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Analysis of a Novel Four-Level DC/DC
Boost Converter

Keith A. Corzine, Member, IEEE,and Sonal K. Majeethia, Student Member, IEEE

Abstract—In this paper, novel two-quadrant buck/boost and
one-quadrant boost four-level dc/dc converters are introduced.
The primary application for these converters is that of inter-
facing a low-voltage dc source, such as a fuel cell or battery,
to a high-voltage four-level inverter. One important feature of
the four-level dc/dc converters proposed herein is the ability to
perform the power conversion and balance the inverter capacitor
voltages simultaneously. With the capacitor voltage balancing, it is
possible to obtain the full voltage from the inverter. For the boost
converter, the steady-state and nonlinear average-value (NLAM)
models are developed. The NLAM is verified against a detailed
simulation of a four-level converter/inverter drive system. The
proposed converter is experimentally verified using an 18-kW
converter/inverter system.

Index Terms—Average-value modeling, dc/dc converters, four-
level converters, multilevel converters.

I. INTRODUCTION

T HE general trend in power electronics devices has been
to switch power semiconductors at increasingly high fre-

quencies in order to minimize harmonics and reduce passive
component sizes. However, the increase in switching frequency
increases the switching losses which become especially sig-
nificant at high power levels. Several methods for decreasing
switching losses have been proposed including constructing res-
onant inverters and multilevel inverters [1].

Resonant inverters avoid switching losses by adding anLC
resonant circuit to the hard-switched inverter topology. The in-
verter transistors can be switched when their voltage or current
is zero, thus mitigating switching losses. Examples of this type
of inverter include the resonant dc link [2], and the auxiliary
resonant commutated pole inverter (ARCP) [3], [4]. One dis-
advantage of resonant inverters is that the added resonant cir-
cuitry will increase the complexity and cost of the inverter con-
trol. Furthermore, high insulated gate bipolar transistor (IGBT)
switching edge rates can create switch-level control problems.

Multilevel inverters offer another approach to reducing
switching losses. In particular, these converters offer a high
number of switching states so that the inverter output voltage
can be “stepped” in smaller increments [5]–[11]. This allows
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mitigation of harmonics at low switching frequencies, thereby
reducing switching losses. In addition, EMC concerns are
reduced through the lower common-mode current facilitated
by lower dv/dts produced by the smaller voltage steps. One
disadvantage of these techniques is that they require a high
number of switching devices. The primary disadvantage of
multilevel inverters is that they must be supplied from isolated
dc voltage sources or a bank of series capacitors with balanced
voltages. In systems where isolated dc sources are not practical,
capacitor voltage balancing becomes the principal limitation
for multilevel inverters.

One of the most popular industrial multilevel inverters is
the diode-clamped three-level inverter [5], [7], [8], [10]. It has
been well established that the dc capacitor voltages can be
readily balanced through the use of straightforward selection of
redundant inverter switching states [10]. However, for inverters
with a higher number of levels, the voltage balancing through
redundant state selection limits the output voltage to 50%
of the maximum [12], [13]. For this reason, some systems
incorporate auxiliary dc/dc converters for capacitor voltage
balancing [14]–[17]. Some interesting three-level boost dc/dc
converters have been proposed for systems that are powered
from a low-voltage source such as a battery, fuel cell, or su-
perconducting magnetic energy storage (SMES) [18]–[20]. In
this paper, a novel four-level dc/dc converter is presented. The
standard steady-state and average-value modeling techniques
are applied to this new converter. Detailed and average-value
model simulation demonstrates the converter performance.

II. PROPOSEDFOUR-LEVEL DC/DC CONVERTER

A. Converter Description

Fig. 1 shows the novel four-level two-quadrant converter
proposed herein. This converter can operate as a boost or buck
converter depending on weather the dc sourceis supplying
or absorbing power respectively. For many applications, bidi-
rectional power flow is not necessary and the semiconductor
parts count can be reduced to the topology shown in Fig. 2. In
a standard boost converter, one transistor and one diode are
used for the boost process [21], [22]. In this new topology, two
additional transistors are added in order to provide additional
switching states that can be used to balance the capacitor
voltages. It should be pointed out that although there are three
times as many transistors as with a standard boost converter,
the switches are rated at 1/3 of the dc voltage and, thus, the
overall semiconductor cost is roughly the same. Fig. 3 shows
the possible switching states of the four-level dc/dc converter.
States 0 and 4 are the two states typically used for dc/dc boost

0093–9994/00$10.00 © 2000 IEEE
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Fig. 1. Proposed four-level two-quadrant dc/dc converter.

