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Abstract

We consider the contribution of virtual Delbrück scattering to the photon emission by nuclei in the collision of two ultra-relativistic nuclei
Z1Z2 → Z1Z2γ and electron–nucleus collisions eZ → eZγ , in the photon energy range m � Eγ � mγ , where m is the electron mass and γ is
the Lorentz factor of the colliding nucleus. The discussed process has no infrared divergence. The total cross section is 50 barn for the Pb–Pb
collisions at the LHC collider. The spectral distribution obtained is considerably larger than for ordinary nuclear bremsstrahlung in the same
photon energy range.
© 2007 Elsevier B.V. All rights reserved.

PACS: 25.75.-q; 25.75.Dw
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1. Introduction

In this Letter we consider the emission of photons in
nucleus–nucleus and electron–nucleus collisions. For definite-
ness, we start with the Au–Au collisions at the RHIC collider
with the Lorentz factors γ1 = γ2 ≡ γ = 108, charge numbers of
nuclei Z1 = Z2 ≡ Z = 79 and Pb–Pb collisions at the LHC col-
lider with γ = 3000, Z = 82. As is well known, a freely mov-
ing, relativistic nucleus is accompanied by an electromagnetic
field that can be described classically by Liénard–Wiechert po-
tentials. These potentials can be expanded in terms of plane
electromagnetic waves which are known as equivalent photons
(so-called Weizsäcker–Williams approximation [1,2]). Equiva-
lent photons are not real photons, but they can be used in order
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to describe the interaction of the relativistic nucleus with other
charged particles, and in the course of these interactions, real
photons can be emitted.

In principle, for the process of photon emission one would
expect that the tree-level diagram in Fig. 1(a) should give the
by far dominant contribution especially in the region of not too
energetic real photons. It means that the equivalent photon is
converted to a real one by virtual nuclear Compton scattering
off the incoming nucleus. The scale for this process is given
by the comparatively huge nuclear mass: dσbrems ∼ Z6α3/M2

[here and below we use units with h̄ = c = 1, denote the elec-
tron (nucleus) mass by m (M), and α = 1/137].

The diagram in Fig. 1(b) represents a quantum electrody-
namic (QED) electron–positron loop correction to the diagram
in Fig. 1(a). It corresponds to Delbrück scattering of the equiv-
alent photon off the second nucleus, with the emission of a real
photon. This process has been mentioned for the first time in the
paper [3], but its cross section has never been calculated to the
best of our knowledge. This is done in the present Letter. The
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Fig. 1. (a) Representative diagram for ordinary nuclear bremsstrahlung which is the emission of a photon in a nuclear collision via a virtual Compton subprocess.
Bold lines denote nuclei. (b) Representative diagram for the emission of a photon in a nuclear collision via virtual Delbrück scattering in the leading QED order.
Thin lines denote the electron propagators. (c) Amplitude M1

2n
for the emission of a photon in the nuclear collision with the exchange of 2n virtual photons between

electron loop and the second nucleus.

perhaps surprising conclusion of this Letter is the following: the
processes Fig. 1(b) gives a contribution which is by one order
of magnitude lager than that of Fig. 1(a) in the photon energy
region

(1)m � Eγ � mγ.

The reason for the dominance of the virtual Delbrück scatter-
ing is that the scale for the cross section of the process Fig. 1(b)
is given by the small electron mass: dσ ∼ Z6α7/m2. Specifi-
cally, the ratio of the cross sections of the processes in Fig. 1(b)
and (a) is roughly (α2M/m)2 � 1. In the following, we explain
this conclusion in more detail.

2. Delbrück scattering

Properties of Delbrück scattering with real photons are well
known (see, e.g., the review [4], recent experiments [5] and
numerical results for the Delbrück scattering amplitudes in
Ref. [6]). The total cross section of this process σD(ωL,Z) de-
pends on the invariant (see Fig. 1 for the identification of q

and P )

(2)ωL = (q · P2)/M2,

which is equal to the initial photon energy in the laboratory
system (lab-system, denoted by the subscript L). Here, the
lab-system means the rest frame of the scattering nucleus, in
which the 4-momentum of the initial photon takes the form
q = (ωL,0,0,ωL), and the 4-momentum of the initial nucleus
is P2 = (M2,0,0,0).

The Delbrück scattering cross section vanishes at small en-
ergies, σD(ωL � m,Z) ∝ ω4

L, and tends to a constant, indepen-
dent of ωL, in the limit ωL � m. In the lowest order of the QED
perturbation theory, this constant is

(3)σD(ωL � m,Z) = σ
(0)
D (Z) = 1.07(Zα)4 α2

m2
.

