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Evaluation of Laser-Assisted Bremsstrahlung with Dirac-Volkov Propagators

Erik Lötstedt,* Ulrich D. Jentschura, and Christoph H. Keitel
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

(Received 27 July 2006; revised manuscript received 19 October 2006; published 22 January 2007;
publisher error corrected 23 January 2007)

We study spontaneous bremsstrahlung emission in a highly intense laser field. In this regime the
interaction with the laser field has to be treated nonperturbatively by using the relativistic formalism
including Dirac-Volkov propagators, while the interaction with the Coulomb field and the bremsstrahlung
radiation can be treated in first-order perturbation theory. For the intermediate electron state a fully laser-
dressed propagator is used, including radiative corrections to avoid singularities on the mass shell. We find
that the use of the Dirac-Volkov propagator is crucial to obtain correct numerical results. The cross section
of the process is evaluated for laser intensities of order 1020 W=cm2 and relativistic energies of the initial
electron.

DOI: 10.1103/PhysRevLett.98.043002 PACS numbers: 32.80.Wr, 34.80.Qb

Theoretical investigations, together with numerical
evaluation of basic quantum electrodynamic processes in
the presence of a strong laser field, have recently gained in
importance due to the availability of high-power lasers.
Although analytical treatments of these processes started
more than 40 years ago, accurate numerical evaluations are
very demanding and have only recently become possible.
Concrete numerical evaluations are, however, necessary to
be able to make any precise comparisons or predictions,
since the formulas resulting from the formalism are very
complex. Calculations performed in this way are also
important because they provide an alternative to numeri-
cally solving the Dirac equation, which requires consider-
able computer power [1,2]. The first process to be studied
was laser-induced Compton scattering [3–5], followed by
Mott scattering of a laser-dressed electron by the Coulomb
field of a nucleus [6,7]. These first-order processes are
relatively well studied, both analytically and numerically.

With increasing laser intensity, the contribution from
second-order processes such as bremsstrahlung becomes
more important. Reliable evaluations of second-order ef-
fects are important not only as fundamental processes but
also for the understanding of dense laser-irradiated plas-
mas [8], and can also elucidate the process of high har-
monic generation [9–11]. In the treatment of second-order
processes with two vertices it becomes necessary to use
intermediate, virtual states of the electron and of the pho-
ton. Because of the laser, it becomes in certain kinematic
regimes possible that the intermediate particle goes on
shell, i.e., satisfies the energy-momentum relation of a
real particle, and creates a resonance peak in the cross
section. These resonances will even be formally infinite,
and to obtain finite results, additional, nonperturbative
effects have to be included. The first second-order process
to be studied analytically, and to some extent numerically,
was electron-electron scattering [12–14]. Here the numeri-
cal treatment is less demanding since the intermediate state
is the photon propagator, which can be well approximated
by the free photon propagator. Also, resonant Compton

scattering was investigated in [15], although no concrete
numerical evaluations were performed. Finally, brems-
strahlung in a laser field was analytically studied in [16],
where the process was formally treated. The laser-assisted
bremsstrahlung process, in which a laser-dressed electron
first emits a photon of arbitrary frequency and then inter-
acts with a Coulomb potential, or the other way around, is
described by the Feynman diagrams in Fig. 1. Here the
intermediate electron can become real, which as we will
see, due to the vanishing of the denominator in the electron
propagator, results in a resonance peak in the cross section.
The interpretation, due to Roshchupkin [16], is that when
the intermediate electron goes on shell, the second-order
bremsstrahlung process becomes the product of two first-
order processes, namely, laser-induced Compton scattering
and laser-assisted Coulomb scattering. As a result, the
frequency of the emitted radiation obeys a modified
Compton formula.

In this Letter, we consider a numerical evaluation of the
laser-assisted bremsstrahlung process, which to our knowl-
edge is the first concrete numerical evaluation ever of a
second-order laser-dressed quantum electrodynamic pro-
cess involving the Dirac-Volkov propagator. We present
the fully relativistic formula for the matrix element, using
the laser-dressed electron propagator. As usual, the laser-
electron interaction is taken into account exactly by using
Volkov states as the initial and final wave functions,
whereas the interaction with the emitted radiation and

 

FIG. 1. Feynman diagrams describing laser-assisted brems-
strahlung. The laser-dressed electron and laser-dressed electron
propagator are drawn as zigzag lines, the virtual Coulomb
photon as a dashed line, and the bremsstrahlung photon as a
wavy line.
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with the Coulomb field is treated in first-order perturbation
theory. As opposed to [16], where only approximate for-
mulas for a weak laser field were obtained, we will evaluate
the cross section for high laser intensities giving the elec-
tron a ponderomotive energy larger or even much larger
than the rest mass of the electron. This work was also
motivated by the question if the laser-dressed propagator
can be approximated by the free electron propagator. We
find that for high harmonics emission, this is not the case.