Fig. 2. Proposed four-level one-quadrant boost converter.

conversion. Due to the nature of the motor impedance load and
the switching of the four-level inverter transistors, the voltage
of the center capacitor tends to discharge to zero in this
system. For this reason, state 1 is inserted in the switching
sequence in order to increase the charge on the center capacitor.
A secondary goal of this converter is to balance the voltages on
the upper and lower capacitors. Although this is typically not
difficult in four-level inverters, states 2 and 3 can be added to
ensure this balance.

B. Switching Sequence

One advantage of multilevel dc/dc power conversion is a re-
duction in the inductor current ripple when compared to a stan-
dard dc/dc converter. For the three-level dc/dc converter, a re-
duction in current ripple can be accomplished by defining the
switching sequence as a function of the input and output volt-
ages [18]–[20]. In the case of the four-level converter, it is not
possible to reduce the current ripple for all operating conditions
and simultaneously balance the capacitor voltages. Therefore,
one sequence has been chosen with the objective of balancing
the capacitor voltages. The overall switching state sequence sug-
gested for this converter is– – or – – or – – . The
state diagram for this sequence is shown in Fig. 4. Note that this
sequence is similar to that of a standard dc/dc converter with two
additional switching states. Two additional duty cycles are de-

Fig. 3. Four-level one-quadrant converter switching states.

Fig. 4. Four-level converter switching sequence.

fined in the sequence timing for control of the additional states.
The timing sequence is defined by

(1)

where , , and are the controller duty cycles and is
the total time spent in the switching states. The remainder of
the sequence is to reverse the order spending the same amount
of time in each state as before. Therefore, the total time of the
switching controller is .
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The amount of time spent at the particular switching state
can be controlled depending on the desired output voltage and
the capacitor voltage imbalance. For example, the time spent
at switching state 1 can be increased in order to increase the
voltage across the center capacitor. The time spent at states 2
and 3 can be controlled to maintain the voltage balance between
the upper and lower capacitors. The choice as to which state to
switch to during the sequence (2 or 3) is made depending on
which of the two capacitor voltages or is lower.

C. Duty-Cycle Regulation

The control of the cycles , , and can be challenging
since the system is multi-input multi-output (MIMO). A MIMO
control design may be the work of future research in this area.
However, a straightforward proportional-plus-integral (PI) con-
trol can be implemented. Use of this control was justified by
examining the sensitivity of the system outputs (capacitor volt-
ages) to the changing inputs (duty cycles). It was observed that
the capacitor voltage was more sensitive to changes in
than or . Furthermore, and were more sensitive
to changes in than . This sensitivity somewhat decouples
the system and allows for the following control to be used

(2)

(3)

The errors and are defined by

(4)

(5)

where is the sum of , , and . The commanded voltage
on the center capacitor can be set to

(6)

The third duty cycle can set to small a constant value since
it is used to control the imbalance between and and this
imbalance is typically not much of a problem in four-level sys-
tems.

III. STEADY-STATE MODELING

As with other types of dc/dc converters, it is instructive to per-
form a steady-state analysis of the converter driving a resistive
load [18]–[21]. In the case of the four-level boost converter, the
circuit topology is that of Fig. 5. Since the goal of this converter
is to equalize the capacitor voltages, it will be assumed that the
controller duty cycles have been set so that the capacitor volt-
ages are equal, or

(7)

It will also be assumed that so that switching state
3 is used during the time when there is a choice between states
2 and 3. The resulting inductor current waveform is shown in

Fig. 5. Four-level converter with resistive load.

Fig. 6. Steady-state inductor current waveform.

Fig. 6. For steady-state periodic operation, it is necessary that
the average inductor voltage be zero. From this requirement, the
output to input voltage ratio can be determined as

(8)

Assuming that the converter losses are negligible, the average
inductor current can be found from the output power and input
voltage as

(9)

From the load equations and the fact that the average capacitor
currents must be zero, it can be shown that the steady-state cur-
rents, defined in Fig. 6, are

(10)

(11)

(12)
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By waveform symmetry

(13)

(14)

(15)

For design purposes, it is often desirable to calculate the in-
ductor current ripple . From (5) to (10), it can be seen that

(16)

Note that the maximum current (, , or ) depends on the
shape of the inductor current and thus depends on the dc input
and capacitor voltages. Regardless of which current is the max-
imum, it can be seen that the inductor current ripple decreases
with increasing switching frequency, inductance, and load resis-
tance as is typical of dc/dc converters.

It may be desirable to calculate the required duty cycles for
a given set of load resistances. In this case, setting the average
capacitor currents to zero yields three equations which can be
solved for duty cycles resulting in

(17)

(18)

(19)

Although the steady-state model is useful for design calcula-
tions, a dynamic model is needed for evaluating system transient
performance.

IV. NONLINEAR AVERAGE-VALUE MODELING

The general concept of nonlinear average-value models
(NLAMs) is that the high-frequency switching of the power
converter is represented on an average-value basis. These
models provide insight into the operation of switching con-
verters as well as suggest control strategies. Another advantage
of NLAMs is that some simulation packages can linearize these
models about an operating point and determine the state space
matrices. From this information, classical control theory can be
applied and the system stability can be evaluated [22], [23].

