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Abstract Unitarity corrections to several electromagnetic
processes in collisions of relativistic heavy nuclei are con-
sidered. They are due to the unitarity requirement for the
S-matrix and correspond to the exchange of a light-by-light
scattering block between colliding nuclei. We obtain im-
proved results for the corrections to e+ e− and μ+μ− pair
production as well as new results for unitarity corrections to
the production of photons via virtual Compton and virtual
Delbrück scattering. These corrections can be numerically
large; e.g., the μ+μ− pair production cross section is re-
duced by about 50% and nuclear bremsstrahlung by about
15 ÷ 20%.

1 Introduction

The subject of this paper is the so-called unitarity correc-
tions, which form a conceptually interesting class of cor-
rections for quantum electrodynamic (QED) processes. The
unitarity corrections come from the unitarity requirement
for the S-matrix and are relevant for processes in which the
lowest-order amplitude is large, i.e., in which a large number
of photons and/or real electron–positron pairs are typically
produced. One class of such processes is bremsstrahlung and
lepton-pair production in ultra-relativistic heavy-ion colli-
sions.

In order to put the current investigation into perspective,
let us briefly recall that heavy-ion collisions definitely con-
cern matter under extreme conditions. The impact parame-
ters ρ relevant for all cross sections under study in the cur-
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rent paper are in the range of the electron Compton wave-
length,

ρ ∼ λ-e = �

mc
= 386 fm. (1)

Now, the typical electric fields, as seen in the laboratory
frame, generated by a particle moving at a speed character-
ized by a relativistic factor γ , are of the order of

E (γ ) = Ze

λ-2
e

γ = Zeγm2c2

�2

= m2c3

�e

Ze2

�c
γ = EcrZαγ, (2)

where Ecr is Schwinger’s critical field strength. The quan-
tity Zαγ assumes values in the range of ∼60 for RHIC and
∼1800 for the LHC, illustrating that the flash field accompa-
nying the nuclei may well exceed the critical field by several
orders of magnitude, for very small spatial regions and very
small times.

In view of the huge pair-production and photoproduc-
tion cross sections encountered under these conditions, it
is natural that the importance of unitarity corrections has
been recognized for the first time within the production of
electron–positron pairs in collisions of heavy nuclei (see [1]
and the reviews in [2, 3]). The unitarity correction for the
one electron–positron pair production process,

Z1 + Z2 → Z1 + Z2 + e+e−, (3)

has been calculated in [4] and found to be about 3 ÷ 4%.
Estimates of unitarity corrections for the μ+μ− single-pair
production process

Z1 + Z2 → Z1 + Z2 + μ+μ− (4)
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Fig. 1 Feynman diagram for
e+e− pair production in
heavy-ion collision (first Born
approximation). Bold lines
denote nuclei, thin lines denote
electrons

Fig. 2 Feynman diagram for the unitarity correction to e+e− pair pro-
duction in heavy-ion collisions

have been obtained in [5]; in this case the unitarity correc-
tion is found to be large (∼50%).

Let us consider these corrections conceptually using the
process (3) as an example. In this case the lowest-order
Feynman diagram is represented by Fig. 1, while the dia-
grams of the type depicted in Fig. 2 correspond to the uni-
tarity correction. These diagrams include blocks of virtual
light-by-light scattering via an electron loop, whose imagi-
nary part corresponds to the production of electron–positron
pairs by the Cutkosky rules.

For Z1Z2α � 1 and γ � 1, it is possible to treat the nu-
clei as sources of an external field and to calculate the proba-
bility of n-pair production Pn(ρ) in collisions of two nuclei
at a fixed impact parameter ρ [6]. The sum over n of the
probabilities Pn(ρ) for n-pair production must be unity. The
unitarity requirement is fulfilled by the Poisson distribution,

Pn(ρ) = n̄n
e

n! e−n̄e , (5)

whose sum over n gives 1. Here n̄e ≡ n̄e(ρ) is the aver-
aged number of produced pairs at a given ρ, and the factor
exp(−n̄e) is the vacuum-to-vacuum transition probability

P0(ρ) = e−n̄e = 1 −
∞∑

n=1

Pn(ρ). (6)

