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Abstract 

 

In this paper a novel method is presented for the modal decomposition of thin-

walled members. The proposed method follows the logic of the constrained 

finite strip method (cFSM), however, polynomial longitudinal shape functions 

are applied together with a longitudinal discretization. Thus, strips are 

transformed into multiple shell finite elements. The longitudinal shape functions 

are selected in such a way that modal decomposition similar to cFSM can be 

realized, therefore, the new method can conveniently be described as 

constrained finite element method (cFEM), possessing all the modal features of 

cFSM, but with significantly more flexible applicability. The method is briefly 

presented and illustrated by global buckling problems. 

 

Introduction 

 

For thin-walled members subjected to compressive axial stresses three types of 

basic buckling phenomena are usually distinguished: local, distortional and 

global buckling. Each has its characteristic post-buckling behavior, thus, it is 

important to clearly classify the various buckling modes in order to be able to 

assess realistic design capacity. 

 

Two basic tasks can be mentioned in the context of global-distortional-local 

classification. One is the pure critical load calculation when the aim is to 

calculate critical load with forcing the member to deform in accordance with a 

buckling class. The other is buckling mode identification, when critical load is 

calculated without any preliminary restriction on the deformations, and then the 

buckled shape it is identified, i.e., the contributions of various mode classes are 

defined. To be able to solve both of these basic tasks, the solution method must 

use a modal base system, i.e., the full displacement field of the member must be 

expressed by special modal base functions. During the last few decades two 

approaches have been evolved possessing the above modal feature. First, the 

generalized beam theory (GBT), see Silvestre et al (2011), later the constrained 
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finite strip method (cFSM), see Adany and Schafer (2008). Both approaches 

have limitations. For example, in case of cFSM the member and its loading have 

to be uniform along the member length as a direct consequence of the initial 

assumptions of the semianalytical FSM (Cheung and Tham, 1997). 

 

To overcome the limitations of FSM, a novel shell finite element is proposed 

here. The longitudinal shape functions are selected in such a way that 

constraining similar to cFSM can be realized. The resulted method can readily 

be described as constrained finite element method (cFEM) which has the same 

advantageous features as those of the original cFSM, while provides more 

general practical applicability.  

 

In this paper the proposed cFEM method is briefly presented, then numerical 

examples are shown. The numerical results prove the concept of the new method, 

as well as demonstrate its potential. Though the method itself is general, in this 

paper only global buckling problems are shown, while other buckling types will 

be discussed in other papers. 

 

 

From FSM to FEM 

 

In finite strip method a member is discretized into longitudinal strips, instead of 

finite element method, which applies discretization in both the longitudinal and 

transverse directions. In Figure 1 a single strip is highlighted, along with the 

local coordinate system and the degrees of freedom (DOF) for the strip. 

 

 
Figure 1: Coordinates, Finite Strip DOF 

 

 

In FSM the displacements are approximated as follows. 
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with the linear (Nx1) and cubic (Nx3) transverse shape functions as follows: 
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where a is the member length, and b is the strip width. 

 

The above formulae represent pinned-pinned boundary conditions. An important 

feature of the longitudinal shape functions is that (i) the same longitudinal 

functions are used for u and w, and (ii) the longitudinal function for v is the first 

derivative of that used for u and w. By keeping these above characteristics, the 

formulae can be generalized, and various end conditions can be described, as in 

Cheung and Tham (1997) and Li and Schafer (2009), where trigonometric series 

are used.  

 

Here an alternative generalization is applied: instead of using trigonometric 

functions (or function series), polynomial longitudinal shape functions are used, 

as typical in finite element method.  Our goal here is to find longitudinal shape 

functions with the following features: (i) for w displacement C
(1)

 continuous 

functions should be used which are practically useful for handling various end 

restraint conditions, (ii) shape functions for u are identical to those for w, (iii) 

they must be able to exactly satisfy the constraining criteria for mode 

decomposition. Thus, for u and w standard cubic shape functions are used, while 

second-order functions are used (i.e. 3-point interpolation) for v (which is 

essential for the constraining). The interpolations are as follows: 
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with the second-order (Ny2) and third-order (Ny3) longitudinal shape functions as: 
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With the above longitudinal shape functions the ‘strip’ is transformed into a 

‘shell finite element’. This shell element is unusual, since longitudinal and 

transverse directions are distinguished, and different interpolation functions are 

used for the various degrees of freedom and various directions, including linear, 

second-order and cubic interpolation functions. The details of this shell element 

are not discussed here, but it can be understood that the resulted shell element 

has 6 nodes, some with 7- DOF and some with 1-DOF, so that the total number 

of DOF of the element is 30.  