For heavy nuclei, the strong-field effects [so-called Coulomb
corrections ∼ (Zα)2n corresponding to the exchange of 2n vir-
tual photons between the electron loop and the nucleus—see

Fig. 1(c)] decreases significantly this constant,

(4)σ
(0)
D (Z) → σD(Z) ≡ σ

(0)
D (Z)

rZ
,

where the reduction factor rZ > 1. The factor 1/rZ takes care of
the Coulomb correction reduction. For example, for Delbrück
scattering off the Au (Z = 79) and Pb (Z = 82) nuclei, the cross
section σD(Z) is 5.5 × 10−3 barn for Au and 6.2 × 10−3 barn
for Pb. These are, respectively, r79 = 1.7 and r82 = 1.8 times
smaller than σ

(0)
D (Z).

The main contribution to the total cross section given in
Eqs. (3) and (4) for ωL � m comes from a region where the
transverse momenta of the final photon k⊥ ∼ m. For transverse
momenta larger than the electron mass, but still smaller than the
photon energy, the differential cross section has the form

(5)dσD = α2(Zα)4fZ(k⊥/m)
dk2⊥
m4⊥

(m � k⊥ � ωL).

Here m⊥ =
√

m2 + k2⊥, and fZ(k⊥/m) is a slowly varying
function of the ratio k⊥/m. Numerical values of this function
can be found from plots and numbers given in Refs. [4,6].
In particular, for Z = 82, this function is f82(k⊥/m) ≈ 1.2 at
k⊥ � m and f82(k⊥/m) ≈ 0.48 at k⊥ = m.

It should be noted that the applicability of this distribution is
limited not only by the condition k⊥ � ωL, but also by the addi-
tional condition k⊥ � 1/R, where R ≈ 1.2A1/3 fm is the radius
of the nucleus with A the nucleon number. We have, roughly,
R ≈ 7 fm and 1/R ≈ 28 MeV for Au and Pb.

3. Delbrück scattering and the Z1Z2 → Z1Z2γ process

Let us consider now the process of a photon emission
without any excitation of nuclei in the final state: Z1(P1) +
Z2(P2) → Z1(P

′
1) + Z2(P

′
2) + γ (k). In this process, two nu-

clei with charges Z1e and Z2e and 4-momenta P1 and P2
collide with each other and produce a photon with the total four-
momentum k. Let Ei (γi = Ei/Mi ) and Eγ be the energy (the
Lorentz factor) of the ith nucleus and the photon energy in the
collider system, respectively. Here, the collider system means
the rest frame of the particle collider, which is not necessarily
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equal to our “lab-system” (the latter we define to be the rest
frame of the scattering nucleus). For identical colliding nuclei,
the collider system coincides with the center-of-mass system,
and in this case γ1 = γ2 = γ .

Because Zα ≈ 0.6 for the collisions considered, the whole
series in Zα has to be summed to obtain the cross section with
sufficient accuracy. Fortunately, there is another small parame-
ter 1/L = 1/ ln(γ1γ2) = 0.1–0.06, and it will be sufficient to
calculate the cross section in the leading logarithmic approxi-
mation (LLA) only.

Let M be the sum of all amplitudes Mn
n′ which correspond

to n exchanges with the first and n′ exchanges with the second
nucleus. This sum can be presented in the form

M=
∑
nn′

Mn
n′ = M1 + M̃1 + M2,

(6)M1 =
∑
n�1

M1
2n, M̃1 =

∑
n�1

M2n
1 .

The amplitude M1 contains a one-photon exchange with the
first nucleus [see also Fig. 1(c)], the amplitude M̃1 describes a
one-photon exchange with the second nucleus, and the ampli-
tude M2 has no one-photon exchange. According to this classi-
fication, we write the total cross section as

(7)σ = σ1 + σ̃1 + σ2,

where

(8)dσ1 ∝ |M1|2, dσ̃1 ∝ |M̃1|2,
and dσ2 corresponds to the rest of the terms. The integration
over the transferred momentum squared q2 results in the large
Weizsäcker–Williams logarithm ∼ L for σ1 and σ̃1, but not
for σ2. Therefore, the relative contribution of the σ2 term is

(9)σ2/σ1 ∼ (Zα)2/L < 0.04.

As a result, with an accuracy of the order of a few percent we
can neglect σ2 in the total cross section and use the equation
σ = σ1 + σ̃1.

Let us consider the cross section σ1. In the LLA, it can be
calculated using the equivalent photon approximation, in which
dσ1 is expressed via the number of equivalent photons dn1,
emitted by the first nuclei, and the cross section for the Del-
brück scattering off the second nuclei (see, e.g., Ref. [7]):

(10)dσ1 = dn1 σD(ωL,Z2).

