
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Jan 1989 

Automatic Color Segmentation of Images with Application to Automatic Color Segmentation of Images with Application to 

Detection of Variegated Coloring in Skin Tumors Detection of Variegated Coloring in Skin Tumors 

Scott E. Umbaugh 

Randy Hays Moss 
Missouri University of Science and Technology, rhm@mst.edu 

William V. Stoecker 
Missouri University of Science and Technology, wvs@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
S. E. Umbaugh et al., "Automatic Color Segmentation of Images with Application to Detection of 
Variegated Coloring in Skin Tumors," IEEE Engineering in Medicine and Biology Magazine, Institute of 
Electrical and Electronics Engineers (IEEE), Jan 1989. 
The definitive version is available at https://doi.org/10.1109/51.45955 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F906&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F906&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/51.45955
mailto:scholarsmine@mst.edu


Automatic Color Segmentation of Images with 
Application to Detection of Variegated 

Coloring in Skin Tumors 
Scott E Umbaugh, Randy H. Moss, and 
William V. Stoecker 
Electrical Engineering Department, 
University of Missouri-Rolla (S.E.U., R.H.M.) 
Stoecker Moss & Co., University of Missouri-Rolla, and 
University of Missouri-Columbia (W.V.S.) 

OMPUTER VISION is becoming a useful tool in a wide C variety of applications. One major area of accelerated 
growth is the field of  medicine, where research involving 
automatic identification of structures in CT scans 11 I ,  quanti- 
fication of DNA content [21, and radionucleotide scans i3] 
shows promise of development of tools to  serve as diagnostic 
adjuncts for medical professionals. This paper describes a 
computer vision system to  serve as the front-end of a medical 
expert system that will automate visual feature identification 
for skin tumor evaluation. The general approach is t o  create 
different software modules that will detect the presence or 
absence of critical features. Image analysis with artificial 
intelligence (AI) techniques, such as the use of heuristics 
incorporated into image processing algorithms, is the primary 
approach. 

The hardware for this visual subsystem consists of a video 
camera interfaced to  a digitizing board that is part of a 
microcomputer system. The front-end visual system when 
completed will provide for automatic recognition of the most 
predictive features, allowing the expert system software to  
classify a tumor based on stored information, with minimal 
user interaction. This classification will be a differential 
diagnosis, listing the possible diagnoses along with their 
corresponding probabilities. 

For the original expert system, AllDERM [41, the user was 
required to  enter extensive tumor information -the presence 
or absence of about 300 features. Clinical tests showed that 
this user interaction was the weak link in the chain; quite 
often a misdiagnosis was not caused by errors in the expert 
system software, but was due to observer error. Many visual 
features, such as indistinct border, color, and other critical 
variables were poorly defined. It was found that poorly 
defined features were not reliably identified by different 
observers, even by experienced dermatologists. 

The major difficulty observed was the lack of consistency 
in feature identification. With a dermatologist entering the 
feature information, the identification of specific features 
was biased by the global information that was part of his 
knowledge domain. For example, if he suspected that the 
tumor was malignant melanoma, and he knew that this 
classification generally implied irregular coloring, then varie- 
gated coloring would be marked as a positive on the feature 
entry form, even for cases in which coloring was only mottled 
and not variegated. Such bias made it very difficult t o  define 
some features, as the expert was using higher level informa- 
tion to redefine each feature. By automating the feature 

identification aspect of the diagnosis, a more consistent 
paradigm can be developed for the entire diagnostic proce- 
dure. Also, the specific features will be better defined, thus 
providing a complete and consistent model for the classifica- 
tion of skin tumors. 

The results reported in this paper include part of the 
software required to  implement this system. On a broad 
scale, this research addressed the problem of segmentation 
of a digital image based on color information. As an applica- 
tion example, a feature called variegated coloring was 
selected for identification. This feature has high predictivity 
for diagnosis of malignant melanoma-the fastest growing 
and deadliest skin cancer. Variegated coloring is defined as a 
tumor with t w o  or more colors within the tumor border. 
Furthermore, these colors completely partition the tumor 
after other features, such as ulcer and and crust, are masked 
out. 

There were t w o  main reasons that the broader problem of 
using color information to  segment a digital image was 
attacked initially. First, segmenting the image into color 
objects provides more information than simply identifying a 
specific feature, and, second, the features themselves are not 
precisely defined. For example, one dermatologist's definition 
of variegated coloring may not be the same as another's, and 
the simplistic definition given above was continually being 
changed during this research. Thus, it was decided that the 
automatic segmentation of the image by color information 
would lead to  the most useful results. 

The algorithm that was developed to  segment the image 
based strictly on color information was shown to  be a useful 
aid in the identification of tumor border, ulcer, and other 
features of interest. As a specific application example, the 
method was applied to  200 digitized skin tumor images to  
identify the feature called variegated coloring. 