 

 

Constraining 

 

In this paper global modes are discussed only. The global modes satisfy three 

criteria: (i) no transverse extension, (ii) no in-plane shear, and (iii) no transverse 

curvature. With the proposed shape functions all these three criteria can be 

exactly satisfied, which is demonstrated as follows.  
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The ‘no transverse strain’ criterion is: 
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Using the above shape functions: 
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This is satisfied for any y if (and only if) u1 = u2. 

 

The ‘no in-plane shear’ criterion is: 
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Using the above shape functions, performing the derivations and considering 

also the ‘no transverse strain’ criterion (i.e., u1 = u2 = u) the criteria lead to a 

second-order polynomial expression as follows: 
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This is satisfied only if all the i coefficients are zero, which leads to a system of 

3 equations from which the following relationships are obtained between the 

DOF of the element:  
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It is to note that the right-hand-side of the above equations are the angle of 

rotation (around z axis) of the edge line of the element at y = 0, y = a/2, and at 

y = a, respectively, which angles are unambiguously defined by the lateral 

displacement of the element (and vica-versa). 

 

Finally, the ‘no transverse curvature’ criterion is as follows:  
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By substituting the w(x,y) function the transverse curvature expression can be 

written in the form: 
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This is satisfied only if all the ij coefficients are zero, which lead to a system of 

equations (in this case: 8 equations). This system of equations leads to 8 

relationships between the various nodal displacements, which finally can be 

written by two equations as follows: 
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Note, these two equations express that the edge of the element at any y location 

remains straight. 

 

 

Numerical examples: overview of the considered problems 

 

Both column and beam problems are considered, as shown in Fig 2. In all the 

cases the member is assumed to have simple supports at both ends. In all the 

examples buckling is solved, by calculating critical forces or critical moments. 

In case of columns major- and minor-axis flexural buckling (referred also as ‘F 

maj’ and ‘F min’) and pure torsional buckling (referred also as ‘T’) are 

considered, while in case of beams lateral-torsional buckling (LT) is calculated. 

(Note, here doubly-symmetrical cross-sections are discussed only.) Various 

buckling lengths are assumed, including (very) short and long members. 

 

72



Two cross-sections are selected, as shown in Fig 3. The first one is the same 

IPE400 profile. The one named ‘I-narrow’ is similar to IPE400, but with 

substantially narrower flanges.  

 

 
 

Load1 Load2 Load3 

Figure 2: The considered buckling problems 

 

 

 
IPE400 I-narrow 

Figure 3: Cross-sections for numerical studies (dimensions in mm) 

 

Two materials are considered, both having characteristics similar to regular steel. 

However, previous studies highlighted that the applied constraining (namely: the 

‘no transverse strain’ criterion) introduces an increase of the axial stiffness (as 

well as all the stiffnesses associated with warping), therefore, if the comparison 

of various methods is the goal, the Possion’s ratio should be set to zero. (For 

more details, see Ádány and Visy, 2012). ‘Mat0’ here is an isotropic material, 

characterized by E = 210 000 MPa, =0, and G = 105 000 MPa. ‘Mat1’ is an 

orthotropic material, with E = 210 000 MPa, =0, and G = 80 770 MPa (i.e., the 

shear modulus is equal to that of a real steel material). 

 

 

Numerical examples: methods 

 

The problems are solved by using various methods. Namely: (i) analytical 

formulae, (ii) shell finite element analysis by using a commercial software 

package, (iii) constrained finite strip analysis as implemented in CUFSM (2006) 

(iv) generalized beam theory as implemented in GBTUL (2008), and (v) the 

here presented constrained finite element analysis (cFEM). 
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cFEM analysis 

In case of cFEM analysis the member is divided into 10 (equal length) elements 

longitudinally, while the cross-section is discretized into 12 elements, with four 

elements in the web and four elements in each flange. This, without the 

constraints, altogether means 1131 DOF.  When constraints are used, the total 

DOF number drastically reduces and drops to 87. However, if supports are 

considered and the analysis is limited to a specific buckling mode, the effective 

DOF number is further decreasing. For example, in case a flexural buckling 

problem DOF number can be as little as 20 (practically: twice the number of the 

elements’ number longitudinally). Note, the same discretization is used for both 

cross-sections and for any member length. This leads to varying aspect ratios for 

the individual finite elements. In the performed numerical studies aspect ratio up 

to 70 has been applied, which is much higher than normally recommended, 

however, unlike in typical shell finite element applications, here the integrations 

are performed exactly, therefore, no numerical problems have been experienced.  