Fig. 7 shows the general structure of the NLAM where the
converter switches have been replaced by dependant voltage
and current sources. Therein, thesymbol denotes the fast
average which is the average value of the quantity over one
switching cycle of the converter . The converter waveforms
used for determining the dependent source equations are shown
in Fig. 8 with the assumption that and state 2

Fig. 7. Converter average-value model structure.

Fig. 8. Converter switching waveforms.

is not used. If the inductor current ripple is neglected, the
average-value equations are

(20)

(21)

(22)

(23)

If , then the average-value equations become

(24)

(25)

(26)

(27)

For four-level inverter loads, the unbalance of capacitor volt-
ages and is not severe and the controller will select
state 2 over state 3 about one-half of the time. In this case,
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Fig. 9. Four-level dc/dc converter root locus.

the two sets of equations can be averaged to yield one model.
For example, an equation for can be obtained by averaging
(20) and (24).

The NLAM can be used to evaluate the dynamic and steady-
state performance of the converter without including the high-
frequency switching of the controller. If a resistive load is con-
nected to the NLAM, (8), (9), and (17)–(19) can readily be de-
rived. Alternatively, an NLAM of a four-level inverter can be
connected to the converter NLAM for dynamic modeling a drive
system as depicted in Fig. 2.

In order to demonstrate stability analysis using the NLAM,
consider the four-level dc/dc converter supplying a resistive
load, as shown in Fig. 5. For this example, the resistors are set
to and in order to mimic an
imbalance that would exist with an inverter load. The capacitor
values are F and the inductor value is

mH. Duty-cycle regulation is used to boost the input
voltage from V to V using controller
gains of , , , and
with . Fig. 9 shows the root locus plot obtained in by
linearization of the average-value model about the operating
point as predicted using the advanced continuous simulation
language (ACSL). The root locus plot is performed by varying
the loop gain of the control loop which is regulating the output
voltage . As can be seen, there is a complex pole pair crossing
into the right-half plane when the loop gain is increased
above 11. This indicates an instability if the controller gains

and are increased by a factor of 11. Fig. 10 shows
the converter output voltage as predicted by the average-value
model and as predicted by a detailed simulation. An instability
is clearly seen when the controller gain is increased above 11.

It should be pointed out that the stability of the four-level
system has different characteristics than that of a typical two-
level boost converter [21] due to the added control loop which
regulates . To illustrate this point, an example of a standard
boost converter is included herein. The NLAM for this converter
may be expressed by its equivalent circuit shown in Fig. 11. The

Fig. 10. Capacitor voltage versus controller gaink.

Fig. 11. Standard boost converter NLAM.

dependent sources have been replaced by referring the output
circuit to the input circuit as per a Steinmetz transformer model
[24]. In this model, the referred quantities are related to the ac-
tual circuit values by the duty cycleas

(28)

(29)

(30)

In this example, the input and desired output voltage have been
set to and V, respectively. The parameters
have been adjusted so that the operation is similar to the four-
level example. In particular, , F, and

mH. The regulator proportional gain is set to zero
and the integral gain is set to 0.001. Fig. 12 shows the resulting
root locus diagram. As can be seen, a pole pair crosses into
the right-half plane for a loop gain of about 4.5. Therefore, the
integral gain needs to be less than 0.0045 for stability at this
operating point.

V. FOUR-LEVEL INVERTER

Fig. 13 illustrates a four-level diode-clamped inverter [6]–[8],
[12], [13]. The general theory of this inverter is that each phase
( , , or ) can be electrically connected to the junctions,

, , and by appropriate switching of the inverter tran-
sistors. By pulsewidth modulation (PWM), the inverter line-to-
ground voltages , , and can be directly controlled.
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Fig. 12. Standard boost converter root locus.

Fig. 13. Four-level inverter topology.

The motor line-to-neutral voltages can be calculated from the
line-to-ground voltages by [25].

(31)

(32)

(33)

Modulation of the line-to-ground voltages may be accom-
plished with hysteresis current-regulated control [8] or space-
vector modulation [7], [10]. Time— domain-based voltage-
source methods such as sine-triangle modulation [11] [12] and

Fig. 14. Average-value model of the four-level inverter.

duty-cycle modulation [26] rely on a three-phase set of duty
cycles which may be expressed as

(34)

(35)

(36)

where is the inverter electrical angle and m is the modulation
index which ranges from zero to 1.15 [26].