BACKGROUND INFORMATION 
The literature reviewed for this research consisted primarily 

of t w o  main categories: color spaces and transforms, and 
image segmentation techniques. The information discussed 
in the literature was used as background material for the 
development of the algorithm presented later in this paper. 

Color Spaces and Transforms. A color space is a geomet- 
rical and mathematical representation of color. Most of the 
spaces reviewed here attempt to  relate the way in which they 
are defined to  the way that humans perceive color. The 
search for a useful metric to distinguish perceptual color 
differences has been pursued since the days of Isaac Newton 
[51. There is no general method that is applicable to all 
domains; the number of variables involved make for complex- 
ity such that a complete theoretical analysis is not feasible in 
most practical applications. 

In any problem of color quantification, the first step toward 
a solution is t o  define the color space. Historically, many 
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different representations have been defined, but each was 
developed for a specific purpose. Some are applicable to  the 
artist's concept of color, usually pertaining to  pigment 
mixtures, and represent a subtractive model of color primi- 
tives. The additive model is normally used when modeling 
light and color, or human perception of color 151. 

An Historical Perspective. Artists and philosophers have 
contemplated the nature of the color experience at least since 
Aristotle in 350 B.C. 151. Aristotle believed that colors were 
composed of mixtures of black and white. His ordering of 
colors was based on his observance of the colors of the 
rainbow, believing that they were ordered by brightness. 
Today, it is known that this ordering is based on the 
wavelengths of light. 

The scientific approach to  light and color began with 
Newton's treatise, Opticks, published in 1704. The history 
can be traced from Newton through Young, Helmholtz, 
Maxwell, and Mach I51. Maxwell conceptualized a system 
that is the basis for many different aspects of color research 
today. He proposed three imaginary primaries that would be 
combined t o  produce any color [51. He modeled this as an 
equilateral triangle with each of the vertices representing one 
of the primary colors. In the exact center of this triangle is the 
color "white", which consists of equal parts of the three 
primaries (see Fig. 1) .  This space is sometimes referred to  as 
Maxwell's triangle [61. 

The Munsell system [5, 61, developed in 1941, is often 
used in psychological research and provides a good basis for 
describing how humans perceive color. Munsell identifies 
colors in terms of three attributes: hue, value, and chroma. 
Hue is defined by what is normally identified as "color"; there 
are five principal hues in Munsell color space-red, yellow, 
green, blue, and purple. Referring back to  Maxwell's triangle, 
if a circle is circumscribed within the triangle, hue can be 
defined by an angle within this circle measured from an 
arbitrary reference point. Chroma can be defined as the 
distance from the white point in the center; it is a measure of 
how pure the color is. Value corresponds to  another dimen- 
sion, which can be modeled mathematically by a constant 
multiplier-i.e., value is a measure of brightness (see Fig. 2). 

Other color spaces that are offshoots of the Munsell space 
have been defined. The IHS space (Intensity/Hue/Saturation) 
is quantified in [71. This color space is more useful to  the 
engineer than the Munsell system, as it can be modeled 
mathematically in a reasonable form. IHS space is closely 
correlated to  the conceptual model given in Fig. 2. Intensity is 
simply the sum of the magnitude of the three basis vectors- 
normally red, green, and blue. I t  most closely correlates to  
brightness. Hue is approximately proportional to  the mean 
wavelength, and saturation measures the purity of the color. 
A very saturated color, or pure color, can be desaturated by 
adding white t o  it; for example, pink is a desaturated red. 

Primary 1 
PI 

P1 

(b) 

Figure 1. a) Maxwell's Triangle. White is at the center of the triangle. 
The three primary colors are at the vertices of the triangle. b) An 
arbitrary color, pictured as a point within the triangle, is defined by its 
components of the three primaries. These components are obtained 
by drawing a line perpendicular to the side of the triangle opposite the 
primary's vertex through the color point. This figure shows the P1, 
P2, and P3 components as solid lines of the color point. 

Figure 2. a) A conceptual model of the Munsell Color System 
superimposed on Maxwell's triangle. Hue is measured by an angle 
from an arbitrary reference point, and chroma is measured by the 
distance from the white point to the color point. b) Value is measured 
as the length of the color vector from the origin. Here it is shown as 
the vector length in an orthogonal 3-D space. 
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Conceptually, the Munsell system, or a quasi-Munsell space 
such as IHS, provides a good model for human perception of 
color. 

Human Perception of Color. There are three different types 
of sensors in the eye for the perception of color. These 
photoreceptors are called cones, and each of the three types 
has a different visual pigment that will respond to  light 
(photons); one pigment has maximum sensitivity t o  light with 
a wavelength of 455 nm (blue), another 535 nm (green), and 
the third 570 nm (red) 181. Approximate spectral response 
curves, or transfer functions, of the cones have been 
empirically determined by color matching experiments (see 
Fig. 3) [61. (For an explanation regarding negative values of 
the curves see [6].) These curves are called the tristimulus 
curves, and it is known that the actual transfer functions of 
the cones are linear transformations of these curves; how- 
ever, the exact coefficients are not known [91. 