Roughly speaking, the probability for producing one pair,
given in perturbation theory by n̄e, should be modified to
read n̄e exp(−n̄e), and this correction is not small for an ap-
preciable value of n̄e. This means that also the cross section
for the one-pair production σ1 should be multiplied by an
appropriate factor exp(−n̄e) in the integral over the impact
parameter, which corresponds to the following replacement:

σ1 =
∫

n̄e(ρ)d2ρ → σ1 + σ unit
1 =

∫
n̄e(ρ)e−n̄e(ρ) d2ρ, (7)

Fig. 3 Ordinary nuclear bremsstrahlung is the emission of a photon in
a nuclear collision via a virtual Compton subprocess

where, finally,

σ unit
1 = −

∫
n̄e(ρ)

[
1 − e−n̄e(ρ)

]
d2ρ (8)

is the unitarity correction to the one-pair production cross
section.

In [4, 5], rather rough approximations were used for
the function n̄e(ρ). Here, our intention is to use improved
approximations for these functions. Thus, the aims of the
present paper are (i) to revise the problem of the impact-
parameter dependent pair-production probability n̄e(ρ),
(ii) to update the unitarity corrections for the previously cal-
culated processes (3) and (4), (iii) to calculate the unitarity
correction for photon emission at nuclear collisions,

Z1 + Z2 → Z1 + Z2 + γ. (9)

In the latter case, the probability for the production of
one and only one photon in a heavy-ion collision is modi-
fied by the necessity of suppressing the possibility of simul-
taneous production of electron–positron pairs. In the impact-
parameter representation, this implies that the cross section
for photoproduction, σγ , should also be multiplied by the
factor exp(−n̄e). This corresponds to the replacement

σγ =
∫

Pγ (ρ)d2ρ → σγ + σ unit
γ

=
∫

Pγ (ρ)e−n̄e(ρ) d2ρ, (10)

where Pγ (ρ) is the probability to emit a photon in the colli-
sion of two nuclei at a given impact parameter ρ. Therefore,
the unitarity correction in this case is given by the expression

σ unit
γ = −

∫
Pγ (ρ)

[
1 − e−n̄e(ρ)

]
d2ρ. (11)

It should be mentioned that there are two different mech-
anisms for photon emission in nuclear collisions: ordinary
bremsstrahlung via virtual Compton scattering (see Fig. 3)
and the recently considered [7, 8] emission of a photon via
virtual Delbrück scattering, as illustrated in Fig. 4.

Both of the above-mentioned corrections to e+e− pair
production and to photoproduction correspond to the ex-
change of virtual light-by-light scattering interactions be-
tween the nuclei. Each block of light-by-light scattering
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Fig. 4 Emission of a photon in a nuclear collision via virtual Delbrück
scattering in the lowest order of QED

brings in an additional factor (Z1αZ2α)2 in the amplitude
of the corresponding process, and therefore such corrections
can be omitted for the scattering of light ions, for muon–
nucleus or electron–nucleus scattering. We definitely need
Z to be large for the correction to be appreciable, and con-
sequently this paper is focused on heavy-ion collisions.

We organize our paper as follows. In Sect. 2, we briefly
recall relevant physical parameters for modern heavy-ion
machines and discuss a new approximation for the function
n̄e(ρ). Section 3 is devoted to the actual calculation of the
corrections. Specifically, we consider unitarity corrections
to e+e− and μ+μ− pair production in Sects. 3.1 and 3.2,
respectively, and we reserve the calculation of unitarity cor-
rections to the production of photons via virtual Compton
scattering to Sect. 3.3 and via virtual Delbrück scattering to
Sect. 3.4. Finally, some conclusions are drawn in Sect. 4.

2 Toward a revised representation
of the impact-parameter dependent pair production
probability

Recently, electromagnetic processes in ultra-relativistic nu-
clear collisions have found strong and partially renewed in-
terest in numerous papers (see the reviews [2, 3] and ref-
erences therein). Of topical importance are the RHIC col-
lider and the future LHC Pb–Pb option. It is therefore use-
ful to recall the basic physical parameters of these collid-
ers, namely the charge numbers of nuclei Z1 = Z2 ≡ Z and
their Lorentz factors γ1 = γ2 ≡ γ . These are given in Ta-
ble 1, which is cited here from [9]. Many of electromag-
netic particle-production processes are of imminent impor-
tance for two reasons: they are either “dangerous,” e.g. in
terms of possible beam losses and background, or they are
by contrast quite useful for monitoring some experiments at
the RHIC and LHC colliders [10].