The virtual Delbrück scattering amplitude decreases when the
virtuality of the initial photon Q2 = −q2 becomes larger than
m2⊥ (here, q = P1 − P ′

1 is the 4-momentum of the equivalent
photon). This means that the main contribution to dσ1 is given
by photons from the first nucleus with a small virtuality

(11)Q2 = −q2 = q2⊥ + (ω/γ1)
2 � m2⊥,

where ω = E1 − E′
1 is the energy of the equivalent photon in

the collider system. Therefore, we can neglect the virtuality of
this photon in the description of the cross section σD(ωL,Z2)

for the subprocess. From (11), we learn that we can usually
assume ω � m⊥γ1. Because ωL = (q · P2)/M2 = 2ωγ2, the

most important region for this cross section is [in accordance
with Eqs. (4) and (11)]

(12)m � ωL = 2ωγ2 � mγ1γ2, k⊥ ∼ m.

To calculate the spectrum of equivalent photons, we can use
Eq. (D.4) from Ref. [7] neglecting terms proportional to ω/E1,
since in our case ω � mγ1 � E1:

(13)dn1
(
ω,Q2) = Z2

1α

π

dω

ω

(
1 − Q2

min

Q2

)
F 2(Q2)dQ2

Q2
,

where Q2
min = (ω/γ1)

2 and F(Q2) is the nuclear electromag-
netic form factor. Here, we assume that m2⊥ is considerably
smaller than 1/R2. This implies that k⊥ � 1/R, so that we can
put F(Q2) = 1 in our calculation. Integrating dn1(ω,Q2) over
Q2 in the region

(14)Q2
min = (ω/γ1)

2 � Q2 � m2,

and then integrating the cross section (10) over ω in the region

(15)m/γ2 � ω � mγ1,

we obtain the total cross section σ1 in the LLA

(16)σ1 = α

π
Z2

1σD(Z2)L
2,

and the cross section σ̃1 is obtained by the replacement
Z1 ↔ Z2. As a result, the total contribution of the Delbrück
scattering to the cross section of the discussed process is equal
to

(17)σ = σ1 + σ̃1 = α

π

[
Z2

1σD(Z2) + Z2
2σD(Z1)

]
L2,

where L is given by

(18)L = ln

(
P1 · P2

2M1M2

)
= ln(γ1γ2),

and σD(Z) is given in Eq. (4).

4. Energy and angular distribution of photons

In the above calculations, we have considered only the total
cross section in the LLA. In a similar way, the energy and angu-
lar distribution of the final photons can be obtained. We present
here the final results only for the case of identical nuclei. The
differential over the photon momentum cross section reads

dσ = 2

π2
α(Zα)6 fZ(k⊥/m)

(m2 + k2⊥)2
L

d3k

Eγ

,

(19)m⊥ � Eγ � m⊥γ,

and the spectrum of photons is

(20)dσ = 4

π
Z2ασD(Z)L

dEγ

Eγ

(m � Eγ � mγ ).

Let us stress that this type of distribution is only valid for not
too soft photons. The Delbrück cross section vanishes for soft
photons, and, therefore, the discussed cross section in fact has
no infrared divergence.
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5. Comparison to nuclear bremsstrahlung

Tree-level photon emission by nuclear bremsstrahlung (vir-
tual Compton scattering) is described by the Feynman diagram
of Fig. 1(a), with the cross section dσbrems.

Now we can repeat the previous calculations with minor
changes, replacing virtual Delbrück scattering by virtual Comp-
ton scattering. In particular, the expression analogous to (10)
has the form

(21)dσbrems = dn1(ω)dσC(ω,E2,Eγ ,Z2),

where

(22)dn1(ω) = 2
Z2

1α

π
ln

(
γ1

ωR

)
dω

ω

is the number of the equivalent photons emitted by the first nu-
cleus, and σC is the cross section for the Compton scattering
of this photon off the second nucleus. For the Compton cross
section, we can use well-known expressions valid for a nucleus
approximated by a charged point particle, and this leads to

(23)dσbrems = 2

π
Z2

1ασT(Z2) ln

(
4γ1γ

2
2

Eγ R

)
dEγ

Eγ

,

where the nuclear Thomson cross section σT(Z2) is

(24)σT(Z2) = 8π

3

Z4
2α2

M2
2

.

The cross section dσ̃brems can be obtained by replacing indices
1 ↔ 2. This approximation is justified because the equivalent
photon energy range relevant for virtual Delbrück scattering, as
seen by the incoming nucleus, fulfills ωL ∼ Eγ /(2γ ) � m/2.
In this energy range, the conceivable influence of nuclear reso-
nances can be safely excluded (at higher photon energies, their
influence has been studied in [8]).