 

The end restraint is also shown in Fig 4. Moreover, a longitudinal support is 

defined at the very middle node of the member. 

 

In case of loading cases Load1 and Load2 the end force and end moment is 

defined as a distributed loading over the end cross-section. In case of Load3 the 

point load is defined as a concentrated force acting on the node in the very 

middle of the member. 

 

 

 
Figure 4: Discretization and end restraint in the cFEM model studies 
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Using the above-described shape functions, the total potential energy function 

can be established, from which the critical load multiplier(s) can be determined 

by using the usual steps of the energy method. When establishing the potential 

function, two options are considered here, depending on how the second-order 

strain term is defined. As discussed in Ádány (2012) classical buckling solutions 

are based on beam-theory and the assumed second-order strains are different 

from that applied in typical shell-theory-based numerical models (such as FSM 

or shell FEM). The corresponding formulae (for the longitudinal normal strain) 

are: 
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In the numerical examples both options are used, referred as cFEM-b and 

cFEM-s respectively. 

 

Analytical formulae 

Shell-model-based analytical formulae are also considered, as derived and 

discussed in Ádány (2012) and Ádány and Visy (2012). Formulae for critical 

forces can be derived by using ‘beam’ or ‘shell’ second-order strains, see Eq. 

(19).  In case of flexural buckling the corresponding formulae are as follows: 
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where L is the buckling length, A is the cross-section area, I is the second 

moment of area to the relevant (i.e., minor or major) axis with considering the 

own plate inertia terms(i.e., the bt
3
/12 terms), Ir is the second moment of area to 

the relevant axis with neglecting the own plate inertia terms. 
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where Iw and Iw,r are warping constant, with and without considering the 

through-thickness warping variation, respectively, It is the torsion constant, 

while r0S,r is the polar radius of gyration to the shear center (calculated with 

neglecting the own plate inertias). 
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Ansys shell FE analysis 

In case of shell finite element analysis the Ansys software is used (Ansys 2011). 

Thin shell elements are applied based on Kirchhoff plate theory (called 

SHELL63 in Ansys). A fine mesh is used for the FE analysis with approx. 

10 000 shell elements, properly restrained to model the simple-supported ends.  

The column is loaded by two concentrated longitudinal forces at its ends, equal 

in magnitude but opposite in direction, which is resulted a constant compression 

force along the column. The end forces are applied as distributed loads along the 

mid-lines of end cross-sections.  

 

The analysed members are constrained in order to exclude other than global 

buckling modes. Three types of constraints might be necessary, as follows: (c1) 

constraints to exclude cross-section deformations, (c2) constraints to enforce 

that the cross-section planes remain planes during axial and flexural 

deformations, and (c3) constraints to ensure that normals to the undeformed 

middle line remain straight and normal during the deformations. If c1+c2+c3 (i.e. 

all the three) constraints are used, this leads to classical shear-free bending 

deformations. The practical realization of the constraints is not an obvious 

process. The following ways are found to be the most convenient ones. 

 

Criterion c1 is enforced by introducing ‘virtual diaphragms’. Virtual diaphragm 

ensures that transverse displacements (i.e., transverse translations and rotation 

about the column’s longitudinal axis) in a cross-section are linked to each other. 

(In Ansys this kind of constraint can readily be realized by the CERIG 

command.) Criteria c2+c3 mean the exclusion of in-plane (membrane) shear 

deformations of the plate elements of the cross-section. A straightforward way 

to realize it in an Ansys FE analysis is to apply shear panels with a high value of 

sheta modulus (in Ansys SHELL28 are applicable). Note, some more details on 

how to do the constraining in Ansys can be found in Ádány and Visy (2012). 

 

cFSM and GBT analysis 

For constrained finite strip analysis the CUFSM (2006) software is applied, 

while the GBT analysis is performed by the GBTUL (2008) software. 

 

 

Numerical results: members with uniform loading 

 

First simple column and beam problems are shown, with uniform compressive 

force or uniform (major-axis) bending moment. The calculated critical 

forces/moments are compared in Tables 1 to 3. The tables prove that the 

proposed cFEM is able to reproduce the results of other methods with great 

precision and for a wide range of cross-sections and lengths. 
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Table 1 Columns with uniform compression: comparison of beam-type models 

cross-

section 

mate-

rial 

buckl. 