These curves show that the blue photoreceptor is spec- 
trally separate from the other two, which have their maxi- 
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Figure 3. Tristimulus Curves. These curves were approximated from 
data contained in the CIE 1964 Supplementary Standard Colorimetric 
System Tables [61. 

Wavelengths of Light (nanometers) 

mum sensitivities close together near the yellow part of the 
spectrum. This separation means that the blue cones have a 
wider range of spectral contrast [8l-i.e., colors near each 
other in the blue zone of the color space are more readily 
distinguished by human vision than colors that are equally 
close, but near the red or green zones. 

There are three major types of theories, with their corres- 
ponding models, that describe the underlying mechanisms 
that comprise color vision. These are: 1 ) component theories, 
2) opponent theories, and 3) zone theories [51. Each of these 
theories proposes a different model for human color vision. 

There is still much controversy over which is the "best" 
model for the human vision system. It appears that it is largely 
domain dependent, and the "best" model is the one that 
facilitates the solution of the problem being examined. The 
issue is very complex-not only are the physiological aspects 
important, but psychological ones as well. 

Colorimetry. Colorimetry is the science of defining a 
mathematical model of color sensation so that a measure- 
ment can be derived for distinguishing between different 
colors, and being able t o  measure the degree to  which the 
colors differ [61. It involves quantifying the components that 
comprise the color, and being able to  measure them in such a 
way that when viewed by a normal observer, under the same 
conditions as when measured, the observer will experience a 
metameric match [51. Metameric refers t o  two  colors that 
appear the same to the human visual system, even though 
the actual spectral composition of the incident light is 
different. 

The basic concepts of colorimetry provide a foundation for 
the CIE (Commission lnternationale de I'Eclairage) System, 
which is the standard system used throughout the world 
today for quantifying color. (A complete discussion of this 
system is given in i61.1 One of the most basic concepts 
involved here is that of trichromatic generalization. This 
concept states that given three primary colors, or wave- 
lengths of light, many colors can be matched by the additive 
mixing of these three primaries by individually adjusting the 
intensity of each. I t  is this premise that facilitates the 
digitization of color images by the use of a monochrome 
camera and three color filters, with the resulting information 
from each filter used t o  display the image on a color (RGB) 
monitor. 

Linear Transforms. Many linear transforms of color infor- 
mation are defined in the literature. Most of them assume the 
initial vectors to  be three-dimensional, with the standard 
basis being red, green, and blue components, hereafter 
referred t o  as RGB. The transformed vectors are then 
obtained by multiplying the RGB vector by a 3 x 3 transform 
matrix. Two advantages of linear versus nonlinear transforms 
are efficiency of computation and lack of singularities [lo]. 

Due to the singularities inherent in most nonlinear trans- 
forms, they do not lead to  a consistent definition of color 
throughout the color space. On the other hand, a linear 
transform will allow a consistent definition, provided the 
transformation matrix is well-conditioned [ I  01. The inconsis- 
tencies that occur in nonlinear transforms will cause prob- 
lems if not dealt with appropriately. If, however, the domain 
of interest does not include the subspaces of the space that 
contains the singularities, then the difficulties associated 
with nonlinear transforms are of no significance, as was the 
case with the algorithm developed for this project. 

Nonlinear Transforms. The tristimulus curves [6, 91 indicate 
the nonlinearity inherent in the human visual system. There- 
fore, when an application requires the simulation of human 
visual response, it is appropriate to  explore nonlinear trans- 
forms. One of the standard nonlinear transforms produces 
what are called chromaticity coordinates [71. These are 
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defined as follows: 

r =  R / ( R +  G+ B ) ,  

g = G I ( R + G + B ) ,  and 

b = B/( R + G + B 1. 

When plotted as a function of t w o  of these coordinates, the 
result is called a chromaticity diagram [6]. The CIE colorimet- 
ric system, referred t o  earlier, is based on this concept. This 
system maps tristimulus values onto chromaticity coordi- 
nates [6], thus describing a system that will have a fair 
correlation to  the human visual response. Many other nonlin- 
ear transforms are defined in the literature (see 161). Quite 
often, in image processing, a color space is defined to  
facilitate image segmentation so that a useful representation 
on a level higher than that of the pixel can be derived. 

Image segmentation is important in 
many computer vision and image processing applications. 
Division of the image into regions corresponding to  objects of 
interest is necessary before any processing can be done at a 
level higher than that of the pixel. Identification of real 
objects, pseudo-objects, shadows, or actually finding any- 
thing of interest within the image requires some form of 
segmentation. 

For example, identification of shadows may help determine 
the three-dimensional shape of an object, or, if the object is 
known, the orientation of the object in space. Other examples 
include using satellite data to  identify urban areas [l 11, 
specific vegetation [l 11, or even insect infestation within a 
certain type of tree 11 21. 