Comparing these formulae with the corresponding ones for
the Delbrück scattering, we find that the ratio

(25)
dσbrems

dσ1
∼ σT(Z)

σD(Z)
= 7.83rZ

(
m

α2M

)2

is small in the energy region given by Eq. (1), since σT(Z)/

σD(Z) ≈ 1/30 for the considered heavy nuclei.

6. eRHIC option

The obtained results can be easily modified for the process
of a photon emission in electron–nucleus collisions without
excitation of nucleus eZ → eZγ . Certainly, the emission of
photons in the direction of the electron beam is absolutely dom-
inated by ordinary bremsstrahlung. But for the emission in the
nuclear beam direction, we find out that the process via the Del-
brück scattering is dominant in a certain region of the photon
energy.

This consideration is motivated by the recent project of the
eRHIC collider which is now actively discussed as a promising
extension of the existing RHIC machine (see [9]). It is proposed
to built an additional electron ring with the energy Ee = 10 GeV

and, thus to create an electron–nucleus collider with parame-
ters:

Z1 = −1, γ1 = 2 × 104,

(26)Z2 ≡ Z = 79, γ2 = 108.

The process eZ → eZγ via virtual Compton scattering and via
virtual Delbrück scattering is described by Feynman diagrams
Fig. 1(a) and (b), respectively, but with the first nucleus be-
ing replaced by the electron. The corresponding calculations
are basically the same as above with some minor changes. In
particular, in Eq. (7) we can neglect not only σ2, but σ̃1 as well:

(27)dσeZ = dne σD(Z),

with (see, e.g., Ref. [7])

(28)dne = 2
α

π

(
1 − x + 1

2
x2

)
dω

ω
ln

(
mγ1

√
1 − x

ω

)
,

where x = ω/Ee. Integrating this cross section in the region
(15), we obtain the total cross section

(29)σeZ = α

π
σD(Z)L2,

which leads to the value σeZ = 0.19 × 10−3 barn for the para-
meters (26).

The region (15) can be split into two subregions: m/γ2 �
ω � m (subregion A) and m � ω � mγ1 (subregion B). The
most interesting is the subregion A, in which the photons fly
along the beam direction of the scattering nucleus; their spec-
trum is given by

(30)dσ
(A)
eZ = 2α

π
σD(Z) ln

(
γ1Eγ

m

)
dEγ

Eγ

for m � Eγ � mγ2. The contribution of the ordinary nuclear
bremsstrahlung in the same direction and the same region of
energy is smaller for heavy nuclei and equals:

(31)dσbrems = 2α

π
σT(Z) ln

(
4γ1γ

2
2

Eγ R

)
dEγ

Eγ

.

In the subregion B , the photons fly along the electron beam
direction, and their spectrum is absolutely dominated by the
ordinary bremsstrahlung, described by the well-known Bethe–
Heitler formula (see, for example, the textbook [1]).

7. Conclusions

For both the Z1Z2 → Z1Z2γ as well as the eZ → eZγ

processes, the emitted photon energy region we consider is
m � Eγ � mγ in the collider reference system, and we estab-
lish the dominance of the virtual Delbrück scattering process
over ordinary nuclear bremsstrahlung. In the LLA, the total
photon emission cross section corresponding to this region is
given by Eq. (17) for Z1Z2 → Z1Z2γ . In particular, for Au–
Au collisions at the RHIC collider, σ = 14 barn, and for Pb–Pb
collisions at the LHC collider, the total cross section is σ = 50
barn. Note for comparison, that the last cross section is 6 times
larger than for the total hadronic/nuclear cross section in Pb–Pb



I.F. Ginzburg et al. / Physics Letters B 658 (2008) 125–129 129

collisions, which is roughly 7.9 barn. Corrections to this result
are of the order of 1/ ln(γ 2) = 0.06 for the LHC Pb–Pb op-
tion. The energy and angular distribution of photons is given in
Eq. (19). For eZ → eZγ , our main result is given in Eq. (29).

If our process can be detected experimentally, then one can
effectively study Delbrück scattering in the range of the initial
photon energy up to ωL ∼ 2mγ 2 which is 10 GeV for RHIC,
8 TeV for LHC and 2 TeV for eRHIC (in the rest frame of the
colliding nucleus).

Finally, we would like to point out that there is a numerically
not large, but conceptually interesting so-called unitarity cor-
rection to the process Z1Z2 → Z1Z2γ . It is due to the unitarity
requirement for the S matrix and corresponds to the exchange
of light-by-light blocks between nuclei; this correction is ana-
lyzed in detail in [10].
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