In the following, we use units where @ � c � �0 � 1,
the four-vector dot product is denoted by a dot: x � y �
x0y0 � x � y, and the ‘‘Feynman dagger’’ dot product with
Dirac gamma matrices is written with a hat: B̂ � B � �.
The electron mass is denoted by m and the charge of the
electron by e � �jej. We consider a laser field with linear
polarization, described by the vector potential A� �
a�� cos�, with � 2 f0; 1; 2; 3g. Here � � k � x, k �
�!; k� is the wave vector of the laser, and �� is the
polarization four-vector satisfying � � k � 0 and �2 �
�1. As initial and final states, we employ the well-known
Volkov wave functions  i;f�x� [17,18], which are solutions
to the Dirac equation: �i@̂� eÂ��� �m� i;f�x� � 0.
These functions are characterized by the average momen-
tum qi;f � pi;f 	 e

2a2k=�4k � pi;f�, with effective mass

m2

 � q2

i;f and pi;f being the momentum of the electron
outside the laser beam. The effective energy is denoted
by Qi;f � q0

i;f. To be able to perform the required space-
time integration, the Volkov wave functions have to be
expanded into an infinite sum of plane waves with gen-
eralized Bessel functions as coefficients, which ren-
ders numerical treatment of processes involving Volkov
states demanding. For the intermediate states we need
the laser-dressed propagator of the electron [3,19]. The
form suitable for our problem is presented in [20,21],
where the propagator is written as G�x; x0� � �2���4�R
d4pE�x; p�Gf

p �E�x0; p�. Here Gf
p is the free electron

propagator in momentum space and E�x; p� is a matrix
similar to the Volkov wave function. For details, see
Ref. [21].

Using the Volkov wave functions  i;f�x� and the laser-
dressed Green’s function together with the vector potential
A�C �x� � �Ze�

�0e�jxj=l=�4�jxj� of the screened Coulomb
field with screening length l, the vector potential A�b �x� �
"�b;�e

ikb�x=�
���������
2!b
p

� describing the emitted bremsstrahlung
photon with polarization � 2 f1; 2g and wave vector kb �
�!b; kb�, we can write down the transition matrix element
Sfi in the first Born approximation, corresponding to the
diagrams in Fig. 1:

 

Sfi � �ie
2
Z
d4x1d

4x2
� f�x2��Âb�x2�G�x2; x1�ÂC�x1� 	 ÂC�x2�G�x2; x1�Âb�x1�� i�x1�

�
X1

n;s��1

2�iZe3m��������������������
2!bQiQf

p ��Qf �Qi 	 n!	!b�

q2
n 	 l

�2 �uf

�
M�sffff�"̂b;��

~̂pf � k̂e2a2=�4k � ~pf� 	m

~p2
f �m

2

 � 2im�k�qf ��!b � s!�=Qf� 	 2im�k�kb

�M�s�nifif ��
0� 	Ms	n

fiif ��
0�

~̂pi � k̂e2a2=�4k � ~pi� 	m

~p2
i �m

2

 � 2im�k�qi��s!�!b�=Qi� � 2im�k�kb

Ms
iiii�"̂b;��

�
ui; (1)

where

 Ms
jklm�X� � Asjk0 X	 Asjk1

�
X
k̂ea�̂

2k � ~pl
	

ea�̂ k̂
2k � pm

X
�

	 Asjk2

ea�̂ k̂
2k � pm

X
k̂ea�̂

2k � ~pl
; (2)

with AsjkN � AN�s; �pj � �~pk ; 	pj � 	~pk�, j, k, l, m 2
fi; fg, �p � ea� � p=�k � p�, 	p � �e2a2=�8k � p�, X 2
f"̂b;�; �0g. The generalized Bessel functions are defined
through A0�s; �; 	� �

P
nJ2n	s���Jn�	�, AN�s; �; 	� �

�1=2��AN�1�s� 1; �; 	� 	 AN�1�s	 1; �; 	��, where
Jn��� is the usual Bessel function. The momentum transfer
from the Coulomb field is denoted by qn � qf � qi 	
nk	 kb, the two four-momenta of the virtual electrons
by ~pf � qf � sk	 kb and ~pi � qi 	 sk� kb, and ui;f is a
constant spinor. We have also included the small imaginary
correction proportional to �
, which results from the self-
energy of a laser-dressed electron [12,15,16], and is related
to the total probability of Compton scattering of an elec-
tron in a laser field. The inclusion of the nonperturba-
tive term �
 in the denominators solves the problems of

evaluating the differential cross section in kinematic re-
gions where the electron goes on shell. According to our
calculations, �
 is a linear function of the parameter 
 even
for quite large values of a and is simple to include in
numerical calculations. As will be discussed below, a large
screening length l is introduced to cut off Coulomb singu-
larities in a well-defined way. Energy conservation is ex-
pressed by the relationQf � Qi � n!�!b, meaning that
the final electron with effective energyQf has exchanged n
laser mode photons with the laser field. The summation
over n is limited from above by the condition Qf � m
.
Because of the neglection of the recoil of the nucleus, there
is no momentum conservation. Note also that we choose to
evaluate the process in the rest frame of the nucleus. That
the matrix element is gauge invariant both under �! �	
�1k and "b ! "b 	�2kb, where �1;2 is an arbitrary
constant, is most easily seen before carrying out the
Bessel function expansion, by using the orthogonality
and completeness relations of the Volkov wave functions
[21]. We also see that when the condition ~p2

f;i � m2

 is

satisfied, the intermediate electron becomes real, with a
resonance peak in the cross section as a result. This con-
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dition can be solved to obtain the frequencies where the
resonances will occur:

 !f
b �

sqf � k

qf � nb� sk � nb
; !i

b �
sqi � k

qi � nb	 sk � nb
; (3)

if k�b � !bn
�
b . Here s appears as an index numbering the

peaks. The peak at !i
b is precisely the frequency of the

light emitted in the process of laser-induced Compton scat-
tering [4,5], exhibiting the once controversial intensity-
dependent frequency Doppler shift and photon recoil effect
[5,22,23]. Because of the Doppler shift, the distance be-
tween the peaks will depend on the direction of kb, but also
on the intensity of the laser field. In general, larger inten-
sities will give smaller spacing between the peaks.

As mentioned above, generally momentum is not con-
served. However, at bremsstrahlung frequencies !i

b satis-
fying Eq. (3) for some s, there will be a direction of the
final electron so that momentum is conserved, that is, qn �
0 for n � �s. It follows that Eq. (3) is also satisfied for!f

b,
with s � �n. When momentum is conserved, due to the
slow falloff of the potential, the matrix element goes to
infinity in the case of a naked Coulomb field. This means
that if we integrate the differential cross section over the
direction of the final electron, we will have singular peaks
at frequencies satisfying Eq. (3). To regularize these sin-
gularities, we use a screened Coulomb potential. The
screening length is chosen large enough to only affect the
matrix element at the peaks, so that the difference between
the screened and the bare Coulomb cross section at off-
resonance values of !b is negligible.

We have evaluated the differential cross section result-
ing from the matrix element (1) for different directions of
the final photon and different laser intensities. We sum over
electron and photon polarizations, and we also integrate the
differential cross section over the solid angle �f of the
outgoing average momentum qf. The resulting cross sec-
tion will therefore be differential only in the bremsstrah-
lung frequency !b and in the bremsstrahlung solid angle
�b. The initial electron counterpropagates with the laser
beam, i.e., k=! � �qi=jqij, and the angle between qi and
kb is denoted by �b, with kb lying in the plane spanned by
k and �. The spectrum for �b � 179 is shown in Fig. 2.
Since this direction of the bremsstrahlung photon corre-
sponds almost to the direction of the laser, harmonics of the
laser frequency are expected. However, as can be seen from
the graph, the magnitude of the peaks falls off quickly, and
harmonics are only visible up to the 13th order. As ex-
pected, the cross section is composed of a number of high
peaks, exceeding the field-free cross section [24,25] with
several orders of magnitude, and a noncoherent back-
ground of comparable magnitude. At a certain order, the
peaks can no longer overtake the background and disap-
pear. For other directions of the final photon, the situation
changes. Figures 3 and 4 show the spectra for �b � 1 and
�b � 90. Here the peaks survive much longer, although
they are no longer harmonics of the laser frequency in the

lab frame. The spacing between the peaks is here larger
than the laser frequency !. It should be stressed that the
mechanism responsible for the emission of harmonics here
is not the well-known (re-)scattering of the electron by the
nucleus, which is suppressed due to the acceleration of the
electron in the laser propagation direction at our laser
intensities, but rather laser-induced Compton scattering
of the laser-dressed electron passing the nucleus without
being deflected at all or with a very small deflection.