To fix the conventions used, we mention that natural
units with � = c = 1 and with the fine-structure constant
α ≈ 1/137 are used throughout the text, and we denote the
electron and muon masses by m and μ, respectively.

As was mentioned in the introduction, the importance
of unitarity corrections has been recognized for the first
time at the process of electron–positron pair production be-

Table 1 Nuclear charge numbers Z and relativistic γ factors for mod-
ern heavy-ion machines

Collider Z γ

RHIC, Au–Au 79 108

LHC, Pb–Pb 82 3000

cause a large number of real electron–positron pairs are typ-
ically produced in ultra-relativistic heavy-ion collisions. In
the lowest QED order (Born approximation) this process is
described by the Feynman diagram of Fig. 1. Let n̄e ≡ n̄e(ρ)

be the expected (average) number of pairs to be produced in
the collision of two nuclei at a given impact parameter ρ.
A closed form of the corresponding expression was obtained
in [11, 12] although a complete and consistent interpretation
of the expressions found was only given later in [13]. One
issue is that n̄e(ρ) derived in [11, 12] actually requires a fur-
ther regularization, which was implemented in [14, 15].

As is evident from (8) and (11), the function n̄e(ρ) is a
very important quantity for the evaluation of unitarity cor-
rections. However, the obtained closed form for n̄e(ρ) is, in
fact, a nine-fold integral and its calculation is very labori-
ous. Therefore, a simpler approximate expression for n̄e(ρ)

is very desirable.
The properties of n̄e(ρ) have been studied in detail in

[4, 16]. The corresponding functional form for identical
heavy nuclei in the region ρ < γ/m reads

n̄e(ρ, γ,Z) = (Zα)4F(x,Z)
[
L − G(x,Z)

]
,

L = ln
(
γ 2), x = mρ. (12)

Here, γ � 1 is the usual relativistic factor (see Table 1).
The analytical expressions for the functions F(x,Z) and
G(x,Z) have been obtained in [4, 16] only for large val-
ues of the impact parameters, 1 � x = mρ < γ (see the
Appendix):

F(x,Z) = 56

9π2

lnx − f (Zα)

x2
,

F (x,Z) · G(x,Z) = 56

9π2

(3/2) lnx − f (Zα)

x2
lnx, (13)

where

f (Zα) = (Zα)2
∞∑

n=1

1

n[n2 + (Zα)2] (14)

is the well-known Bethe–Maximon function (in particular,
f (79α) = 0.3129, f (82α) = 0.3318). On the other hand,
for calculations related to unitarity corrections we should
know the functions F(x,Z) and G(x,Z) in the range x ∼ 1.

In [16] a closed-form expression for the function F(x,Z)

at intermediate impact parameters in the form of a five-
fold integral has been given. Tables provided in [16] give
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Table 2 The functions A(x) and B(x) as given in (16), calculated using the approach outlined previously in [17]

x A(x) B(x) x A(x) B(x) x A(x) B(x)

0.01 3.537 8.200 0.40 1.028 2.910 4.50 0.07273 0.3355

0.02 3.082 7.434 0.50 0.8879 2.573 5.00 0.06191 0.2956

0.03 2.805 6.927 0.60 0.7767 2.285 5.50 0.05327 0.2619

0.04 2.611 6.535 0.70 0.6895 2.085 6.00 0.04635 0.2339

0.05 2.460 6.199 0.90 0.5557 1.747 6.50 0.04072 0.2104

0.06 2.331 5.892 1.00 0.5039 1.614 7.00 0.03606 0.1903

0.07 2.218 5.613 1.50 0.3293 1.142 7.50 0.03217 0.1730

0.08 2.122 5.366 2.00 0.2323 0.8581 8.00 0.02887 0.1579

0.09 2.037 5.139 2.50 0.1725 0.6716 8.50 0.02604 0.1446

0.10 1.962 4.949 3.00 0.1331 0.5431 9.00 0.02360 0.1329

0.20 1.486 3.900 3.50 0.1066 0.4560 9.50 0.02149 0.1225

0.30 1.217 3.345 4.00 0.08717 0.3879 10.0 0.01965 0.1132

a very clear numerical picture of the function F(x,Z) for
x = 0.01 ÷ 100 and several important values of Z. For the
function G(x,Z), the approximation

G(x,Z) ≈ 1.5 ln (x + 1) + 1.2 (15)

(independent of Z) has been given in [16] as a rough indica-
tor of the non-logarithmic (in γ ) term in (12).