Conceptually, image segmentation methods will look for 
objects that either 1 )  have some measure of homogeneity 
within themselves, or 2) have some measure of contrast with 
the objects on their borders [l 11. Most image segmentation 
algorithms that have been used are modifications, exten- 
sions, or combinations of these t w o  basic concepts. 

Some of the problems associated with image segmentation 
are due to  noise in the image and digitization of a continuous 
image. This noise is caused by digitization, the camera, the 
lenses, the lighting, etc., and can be dealt with through the 
use of statistical methods [l 11. Spatial digitization can cause 
problems regarding connectivity of objects [91. These prob- 
lems can be resolved with careful connectivity definitions and 
heuristics applicable to  the specific domain. 

The following review divides image segmentation tech- 
niques into three main groups: 1 ) region growing, 2) cluster- 
ing methods, and 3) edge detection (see Fig. 4). Clustering 
methods are separated from region growing methods be- 
cause, in this context, region growing methods are restricted 
to  methods that primarily use the spatial domain, the two-  
dimensional row and column image space, while the cluster- 
ing techniques could be applied to  any domain (spatial 
domain, color space, feature space, etc.). 

Region Growing. Region growing refers to  a class of image 
segmentation methods where the goal is to  find regions that 
represent objects or meaningful parts of objects. The method 
is based primarily on spatial considerations. Some of the 
techniques used are local, in which small areas of the image 
are processed; others are global, where the entire image is 
considered during processing 171. Methods that can combine 
local and global techniques, such as split and merge [13], are 
referred to  as state space techniques and use graph struc- 
tures to  represent the regions and their edges (boundaries) 
171. 

Various split and merge algorithms have been described 
[13, 141, but they all are most effective when heuristics 

Image Segmentation. 

IMAGE SEGMENTATION 

J I + 
a. Region Growing b. Clustering 

t 

Figure 4. Image Segmentation techniques are divided into three 
major categories. a) Region growing is performed within the image by 
finding homogeneous regions and growing them until they no longer 
meet the homogeneity criteria. b) Clustering techniques look for 
groups, or clusters, in domains other than the spatial domain of the 
image. Here clusters are found in a 3-D space, e.g., RGB space. c) 
Edge detection methods look for edges, boundaries, or lines usually 
via a differentiation operator. 

applicable to  the domain under consideration can be applied. 
This gives a starting point for the initial split. In general, the 
split and merge technique proceeds as follows. First, the 
image is split into equal sized regions, then some type of 
statistical method is applied to  determine a measure of 
similarity within each of the regions. This measure may 
include texture variation, color variation, intensity variation, 
or other features of interest. Once this information has been 
calculated for each of the regions, the image is ready for the 
next step in processing. 

The next step will normally be a homogeneity test for each 
of the regions. The regions that are acceptable by the criteria 
of the homogeneity test will be left alone; the regions that do 
not pass the test will be split into more subregions. After the 
split is made, a merge is attempted. This merge procedure will 
attempt to  merge each region with its neighboring regions, or 
sub-regions, and if the resulting region is acceptable to  the 
homogeneity test, these regions will be merged. This proce- 
dure stops when all regions that have been formed pass the 
homogeneity test. 

Other region growing techniques are conceptually similar to  
the techniques described here. A more complete discussion 
of region growing techniques can be found in [7]. 

Clustering Techniques. C lustering techniques are image 
segmentation methods whereby individual elements are 
placed into groups; these groups are based on some measure 
of similarity within the group. The major difference between 
these techniques and the region growing techniques is that 
domains other than the spatial domain may be considered as 
the primary space being used for the segmentation. 

One method of image segmentation based on clustering, 
in widespread use, is the method of taking the space of 
interest and splitting the space into regions by setting limits 
on each of the dimensions for each separate region 11 5, 161. 
In the case of using an RGB color space, this would mean 
taking the three-dimensional color space and dividing it into 
rectangular parallelepipeds with edges parallel to  the axes in 
the color space [161. 

Recursive region splitting [141 is a clustering method that 
has become a standard technique. This method uses a 
thresholding-of-histograms technique to  segment the image. 
A set of histograms is calculated for a specific set of features, 
then each of these histograms is searched for distinct peaks. 
The best peak is selected and the image is split into regions 
based on this thresholding of the histogram. 

Many methods may actually be a combination of region 
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growing methods and clustering methods. The segmentation 
method of dividing the image based on clusters in color space 
[ 14, 171 can be implemented as strictly a clustering method, 
or spatial considerations may also be included. Optimal image 
segmentation will most likely be achieved with the combined 
approach. 

Edge Detection. Edge detection, as a method of image 
segmentation, is performed by finding the boundaries be- 
tween objects, thus defining the objects themselves, indi- 
rectly. This method is usually implemented by first marking 
points that may be a part of an edge. These points are merged 
into line segments, and the line segments are then merged 
into object boundaries 171. 