type 

member 

length 
analytic GBTUL cFEM-b 

   mm kN kN kN 

IPE400 Mat0 F min 1000 27239 27239 27240 

IPE400 Mat0 F min 2000 6809.8 6809.8 6809.9 

IPE400 Mat0 F min 5000 1089.6 1089.6 1089.6 

I-narrow Mat0 F maj 1000 211204 211204 211207 

I-narrow Mat0 F maj 2000 52801 52801 52802 

I-narrow Mat0 F maj 5000 8448.2 8448.2 8448.3 

I-narrow Mat0 T 1000 2757.8 2757.8 2757.8 

I-narrow Mat0 T 2000 1375.4 1375.4 1375.4 

I-narrow Mat0 T 5000 988.37 988.37 988.38 

 

 

Table 2 Columns with uniform compression: comparison of shell-type models 

cross-

section 

mate-

rial 

buckl. 

type 

member 

length 
analytic cFSM Ansys cFEM-s 

   mm kN kN kN kN 

IPE400 Mat0 F min 1000 26815 26815 26825 26815 

IPE400 Mat0 F min 2000 6783.0 6783.1 6784.3 6783.1 

I-narrow Mat0 F maj 1000 175509 175509 175509 175511 

I-narrow Mat0 F maj 2000 50246 50246 50252 50247 

I-narrow Mat0 T 1000 2752.9 2752.9 2753.3 2753.0 

I-narrow Mat0 T 2000 1374.8 1374.8 1374.9 1374.8 

 

 

Table 3 Beams with uniform moment: comparison of various models 

cross-

section 

mate-

rial 

buckl. 

type 

member 

length 
GBTUL cFEM-b cFSM cFEM-s 

   mm kNm kNm kNm kNm 

IPE400 Mat0 LT 1000 5365.6 5365.7 5251.7 5251.8 

IPE400 Mat0 LT 2000 1414.8 1414.9 1407.2 1407.1 

IPE400 Mat0 LT 5000 295.83 295.84 295.58 295.58 

I-narrow Mat1 LT 1000 235.33 235.33 234.92 234.92 

I-narrow Mat1 LT 2000 79.561 79.561 79.526 79.526 

I-narrow Mat1 LT 5000 26.002 26.002 26.000 26.001 
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Numerical results: beams with non-uniform loading 

 

For the buckling analysis an initial stress state is essential, since the potential 

associated with the external loading is dependent on the assumed stresses. (In 

other words, the geometric stiffness matrix is dependent on the stress 

distribution.) In the previous examples it was reasonable to assume that the only 

non-zero stress component is the longitudinal normal stress (y), the distribution 

of which is either uniform or linearly changing over the cross-section. When the 

loading is non uniform along the length of the member, the initial stress state is 

less obvious. 

 

In the following examples the cFEM buckling analysis is performed in two basic 

options, as far as initial stress state is considered. In option ‘simple’ x is 

neglected, y is defined by a simple beam-theory-based hand calculation, while 

xy is assumed to be zero in the flanges while equal to the shear force per web 

area in the web. In case of option ‘unconstrained’ the initial stress state is 

defined by a first-order stress analysis by using the same (but unconstrained) 

shell model that used for the buckling analysis. Moreover, the buckling problem 

is solved with considering/neglecting certain stress components.  

 

In Table 4 the effect of considered stress components is illustrated. It is obvious 

from the results that the in-plane shear is non-negligible. For the given problem 

the transverse normal stress has little effect, but this is mostly due to the fact that 

the assumed Poisson’s ratio is zero. Finally, it is also found that for the given 

problem it is almost indifferent how the longitudinal stresses are calculated: by a 

simple beam theory or by a shell FEM analysis. It is to note, however, that in 

more complicated cases there might be no obvious way to calculate longitudinal 

stresses by a beam theory (e.g., members with holes, and/or with unusual end or 

intermediate restraints, etc.).  

  

In Tables 5 and 6 the results of the cFEM analysis are compared to other 

methods. As it can be observed, the proposed cFEM results show excellent 

agreement with other methods’ results.  

  

Table 4 The effect of initial stress state 

cross-

section 

mate-

rial 

buckl. 

type 

member 

length 

cFEM-s  

y 

unconstr. 

cFEM-s  

y+xy 

unconstr. 

cFEM-s  

y+xy 

simple 

cFEM-s  

x+y+xy 

unconstr. 

   mm kNm kNm kNm kNm 

I-narrow Mat1 LT 1000 736.40 320.67 320.81 320.34 

I-narrow Mat1 LT 2000 243.61 108.32 108.33 108.30 
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Table 5 Beams with mid-point force: comparison of beam-type models 

cross-

section 

mate-

rial 

buckl. 

type 

member 

length 
GBTUL 

cFEM-b  

y+xy 

simple 

cFEM-b  

y+xy 

unconstr. 