We improve this approximation by using the results from
a first Born approximation, and a different parameterization
has been employed altogether, namely

n̄e(ρ) = (Zα)4[A(x)L − B(x)
]

(16)

(for a list of numerical values, see Table 2). There is an ob-
vious connection between the above two sets of functions in
the limit of low nuclear charge numbers,

F(x,Z → 0) = A(x), G(x,Z → 0) = B(x)

A(x)
. (17)

First of all, it is reassuring to verify, based on the numerical
data presented in [16, 17], that the equality F(x,0) = A(x)

is valid in the phenomenologically important interval x =
0.01 ÷ 10 with an accuracy better than 5%.

One can now take the data for F(x,0) as given in [16]
and use a least-squares method in order to fit G(x,0) to nu-
merical data in Table 2, assuming the functional form (16).
A least-squares fit assuming the dependence

G(x,0) = 1.5 ln (x + a) + b (18)

gives as the best estimates a = 1.4 and b = 1.9, where the
prefactor of the logarithm is fixed by the ratio of the two
quantities discussed in (13). The approximation thus ob-
tained differs from B(x)/A(x) in the phenomenologically
most important interval x = 0.02 ÷ 5 by less than 2%.

Based on the deviation of F(x,Z = 0) from F(x,Z) by
no more than 25% due to Coulomb corrections for heavy
nuclei [16], we expect that the same deviation is valid in
a comparison of G(x,Z = 0) and G(x,Z). Taking into ac-
count that the function G(x,Z) is the subleading term of the
relative order of 1/L, we can conclude that the approximate
expression

n̄e(ρ) ≈ (Zα)4F(x,Z)
[
L − 1.5 ln(x + 1.4) − 1.9

]
,

L = ln
(
γ 2), x = mρ, (19)

which involves the function F(x,Z) from [16], has an accu-
racy of the order of 5%. In the calculations reported below,
we use this very expression.

3 Calculation of unitarity corrections

3.1 Unitarity corrections for e+e− pair production

Unitarity corrections for the process (3) have been consid-
ered in [4, 18]. Based on (8), we find that the unitarity cor-
rection is

σ unit
e+e− = −

∫ ρmax

ρmin

[
1 − e−n̄e(ρ)

]
n̄e(ρ)d2ρ, (20)

where the integration limits (minimum and maximum im-
pact parameters) are to be specified below. Since we are in-
terested in so-called “silent events” without any “touching”
of the nuclei, the physically allowed minimal value of the
impact parameter is

ρmin = 2R, (21)

where R is the nuclear radius. A priori, the upper limit is
ρmax = ∞, but due to fast convergence of the integral we
can use as well ρmax = 100/m for a quantitative estimate
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of the unitarity correction. Indeed, for large ρ, the asymp-
totics (13) allow for an expansion of the exponential for the
vacuum persistence amplitude in (10) and in analogous ex-
pressions used for the unitarity corrections in this article,
and thus there is a sufficiently large negative power of ρ

characterizing all integrands for large ρ; we can thus ne-
glect excessively large impact parameters in the evaluation
of all unitarity corrections. As a result, the integration region
in the variable x can be safely chosen as

x0 ≤ x = mρ ≤ xmax = 100, x0 = mρmin = 2mR. (22)

Here, m is the electron mass. Using the relevant physical pa-
rameters, we find x0 = 0.0361 for Au, x0 = 0.0368 for Pb,
x0 = 0.0385 for U and x0 = 0.0213 for Ca. Finally, the rela-
tive magnitude of the unitarity corrections for the considered
e+e− pair-production process (3) is

δe+e− = σ unit
e+e−

σBorn
, (23)

where the known Born cross section reads [19, 20]

σBorn = 28

27π
σ0

[
L3 − 2.198L2 + 3.821L − 1.632

]
, (24)

with

σ0 = (Z1αZ2α)2

m2
, L = ln(γ1γ2). (25)

For light nuclei with a non-excessive nuclear charge
number [(Zα)4L � 1], it is possible to calculate in the Born
approximation the following integrals:

Cn = 2π

n!
∫ xmax

x0

Fn(x)x dx, n = 2,3,4, (26a)

D2 = 2π

∫ xmax

x0

F 2(x)G(x)x dx, (26b)

E2 = 2π

2!
∫ xmax

x0

F 2(x)G2(x)x dx, (26c)

where F(x) ≡ F(x,Z = 0) and G(x) ≡ G(x,Z = 0). They
can be used to calculate, for light nuclei:

– The unitarity correction for light nuclei,

σ unit
e+e− = −2

(Zα)8

m2

(
C2L

2 − D2L + E2
)
. (27a)

– The total cross section for the production of two e+e−
pairs in collisions of light nuclei,

σ2 = (Zα)8

m2

(
C2L

2 − D2L + E2
)
. (27b)

and

– The leading logarithmic asymptotics for the total cross
section σn for n-pair production with n > 2,

σn = (Zα)4n

m2
CnL

n. (27c)

Using the parameterization (19), we obtain the following
numerical results for the coefficients listed in (26), which en-
ter the formulas listed in (27a), (27b), and (27c) for various
unitarity corrections and cross sections (in all integrals we
used the integration region (22) with x0 = 0.0213, which is
the value obtained for a typical nucleus of low charge num-
ber, namely Ca):

C2 = 2.21, C3 = 0.443, C4 = 0.119,

D2 = 15.5, E2 = 28.9.
(28)

The results from the previous investigations in [4] concern
only those coefficients that can be defined exclusively in
terms of F(x). The previous results read C2 = 1.33, C3 =
0.264, and C4 = 0.066. These differ from the new results
listed in (28), because in the previous investigation, a less
accurate representation of F(x) was used, which leads to
discrepancies especially when higher powers of F(x) enter
the integrands as given in (26).

As an example, using the result (28), we found that the
cross section for the production of two e+e− pairs for Ca–Ca
collisions at the LHC collider (γ = 3700) is

σ2 = 0.114 barn. (29)

For heavier nuclei, one cannot use the Born approxima-
tion F(x,Z) ≈ F(x,Z = 0) ≡ F(x) anymore. In this
case, one has to resort to numerical data given in Ta-
ble 1 of [16] for the heavy, collision systems Au–Au
and Pb–Pb and employ the relativistic factors as given
in Table 1. Indeed, unitarity corrections for the process
Z1Z2 → Z1Z2e

+e− have been considered in [4] and es-
timated to be δe+e− = −4.1% for Au–Au at RHIC and
δe+e− = −3.3% for Pb–Pb at LHC, where exactly the rel-
ativistic factors as given in Table 1 have been employed. We
recall that the ratio δe+e− has been defined in (23). Using
(19), we are now in a position to present the new values

δe+e− = −5.0% for the RHIC,

δe+e− = −4.0% for the LHC,
(30)

which differ from those obtained in [4] by about 20%.

3.2 Unitarity corrections for the μ+μ− pair production

Unitarity corrections for the process (4) have been roughly
estimated in [5]. Based on the considerations leading to (8)
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and (11), we can immediately write down the corresponding
formula:

σ unit
μ+μ− = −

∫ [
1 − e−n̄e(ρ)

]
PB(ρ)d2ρ, (31)

where PB(ρ) is the probability to produce a muon pair in
collisions of two nuclei at a given impact parameter ρ in the
Born approximation (the Coulomb corrections to this prob-
ability, which correspond to multiphoton exchange of the
produced e+e− with nuclei, are parametrically suppressed
due to the large muon mass and can be neglected [5]).

For a simple calculation, we can use the expression
for PB(ρ) given in the leading logarithmic approximation
(LLA) in [5]. It reads

PB(ρ) = 28

9π2

(Z1αZ2α)2

(μρ)2
Φ(ρ). (32)

Depending on the value of ρ, the function Φ(ρ) assumes
two different asymptotic forms, as shown in [5],

Φ(ρ) =
[

4 ln

(
γ

μρ

)
+ ln

(
ρ

R

)]
ln

(
ρ

R

)
; R � ρ ≤ γ

μ
,

(33a)

Φ(ρ) = ln2
(

γ 2

μ2ρR

)
; γ

μ
≤ ρ � γ 2

μ2R
. (33b)

This expression is valid for large values of ln(ρ/R), which
is correct for LHC but not for RHIC. Therefore, below we
consider the case of the LHC collider only.