The most common method of finding edges in a digitized 
image is to  apply a spatial differentiation operator to  small 
blocks of pixels, local neighborhoods, within the digitized 
image [ I  81. Places in the image where first order differentia- 
tion returns a large number mark points of rapid change, thus 
indicating the possibility of an edge. These edge points 
represent local discontinuities in a specific feature, such as 
brightness, color, or texture 1181. Many edge detection 
operators have been defined, but most are based on these 
fundamental concepts. 

One of these operators, the Laplacian operator [91, is used 
in the Marr-Hildreth algorithm [191, which has been used in 
other areas of this research project 1201. This algorithm 
provides a good model for the mammalian vision system [ I  91. 
The Marr-Hildreth algorithm uses a Gaussian smoothing filter 
to  eliminate small discontinuities such as hairs, and then 
applies the Laplacian t o  find potential edge points [201. 

Quite often, in edge detection, heuristics applicable to  the 
specific domain must be employed in order to find the true 
object boundaries (such as the filtering out of hairs mentioned 
above), and the process of finding these boundaries is no 
easy task. Perhaps finding edges of different features and 
applying AI techniques at a higher level to  correlate the 
feature edges found to  the specific domain will give the best 
results. (For a complete discussion of this concept see [151 
and [21].) For a more complete list of references regarding 
edge detection see [91. 

MATERIALS AND METHODS 
The images used in this research were digitized with a 

monochrome video camera (Ikegami Model ITC-48) inter- 
faced to  a Gould DeAnza Image Processing System Model 
IP8400 and a Digital Equipment Corporation VAX 11/780 
minicomputer. They were digitized from 35mm color photo- 
graphic slides obtained from a private dermatology practice 
and from New York University or, in one case, from a 
pamphlet obtained from the American Cancer Society. The 
digital images had a spatial resolution of 51 2 x 51 2 pixels 
and a grey scale resolution of 8 bits (256 levels). The color 
images were obtained by digitizing the image three times, 
each time using a different filter for each of the red, green, 
and blue planes. 

The software developed for this research was written in the 
C programming language on the VAX minicomputer. The 
color space used was a nonlinear transform of rectangular 
RGB space. This transform led t o  a two-dimensional color 
space and a one-dimensional brightness space. For this 
research, the brightness space was ignored, and only the 
two-dimensional color space was used. The motivation for 
this was t o  avoid splitting color objects that were partially in 
shadow into separate objects. This was of particular impor- 
tance in the identification of tumor borders in three-dimen- 
sional tumors. Further, as a method of color space segmenta- 
tion, this color space was quantized by setting ranges on 
each of the two  dimensions. 

As the target system for this development is a microproces- 
sor-based system, there was a necessity to  reduce the 
amount of data (each image is 768 kbytes) to  be processed, 
and to  make the processing algorithm as efficient as possible. 
This compression was accomplished by such methods as 
color quantization to  reduce color information, averaging to  
reduce spatial data, and a generating code that was as 
efficient as possible. 

The algorithm itself consisted primarily of six steps, as 
follows: 

1. averaging to  reduce spatial data and eliminate noise, 
2. masking out of features such as ulcer and crust, 
3. splitting the color space into different colors, 
4. filtering the results t o  aid in segmenting the image into 

5. labeling and finding the area of each color object, 
6. higher-level processing to  determine the final decision 

I t  should be noted that steps 2 and 6 are dependent on the 
specific feature under consideration. 

The Color Space. The original color space (RGB) was 
defined with red, green, and blue as orthogonal axes, with the 
corresponding basis vectors being unit vectors along each 
axis. To facilitate color quantization, spherical coordinates 
were chosen as a basis for this space (see Fig. 5). The 
transforms from RGB to spherical coordinates are as follows 
[221: 

color objects, 

regarding the feature identification. 

Angle A = c o s 1  [ f ]  

Angle B = cos- L x (sin (Angle " I  A))  

where (R, G, B) is the triple corresponding to  the values for 
red, green, and blue in the original RGB space. This transfor- 
mation splits the color space into a two-dimensional color 
space represented by the t w o  angles, Angle A and Angle B, 
and a one-dimensional intensity (brightness) space repre- 
sented by the vector length L. 

If an equilateral triangle is superimposed on the color space 
(see Fig. 6), with the vertices of the triangle at the points (1, 

BLUE 
t 

,/ Angle B 
RED 

Figure 5 .  The Color Space. 
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Figure 6. The Color Triangle. 

0, O), (0, 1, 01, and (0, 0, I), or any other points of equal 
distance on each axis, then the point where a vector 
intersects this triangle corresponds to  the color [61. This point 
is described by the t w o  angles, A and B, which define a color 
quantization concept. 

Color quantization reduces the amount of data that needs 
t o  be processed. The t w o  angles are used to  define a space 
that is then quantized with the idea of reducing this two-  
dimensional angle space to  a one-dimensional color space. 