For the purposes of system model comparison, an NLAM has
been developed for the four-level inverter based on the duty cy-
cles. Fig. 14 shows the general structure of the model. Although
the derivation of the average voltages and currents is too ex-
tensive to be included herein, the general procedure has been
described in [26]. The resulting equations are

(37)

(38)

(39)

where is the motor -axis current in the converter reference
frame and

(40)

In (40), is the converter angle where crosses [26]. The
average-value motor voltages are

(41)

(42)

(43)

where

(44)

Equations (41)–(43) may be transformed to the converter refer-
ence frame for an average-value model with variables that are
constant in the steady state [25].
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Fig. 15. Detailed model prediction of system performance during a step
change in modulation index.

VI. FOUR-LEVEL SYSTEM SIMULATIONS

Detailed and NLAM-based simulations were performed on
the converter/inverter system shown in Fig. 2. The induction
motor used in these studies is a 3.7-kW machine [26] operating
at a constant speed of 183.3 rad/s and a constant electrical fre-
quency of 60 Hz ensured by setting

(45)

in the inverter control. The modulation indexis stepped from
0.6 to 1.13 resulting in a step change in applied voltage on the
motor. For the detailed simulation, the PWM switching period is
set to ms. The commanded converter output voltage

was set to 318 V. The controller gains for regulating duty
cycles and were , , ,
and . The third duty cycle was set to . The
dc input voltage was V and the controller switching
period was ms. The converter inductance value was

mH. The capacitor values were unevenly distributed
so that the voltage ripple of all capacitors would be roughly the
same in the detailed model. The values used were

F and F.
Figs. 15 and 16 show the simulation results for the detailed

and NLAM models respectively. As can be seen, the capacitor
voltages drop when the inverter modulation index is increased.
The regulating control on the dc/dc converter then controls the
duty cycles so that the capacitor voltages return to their desired
values. The inductor current increases as the power to the motor
increases. Notice from the detailed model that there are two
components to the inductor current ripple. One component is
due to the converter switching and the other is due to the capac-
itor voltage ripple. Figs. 15 and 16 also display the controller
duty cycles. Note that for , the duty cycle is very
low. This suggests an alternate switching sequence for
where the switching state 0 is eliminated and the inductor cur-
rent ripple is reduced as compared to a standard boost converter.

VII. FOUR-LEVEL SYSTEM LABORATORY STUDIES

The proposed four-level drive system shown in Fig. 2 was
constructed in the laboratory driving an 18-kW induction motor.
The system parameters and operating conditions for this study
are shown in Table I.

The input voltage for this study was V and the
motor was loaded to rated power resulting in a speed of

rad/s. The switching frequency for the inverter PWM was
5 kHz and the switching frequency for the dc/dc converter was
2.2 kHz. Fig. 17 shows the measured line-to-line motor voltage
and line current. Perfect capacitor voltage balance was achieved
even though the modulation index was set to 98% of its max-
imum value. This is evident in the evenly distributed voltage
steps in the motor voltage. In the absence of the dc/dc converter,
capacitor voltage balance would only be possible for modula-
tion indexes less than 0.6 [13]. Fig. 18 shows the dc/dc converter
waveforms. Therein, the switch voltage and inductor current, as
defined in Fig. 2, are shown. The controller settles to duty cy-
cles of and . The small value of is
noted by the switch voltage shown in Fig. 18. This indicates that
a small amount of charge is required to balance the center ca-
pacitor voltage.

An additional laboratory study was performed in order to
compare the efficiency of the proposed converter to that of a
standard two-level converter rated at 1/3 power. For this com-
parison, a resistive load is used as shown in Fig. 5. Table II
shows the parameters and operating conditions for the four- and
two-level converters.

The four-level converter operated with an output voltage of
V and an efficiency of 91.9%. The two-level con-

verter operated with an output voltage of 194 V and an efficiency
of 92.3%. The average inductor current was about 25 A in each
case. For the four-level converter, this current flows through all
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Fig. 16. NLAM model prediction of system performance during a step change
in modulation index.

three IGBT’s leading to increased conduction losses. However,
the output power is three times greater leading to an efficiency
that is almost the same as that of the standard two-level converter.

VIII. C ONCLUSION

A novel four-level dc/dc converter has been introduced.
The main objective of this converter is to supply a four-level
diode-clamped inverter and provide capacitor voltage balancing
as well as perform a boost operation. With the capacitor bal-
ancing controlled by the converter, the inverter can be operated
up to its full output voltage (as compared to 50% of full
output voltage when balancing the capacitors with the inverter
switching). Steady-state and average-value modeling of the

Fig. 17. Four-level inverter laboratory measurements.

TABLE I
LABORATORY DRIVE SYSTEM PARAMETERS

Fig. 18. Proposed converter laboratory measurements.

TABLE II
LABORATORY CONVERTERPARAMETERS
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proposed converter is presented. A simulation study on the
converter/inverter system demonstrates that the average-value
model prediction compares favorably to a detailed simulation.
Laboratory measurements verify the operation of the proposed
drive system.
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