We also compared the cross section obtained by employ-
ing the free electron propagator in the matrix element with
the fully laser-dressed cross section. Naı̈vely one would
expect the replacement of the laser-dressed propagator
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FIG. 3 (color online). The cross section for �b � 1, and
otherwise the same parameters as in Fig. 2. In the lower close-
up graph, the different line styles correspond to the same laser
intensities as in Fig. 2. The positions of the peaks correspond to
!i
b of Eq. (3) and the magnitude of the peaks is seen to decrease
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FIG. 2 (color online). The cross section for �b � 179, differ-
ential in bremsstrahlung frequency and solid angle. The laser
frequency is ! � 1:17 eV, the energy of the initial electron
outside the laser is 10 m, Z � 1 and l � 106r0, where r0 is
the Bohr radius. This screening length corresponds to the sepa-
ration of particles in ultrahigh vacuum, i.e., a pressure of 3�
10�8 Pa at room temperature. The intensities used are I � 5:2�
1020 W=cm2 for the blue solid line, I � 4:3� 1019 W=cm2 for
the red dashed line, and I � 0 for the black solid line. For clarity,
the value of the cross section at the peaks is shown with a circle
for the red dashed line, and with a cross for the blue solid line.
The inset shows a magnification at small values of the cross
section, to enable comparison between the background curves.
At the intensities considered, the classical ponderomotive energy
Up is considerably larger than the rest mass of the electron. We
have, for example, Up=m � 107:5 for I � 5:2� 1020 W=cm2,
which is clearly in the relativistic regime.
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with the free electron propagator Gf�x; x0� � �2���4�R
d4pe�ip��x�x

0�=�p̂�m
 	 i0�, with the poles shifted to
p2 � m2


, to be a reasonable approximation, if the time
between the interaction with the Coulomb potential and the
bremsstrahlung radiation is short or if the frequency of the
emitted photon is much higher than the laser frequency.
Analytically one can show that for very high frequencies
!b � Qi, the approximate and the fully laser-dressed
cross section do indeed coincide, but at these frequencies
the cross section is already in the cutoff region and there-
fore vanishingly small. The details about the cutoff, which
decides the maximal bremsstrahlung energy, will be pre-
sented elsewhere. For moderate values of !b, as is shown
in Fig. 4, where the condition !b � Qi is not satisfied,
there is no reason to assume good agreement. As discussed
previously, for values of!b where the peaks are visible, the
largest contribution to the matrix element occurs at vanish-
ing Coulomb momentum qn. In absence of the Coulomb
interaction, the emission part of the laser-dressed brems-
strahlung matrix element essentially reduces to the matrix
element for laser-induced Compton scattering [4]. We re-
call that a Volkov state is a superposition of harmonic plane
waves with quasi four momenta. AVolkov state can thus be
regarded as an electron-laser bound system, with four-
momentum levels labeled by an integer n, corresponding
to the different plane-wave components. The amplitude of
each level is roughly constant up to a certain jnj, above
which the amplitude drops quickly. Compton scattering
can be viewed as spontaneous photon emission and a
transition between two levels of the electron-laser system.
Momentum and energy conservation fix the four-
momentum difference between these levels, and to obtain
the total amplitude one has to sum coherently over all

allowed transitions. For very small frequencies !b <!,
the amplitudes add up constructively, but for larger fre-
quencies destructive interference between the different
emission channels gives rise to the exponential decrease
seen in Fig. 4, also expected classically [26]. However,
when the free propagator is applied, the dominant transi-
tion is forced to occur between an initial level and a single,
specific level with four-momentum close to the mass shell
p2 � m2


. The amplitude of this single ‘‘allowed’’ transi-
tion is approximately constant in the considered range of
!b, as evident from Fig. 4. The completely different be-
havior of the fully laser-dressed process is thus explained
by the additional emission channels.
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[5] P. Panek, J. Z. Kamiński, and F. Ehlotzky, Phys. Rev. A 65,

022712 (2002).
[6] M. M. Denisov and M. V. Fedorov, JETP 26, 779 (1968).
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