The C programming 
language was chosen to  implement the algorithm due to  its 
ease of transportability, since the target system is a micropro- 
cessor-based computer. Each step in the processing chain 
was implemented by a separate program. These programs 
communicated by writing their outputs to  disk files, which 
were then read as inputs t o  the next program in the chain. 
This method proved t o  be efficacious for development, as it 
allowed intermediate results to  be grown into full-size images 
and viewed. Intermediate results could then be used to  
determine what should be done next or, in some cases, what 
modifications should be made to  the existing programs. 

ColorAveraging. The first step in the processing chain was 
color averaging. This was accomplished by reducing the 
original 51 2 x 51 2 x 3 byte image by arithmetic averaging, 
equivalent to  a reduction in spatial resolution. An arithmetic 
average was performed on a spatial area of 8 x 8 pixels, with 
each of the three color planes-red, green, and blue-being 
individuallly processed. This averaging served a two-fold 
purpose: it reduced the amount of data to be processed by 
later programs in the chain and it reduced any noise present in 
the image. 

The sources of noise in digitized images are many and 
varied, including noise caused by digitizing a continuous 
image, imperfections in the camera and lenses, and imperfec- 
tions caused by lighting. Many of these noise sources can be 
modeled as sample functions of a zero-mean Gaussian noise 
process 19, 1 I]. Averaging multiple samples will reduce the 
variance, thus giving a result with less "noise" [91. 

The 8 x 8 pixel block used reduced the original image file 
from 768 kilobytes t o  12 kilobytes, reducing processing time 
for software further down the chain, thus allowing this 
application to  run efficiently on a microprocessor-based 
computer system. 

Feature Masking. In addition to  the digitized images, a 
database of feature information was created by a dermatolo- 
gist using software developed by the research team. This 

The Color Segmentation Algorithm. 

software allows the user to  display an image and mark certain 
blocks (in this case 32 x 32 pixel blocks) as containing a 
specific feature. Through the use of these feature-files, 
specific sections of an image can be selected for processing 
by masking out blocks within the image that are not of 
interest. 

Feature masking was important in the development of the 
feature identification software modules in this project. With 
the feature marking software developed, the research team 
was able to  proceed independently on each module. The 
feature files provided a data base that could be used to  
provide the necessary information to  a module under develop- 
ment. 

Color Space Segmentation. The color space segmentation 
algorithm is outlined as follows: 

1. Convert the (R, G, B) triple into spherical coordinates- 
(L, Angle A, Angle B). 

2. Find the minima and maxima of Angle A and Angle B. 
3. Divide the subspace, defined by the maxima and min- 

ima, into equal-sized blocks, with size based on the 
symbolic name NUM-OF-COLORS. 

4. Calculate the means and variances (see 1231) for R, G, B, 
L, Angle A, and Angle B. These, along with the maxima 
and minima and number of vectors in each color, are 
then printed t o  the standard 1/0 device (normally the 
terminal from which the program was running). 

5. Using the color numbers (e.g., if the color space was 
split into 4 colors, then the color numbers would be 1, 2, 
3, 41, create an image file with the number correspond- 
ing to  the color into which the pixel or group of pixels fell 
when the color space was segmented. 

6. Using the means of (R, G, B) for each separate color, 
create an image file with each color vector replaced by 
the means of (R, G, B) of the color into which the 
corresponding pixel or group of pixels fell in the color 
space segmentation. 

The output file used in further processing is the single-plane 
file that consists of color numbers only-this corresponds to a 
monochrome image file. 

Although the color file was not used in further processing, 
it was useful for human observation during development as 
an aid in determination of success up to  this point. The 
statistics, means and variances, were not used in the final 
results presented here, but may be used in higher level 
processing. 

Object Filtering. The purposes of object filtering were: to 
filter out small objects that would not be identified as color 
objects by an expert, and to  fill in holes and round objects out, 
as would the visual system of an expert dermatologist 
observing a skin tumor. 

As this was a preprocessing step to  object labeling, a 
consistent definition of connectivity was needed. Connectiv- 
ity refers to  those neighboring pixels that are considered to  be 
connected to  a given pixel. Eight-connectivity means that all 
eight pixels surrounding a given pixel are connected to  it; 
four-connectivity means that the given pixel is connected 
only to the pixels directly above and below and to  the right 
and left, the edge neighbors [91. Six-connectivity includes the 
edge neighbors and two  of the diagonal neighbors. 

The definition chosen was that of six connectivity. This 
choice solves the connectivity paradox and satisfies the 
Jordan curve theorem 191. Using six-connectivity also avoids 
the problem of having to  differentiate between object and 
background, which would be the case if eight-connectivity 
and four-connectivity were used for object and background, 
respectively. The six-connectivity model used contained the 
upper left and lower right corners in addition to the four edge 
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neighbors. Although this definition was biased towards 
objects in one diagonal direction, this was not a problem since 
relatively large, irregular shaped objects were of interest. 