Using formulae (31)–(33), we obtain

δμ+μ− =
σ unit

μ+μ−

σμ+μ−
= −49% for the LHC, (34)

where δμ+μ− is of course defined as the relative magnitude
of the unitarity correction in comparison to the Born cross
section σμ+μ− , in analogy with (23).

The roughly tenfold increase of the unitarity correction
(34) for muon-pair production in comparison to (30) for
electron–positron pair production demands a qualitative ex-
planation. Indeed, the importance of the unitarity correction
is due to the enhanced contribution of the region of small im-
pact parameters in the impact-parameter dependent muon-
pair production probability (32). Due to the prefactor 1/ρ2

in (32), the unitarity correction is logarithmically enhanced
as it involves an integration proportional to

∫
d2ρ/ρ2 over

the range of the impact parameter 2R < ρ < 1/m.

3.3 Unitarity corrections for Compton-type
photoproduction

To a good approximation, tree-level photon emission by nu-
clear bremsstrahlung is described by the block Feynman di-
agrams of Fig. 3. Let the cross section dσa

br and dσb
br corre-

spond to the diagrams of Figs. 3(a) and 3(b), respectively.

Roughly speaking, diagram (a) describes the emission of
radiation by the Compton scattering of an equivalent pho-
ton, generated by nucleus 1, off nucleus 2, whereas for di-
agram (b), the situation is reversed. The cross section for
photoproduction by nuclear bremsstrahlung then is obtained
as the sum

dσbr = dσa
br + dσb

br, (35)

because the interference term is small and can safely be ne-
glected.

In the LLA, the cross section dσa
br can be calculated us-

ing the equivalent-photon approximation, in which it is ex-
pressed as follows:

dσa
br = dn1 dσC(ω,Eγ ,E2,Z2). (36)

Here, dn1 is the number of equivalent photons emitted
by nucleus 1 in the energy interval dω and the impact-
parameter range d2ρ, and dσC(ω,Eγ ,E2,Z2) is the differ-
ential cross section for the Compton scattering off nucleus 2,
for an energy Eγ of the emitted photon, and an energy E2 of
the second nucleus of charge number Z2 and mass M2. The
number of equivalent photons reads

dn1 = Z2
1α

π2

dω

ω

d2ρ

ρ2
, (37)

with the integration region

ωmin ≤ ω � γ1

ρ
, 2R � ρ � ρmax = γ1

ωmin
(38)

and

ωmin = Eγ

4γ 2
2 (1 − xγ )

. (39)

For the Compton cross section, we can use the follow-
ing well-known expression, which is valid for a nucleus ap-
proximated by a charged point particle. This approach gives
a good approximation at least in the region of not too en-
ergetic photons, where the nuclear structure can safely be
neglected, and it reads

dσC(ω,E2,Eγ ,Z2)

= 4π
Z4

2α2

M2
2

[
(1 − xγ )

(
y − 2y2 + 2y3) + 12

yx2
γ

]
dEγ

Eγ

,

(40)

where

xγ = Eγ

E2
, y = ωmin

ω
. (41)
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Then we integrate (36) over ω and write the result in the
form

dσa
br = dPa(ρ)d2ρ, (42)

where the differential probability dPa(ρ) assumes the form

dPa(ρ) = Z2
1α

π2

σT(Z2)

ρ2

(
1 − xγ + 3

4
x2
γ

)
dEγ

Eγ

, (43)

with the Thomson cross section

σT(Z2) = 8π

3

Z4
2α2

M2
2

. (44)

Formally the probability in (43) is divergent if integrated
over all photon energies. However, using reasonable upper
and lower bounds for Eγ , the probability remains small even
at the minimal impact parameter.