cFEM-b  

x+y+xy 

unconstr. 

   mm kNm kNm kNm kNm 

I-narrow Mat1 LT 1000 320.85 320.81 321.25 321.25 

I-narrow Mat1 LT 2000 108.35 108.33 108.37 108.35 

 

 

Table 6 Beams with mid-point force: comparison of shell-type models 

cross-

section 

mate-

rial 

buckl. 

type 

member 

length 

Ansys 

shell 

cFEM-s  

y+xy 

simple 

cFEM-s  

y+xy 

unconstr. 

cFEM-s  

x+y+xy 

unconstr. 

   mm kNm kNm kNm kNm 

I-narrow Mat1 LT 1000 317.11 320.23 320.67 320.34 

I-narrow Mat1 LT 2000 108.07 108.28 108.32 108.30 

 

 

Numerical results: members with holes 

 

The previously presented examples can be solved by other numerical methods 

with modal feature, namely: CUFSM and/or GBTUL. To show the potential of 

the proposed cFEM, members with holes are also solved. If holes are present, 

neither GBT nor cFSM can solve the problem. At the same time, holes do not 

mean any difficulty or complication for the proposed cFEM at least if the 

member can still be modelled by using a highly regular finite element mesh. 

Here, two rectangular openings are assumed, as shown in Fig 5. The critical 

forces and moments are summarized in Tables 7 and 8.  

 

 
Figure 5: Members with holes 
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It can be concluded from the tables that the presence of holes leas to some 

reduction of the critical load. The reduction is dependent on the type of buckling: 

the most sensitive among the analyzed cases is the pure torsional buckling. 

Moreover, the assumed initial stress state might have non-negligible effect even 

if the member is subjected to pure compression. It is to observe that Ansys shell 

analysis results are closest to the cFEM results if ‘simple’ option is used, since 

the Ansys model itself is highly constrained, therefore its stress state is more 

similar to the ‘simple’ than to ‘’unconstrained’ stress state of cFEM.  

 

Table 7 Columns with holes: uniform loading 

cross-

section 

mate-

rial 

buckl. 

type 

member 

length 

Ansys 

shell 

cFEM-s  

y+xy 

simple 

cFEM-s  

y+xy 

unconstr. 

cFEM-s  

x+y+xy 

unconstr. 

   mm kN/kNm kN/kNm kN/kNm kN/kNm 

I-narrow Mat0 F min 1000 1037.2 1037.4 1037.6 1037.4 

I-narrow Mat0 F min 2000 259.60 259.60 259.60 259.59 

I-narrow Mat0 F maj 1000 163729 163959 166517 162596 

I-narrow Mat0 F maj 2000 48332 48342 48477 48204 

I-narrow Mat0 T 1000 2377.6 2385.2 1947.7 2199.0 

I-narrow Mat0 T 2000 1152.1 1154.3 963.05 1056.3 

 

 

Table 8: The effect of holes: columns (Load1) and beams (Load3) 

cross-

section 

mate-

rial 

buckl. 

type 

member 

length 

cFEM-s  

y+xy 

simple 

cFEM-s  

y+xy 

unconstr. 

cFEM-s  

x+y+xy 

unconstr. 

    no hole hole hole 

   mm kN/kNm kN/kNm kN/kNm 

I-narrow Mat0 F min 1000 1048.7 1037.6 1037.4 

I-narrow Mat0 F min 2000 262.38 259.60 259.59 

I-narrow Mat0 F maj 1000 175511 166517 162596 

I-narrow Mat0 F maj 2000 50247 48477 48204 

I-narrow Mat0 T 1000 2753.0 1947.7 2199.0 

I-narrow Mat0 T 2000 1374.8 963.05 1056.3 

I-narrow Mat1 LT 1000 320.23 316.60 315.97 

I-narrow Mat1 LT 2000 108.28 105.57 105.53 

IPE400 Mat1 LT 1000 7126.9 7244.9 7110.2 

IPE400 Mat1 LT 2000 1888.5 1894.1 1885.8 
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Concluding remarks 

 

In this paper a new method, the constrained shell finite element method (cFEM) 

is briefly presented. The method can be considered as the extension of the 

constrained finite strip method: polynomial longitudinal shape functions are 

used which lead to significantly more general applicability. From practical point 

of view, by using the proposed novel shell element the following problems can 

readily be handled: various end restraint conditions, intermediate (partial) 

restraints, variable loading along the length, variable thickness along the length, 

holes. In the paper the proposed cFEM has been illustrated by various global 

(buckling) problems. 
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