Using six-connectivity to  define neighboring blocks, the 
filter searches through the image, block by block, looking for 
blocks that have neighbors that are different from the given 
block. If a block is found that has four or more neighbors that 
are the same, that block is then replaced with the value of the 
ones that are the same. This procedure has the effect of 
eliminating isolated blocks, filling in holes, and removing 
single blocks protruding from objects, thus rounding-off 
objects. Once this filtering is complete, the next step is to  
label objects. 

Object Labeling. A modified version of a binary sequential 
labeling algorithm was used [9, 241. This algorithm did not 
require recursive calls, thus allowing sequential scanning of 
the image. Thus, when a pixel was being processed, it was 
known that its neighbors to  the left and above had already 
been labeled. 

Higher Level Processing. This refers to  processing that will 
be done by the feature identification module. This part of the 
software is beyond the scope of this paper. However, a 
simple two-step algorithm was developed for the identifica- 
tion of a specific feature, variegated coloring, so that some 
preliminary results could be obtained and the feasibility of the 
methodology could be demonstrated. 

DISCUSSION AND RESULTS 
When the algorithm was being developed, many different 

approaches were attempted. This section will explore the 
work and experimentation that led up to  the development of 
the algorithm described above. 

The original approach was to  use an 
image segmentation technique based on histogram threshold- 
ing, a'method that has been used effectively in various 
applications [13, 14, 18, 251 and seemed to be the logical 
first step. For this approach to  work, the histograms must 
have distinct peaks (see Fig. 7). In addition, the histograms 
must exhibit more than one peak, so that a reasonable 
threshold can be found that can be used to  split the image 
into partitions. 

After much experimentation, it was found that this method 
would not work for digitized skin tumor images. The major 
problem with this procedure in RGB space was that all of the 
histograms examined had only one peak. (The images that 
were selected for this experimentation had a large variance in 

Experimentation. 

color space and thus were thought to  be most easily 
identifiable by computer). Transforming the images into IHS 
(Intensity, Hue, Saturation) space, also resulted in histograms 
that were mostly unimodal; the exceptions were not useful 
for other reasons (see [241). 

The Color Space. The vertices of the color triangle bear 
some correlation to  the human visual system. The placement 
of blue at the top of the triangle, and the way in which the 
spherical transform was defined, relates to  the physiological 
fact that the cones in the human eye that see blue are more 
discriminatory than the red or green sensitive cones 181. As 
Angle A varies, while Angle B has a fixed range, for example 
40 to 50 degrees, the closer to  the blue axis (axis in 3-D 
space, or vertex in 2-D space) the smaller the area defined 
within this space. This means that for a region defined by a 
range of minima and maxima, on Angle A and Angle B, the 
side of the region that is closest to  the blue vertex is shorter 
than the side that is closest to  the line that joins the red and 
green vertices. 

Also, the distortion caused by the transform facilitates the 
perception based aspect of the image segmentation; the 
closer to  the perimeter of the triangle, the larger the region 
that is defined by a fixed angle range (see Fig. 8). This is 
analogous to  the observation that as the white point is 
approached in the color space, a greater number of hues will 
be observable in a fixed area by the human visual system than 
on the perimeter of the color triangle. It should be noted that 
in all of the skin tumor images, the range of color vectors 
within a skin tumor image were between the white point and 
the red vertex-if color vectors near the blue vertex were in 
the image, the color quantization scheme would probably 
need to  be modified. 

Results of Color Space Segmentation. The best visual 
system available today, in terms of pattern recognition, image 
analysis, and image understanding, is the human visual 
system. Therefore, a few select skin tumor images and 
results are presented to  demonstrate the success of the 
segmentation method presented in this paper. 

In Fig. 9, a tumor image is shown that exhibits variegated 
coloring. Fig. 10  shows that image after averaging over an 8 
x 8 pixel block and then splitting the color space into four 
colors, each represented by a different gray level. In addition 
to  demonstrating the success of the segmentation method in 
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Figure 7. A Gray Level Histogram. This shows the histogram for an 8- 
bit (256 levels) gray level image. This particular image has a bimodal 
distribution, so histogram thresholding is performed by dividing the 
image into two parts. The threshold is illustrated by the dotted line- 
at about a gray level of 140. 
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Figure 8. The Color Triangle showing regions defined by 10 degree 
increments on Angle A and Angle B. 
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Figure 9. Tumor Image 50, the original. Figure 12. Tumor Image 13, after color space segmentation. 

Figure 10. Tumor Image 50, after color space segme ntation. 

mtation. 

the identification of variegated coloring, it can be seen that 
the resulting image would be useful in finding the tumor 
border. 