According to the parameter region relevant for the
equivalent-photon approximation (37), this expression is
valid in the dominant region 2R ≤ ρ � γ1/ωmin. Integrat-
ing (42) over this region, we obtain

dσa
br = 2

Z2
1α

π
σT(Z2)

(
1 − xγ + 3

4
x2
γ

)
Lγ

dEγ

Eγ

, (45)

where

Lγ = ln

(
ρmax

2R

)
= ln

(
2γ1γ

2
2 (1 − xγ )

REγ

)
. (46)

Now the unitarity correction δγ , expressed as a fraction of
the complete nuclear bremsstrahlung cross section, can be
obtained by considering diagram (a) alone,

δa = dσa
unit

dσa
br

, (47)

and it can be calculated using

dσa
unit = −

∫
dPa(ρ)

[
1 − e−n̄e(ρ)

]
d2ρ. (48)

The main (logarithmically enhanced) contribution to dσa
unit

is given by the impact-parameter region 2R ≤ ρ � m−1, and
therefore, a simple estimate can be given as

δγ ∼ −(Zα)4 L

Lγ

ln

(
1

2Rm

)
. (49)

A more accurate calculation is based on the direct in-
tegration of the vacuum persistence amplitude against pair
production that involves the number of produced electron–
positron pairs according to (12) and reads

δγ = − 1

Lγ

∫ 100/m

2R

[
1 − e−n̄e(ρ)

]dρ

ρ
, (50)

where the convergence of the integral is assured by the as-
ymptotics given in (13) and the upper limit of 100/m for
ρ could have been replaced by ∞. An evaluation based on
(50) gives the following result for Eγ = 1 GeV:

δγ = −19% for the RHIC,

δγ = −15% for the LHC.
(51)

3.4 Unitarity correction for Delbrück-type photoproduction

Photon emission in heavy-ion collisions via virtual Delbrück
scattering has recently been considered in [7, 8], where a
surprisingly large cross sections was found for this case:

σγ D = 14 barn for the RHIC,

σγ D = 50 barn for the LHC.
(52)

The main contribution to these cross sections comes from
the photon-energy region

m � Eγ � γm. (53)

Below, we estimate the unitarity correction for the process
discussed.

The probability Pγ D(ρ) entering the cross section (11)
for photoproduction via virtual Delbrück scattering can eas-
ily be obtained as a function of the impact parameter ρ in
the dominant range 1 � mρ � γ 2, but the unitarity correc-
tion is mainly given by integration in the region mρ ∼ 1.
Therefore, while we estimate the unitarity correction here,
we stress that a more accurate calculation would require a di-
rect evaluation of the Delbrück-type photoproduction prob-
ability Pγ D(ρ) in the range mρ ∼ 1, which was beyond our
scope.

For the sake of simplicity, we consider here only the sym-
metric case γ = γ1 = γ2 with identical nuclei Z = Z1 = Z2.
The cross section σγ D can be expressed by the integration of
Pγ D(ρ) over the impact parameter via the relation

σγ D =
∫

Pγ D(ρ)d2ρ. (54)

In LLA we can use the differential cross section in the same
form as in (36):

dσγ D = 2dnγ σD(Z2), (55)

where σD(Z) is a high-energy limit of the Delbrück scatter-
ing cross section defined according to (7) of [8], and

dnγ = Z2α

π2

dω

ω

d2ρ

ρ2
(56)

is the number of the equivalent photons. The factor 2 on
the right-hand side of dnγ takes into account two possibili-
ties, corresponding two diagrams in Fig. 4. This expression
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is valid in a parameter range satisfying the two conditions
m/γ � ω � γ /ρ and 1/m � ρ � γ 2/m. After integration
of (56) over ω, we obtain the probability Pγ D(ρ) in the form

Pγ D(ρ) = 2Z2α

π2

σD(Z)

ρ2
ln

(
γ 2

mρ

)
. (57)

Under the restrictions for which the approximation made in
(56) remains valid, the expression (57) is applicable in the
dominant region

1 � mρ � γ 2, (58)

where again the probability is small. We rewrite (11) in the
form

σ unit
γ D = −

∫
Pγ D(ρ)

[
1 − e−n̄e(ρ)

]
d2ρ, (59)

and now we can use this formula in order to estimate the
relative magnitude of the unitarity correction. The function
n̄e(ρ) is of the order of unity at ρ ∼ 1/m and given by the
expression

n̄e(ρ) ≈ 0.5(Zα)4L (ρ ≈ 1/m), (60)

but drops very quickly at larger impact parameters, with an
asymptotic behavior of n̄e(ρ) ∝ 1/ρ2. Since the function
Pγ D(ρ) also drops at large impact parameters (see (57)), the
main contribution to σ unit

γ D comes from the region ρ ∼ 1/m,
and we can estimate the integral (59) as follows:

σ unit
γ D ∼ −

∫
Pγ D(ρ)n̄e(ρ)d2ρ

∼ −Pγ D(1/m)n̄e(1/m)
π

m2
. (61)

Taking into account the result (57), we obtain the estimate

Pγ D(ρ) ∼ 2Z2α

π2
σD(Z)m2L at ρ ∼ 1/m. (62)

The relative magnitude of the unitarity correction thus is

δγ D = σ unit
γ D

σγ D
∼ −0.5(Zα)4. (63)

For the nuclear collisions at modern heavy-ion machines
with parameters as listed in Table 1, one can estimate uni-
tarity corrections to the photon emission to be on the level
of −5%. Let us emphasize that the form of this correction
(63) is different from that for the lepton-pair production dis-
cussed in Sects. 3.1 and 3.2.

4 Conclusions

In this article, we have considered unitarity corrections for
e+e− and μ+μ− production in heavy-ion collisions, and

for the production of photons by nuclear bremsstrahlung
and by virtual Delbrück scattering. The main results of the
current investigation can be found in (27a) for the unitar-
ity correction to e+e− production for collisions of light nu-
clei, in (30) for the same process in heavy-ion collisions in
modern colliders with parameters as given details for in Ta-
ble 1, for μ+μ− collisions in modern colliders (see (34)),
where the unitarity correction is numerically large, and in
(51) and (63) for the unitarity correction to photoproduction
in heavy-ion machines, with allowance for both the ordinary
nuclear bremsstrahlung and the virtual Delbrück scattering
process.

Our results as presented for electron–positron pair pro-
duction in (27a) and (30) are based on a refined treatment
of the vacuum persistence amplitude against multipair pro-
duction implied by (19), and they represent an update of re-
sults previously presented in [4] for the same corrections.
For μ+μ− production, we update the results of [5]. For or-
dinary (Compton-type) and Delbrück-type photoproduction,
the results for the unitarity corrections are obtained here for
the first time to the best of our knowledge.

Finally, we notice that the estimates given here for the
coefficients C, D and E in (28) also enter the total cross
section for the production of two e+e− pairs in collisions of
light nuclei (see (27b)) and the leading logarithmic asymp-
totics for the total cross section σn for n-pair production with
n > 2 (see (27c)). From a phenomenological point of view,
it is important to remark that all unitarity corrections reduce
the one-photon or one-pair production cross sections, and
that they can be numerically large (see (34) and (51)).

Appendix

In this appendix we briefly recall some details regarding the
derivation of (13). The functions F and G from this equation
enter the cross section of the process (3) as follows:

dσ1 = n̄e(ρ)d2ρ = (Z1αZ2α)2F(x,Z)
[
L − G(x,Z)

]
d2ρ.

(A.1)

Beyond the Born contribution, we should take into account,
for this cross section, the so-called Coulomb corrections
with a multiphoton exchange between the produced pair and
the first or second nucleus:

dσ1 = dσBorn + dσCoul. (A.2)

The Born contribution to the functions F and G was con-
sidered in detail in [4]. Thus, we only need to find the
Coulomb corrections which enter (13) as items proportional
to f (Zα).
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The Coulomb contribution to the total pair cross section
was calculated in [21]; it can be presented in the form

dσCoul = dn1σCoul
(
γ1Z2 → e+e−Z2

)

+ dn2σCoul
(
γ2Z1 → e+e−Z1

)
, (A.3)

where

dni = Z2
i α

π2

dωi

ωi

d2ρ

ρ2
(A.4)

is the number of the equivalent photons, produced by the ith
nucleus, and

σCoul
(
γZ → e+e−Z

) = −28

9

Z2α3

m2
f (Zα) (A.5)

is the Coulomb correction to the total cross section of the
photoproduction γZ → e+e−Z taken from the well-known
Bethe–Maximon formula. Integrating (A.4) over ωi in the
main region

m

γ2,1
� ω1,2 � γ1,2m, (A.6)

we find

dσCoul

= − 28

9π2

(Z1αZ2α)2

(mρ)2

[
f (Z1α) + f (Z2α)

]

× ln

(
γ1γ2

mρ

)
d2ρ. (A.7)

Comparing this expression with (A.1) and (A.2) and as-
suming Z1 = Z2 = Z, we obtain both terms proportional to
f (Zα) in (13).
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