSM 

Pm Vp 
0 

Data Set =0.85 =0.9   0=2.5 

All 19050 1.08 0.18 2.39 2.20   0.82 

15o<PM<75o 13650 1.08 0.16 2.47 2.27 0.84 

15o<PM<75o * 13650 1.14 0.16 2.64 2.44   0.88 
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