Figures 11 and 12  are an original skin tumor image and the 
resulting image after color space segmentation into four 
colors. This particular tumor exhibits a large ulcerated area 
which appears darker than the rest of the tumor and has a 
shiny look. The resulting image shows that the ulcer, 

represented by the darkest gray level, is accurately separated 
from the rest of the image. Also, the reflections within the 
tumor border are separated from the rest of the tumor-they 
appear the same color as the skin, represented by the lightest 
gray level in Fig. 12. The medium gray level is actually the 
pink color of the tumor, and it can be seen that gray level 
alone would not separate this color from the skin color (see 
Fig. 11). In Fig. 12, the pink color of the tumor is separated 
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from the skin color. 
Figures 1 3  and 1 4  show another tumor image pair before 

and after color space segmentation into four colors. This 
tumor exhibits reflections, appearing white in the images, and 
the ulcer, appearing dark. The resulting image demonstrates 
that color segmentation is useful in the identification of these 
features, in addition to  assisting in finding the tumor border. 

This tumor also illustrates the reason that gray level alone 
(monochrome processing) will not be successful in finding 
these features. The left side of the tumor in Fig. 13 appears to  
be about the same gray level as the ulcer, but it can be seen in 
Fig. 1 4  that the t w o  colors are distinctly different-the left 
side of the tumor is actually a pink color, appearing a 
moderate gray in this monochrome image, whereas the ulcer 
is red, appearing black in this image. 

The color 
segmentation algorithm, as applied to the specific feature 
variegated coloring, was tested on 200 images. As described 
above, the color segmentation algorithm consists of six major 
steps: 1) color averaging, 2) feature masking, 3) color space 
segmentation, 4) object filtering, 5) object labeling, and 6) 
higher level processing. For identification of variegated color- 
ing, the features masked out (step 2) are ulcer, crust, scaled 
crust, shiny, and non-tumor areas. 

For the purposes of this research, a simple higher level 
processing algorithm, step 6, was developed that would 
allow identification of variegated coloring with the informa- 
tion that was obtained by averaging, masking, color splitting, 
filtering, and labeling the image file. The algorithm consisted 
of t w o  steps: 

1) I f  the ratio of the area of the tumor, excluding ulcer, crust, 
and shiny areas, t o  the entire tumor area was less than 0.5, 
then variegated coloring was absent. 
2)  I f  the number of objects that are greater than 10 blocks, 
approximately 2 mm2, consisted of t w o  or more colors, then 
variegated coloring was present. 

This algorithm was chosen due to its simplicity and the fact 
that it worked effectively on our training set of images. The 
dermatologist concurred that this was reasonable and was 
similar t o  the way in which the identification may eventually 
be implemented in the expert system. 

The color segmentation algorithm was originally applied to  
1 0  images; these images served as the training set for 
determination of the higher level processing algorithm alluded 
to above. Of this training set, four exhibited variegated 
coloring and six did not. The higher level processing algorithm 
was then defined so that these ten training images would be 
correctly identified. 

Next, the algorithm was applied to  200 test images. The 
results are displayed in Table I. Of these 200 tumor images, 
40 were identified by the dermatologist as possibly exhibiting 
variegated coloring, so these 40 were not included in the 
resulting data as it could not be explicitly determined whether 
they exhibited this feature or not. Eventually, these borderline 
cases may be used to tune the final higher level processing 
algorithm that will be implemented. Of the remaining 160 

TABLE I 
Results of Variegated Coloring Algorithm 

Results of the Variegated Coloring Algorithm. 

Number Correctly Identified 
Number Incorrectly Identified 

True Positives 
True Negatives 
False Positives 
False Negatives 

116 
44 
25 
91 
28 
16 

digitized skin tumor images, 7 3  percent were correctly 
identified with variegated coloring being present/absent. It is 
expected that this percentage will increase as more knowl- 
edge is gained and the size of the training set is increased. 
The next iteration of a higher level processing algorithm will 
be developed using information gained from the application of 
the software to  the 200 test images, which will effectively 
become the training set for the next version. 

CONCLUSIONS 
This systematic approach, allowing feedback from human 

visual systems at each step in the processing chain, facili- 
tates algorithmic development. The creation of a database 
that allows independent development of software modules 
enhances the manageability of a large software project. Also, 
the concept, borrowed from statistical methods, of using 
training sets to  design the algorithms and test sets to  
generate results provides for an unbiased observation of the 
success of the algorithms and when used iteratively, allows 
for the incremental improvement of the algorithms. 

Specifically, this methodology was applied to  the creation 
of software to  segment digitized skin tumor images based on 
color information. It was shown that this color segmentation 
algorithm may be successful as an aid in finding ulcer, 
reflections, and tumor border. These results demonstrated 
the success of image segmentation by color using a spherical 
coordinate transform of rectangular RGB space. 

As a specific example of this technique, an algorithm was 
presented for identifying variegated coloring in digitized 
images of skin tumors. The moderate success achieved is 
indicative of the traininghest set paradigm, with a relatively 
small initial training set, and it is believed that as the training 
set becomes larger the success ratio will improve. 

The software developed t o  implement this segmentation 
technique will be part of an expert system, an automatic skin 
tumor diagnosis system, that will be the application software 
in a microprocessor-based computer that also contains a 
visual front-end video camera and digitizing board. The total 
system has both research and diagnostic potentials. 
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