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Analyses of thin-walled sections under localised loading for 
general end boundary conditions – Part 2: Buckling 

 
Van Vinh Nguyen1, Gregory J Hancock2 and Cao Hung Pham3 

 
Abstract 
 
Thin-walled sections under localised loading may lead to buckling of the 
sections. This paper briefly introduces the development of the Semi-Analytical 
Finite Strip Method (SAFSM) for buckling analyses of thin-walled sections 
under localised loading for general end boundary conditions. This method is 
benchmarked against the Finite Element Method (FEM). 
 
For different support and loading conditions, different functions are required for 
flexural and membrane displacements. In Part 1- Pre-buckling described in a 
companion paper at this conference, the analysis provides the computation of the 
stresses for use in the buckling analyses in this paper. Numerical examples of 
buckling analyses of thin-walled sections under localised loading with different 
end boundary conditions are also given in the paper in comparison with the 
FEM. 
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1. Introduction 
 
Thin-walled plates and sections subjected to localised loading and experiencing 
plate buckling have been studied over a long period by numerous investigators 
who mainly focused on web plates of sections under concentrated load. Two 
comprehensive investigations in this research area were Khan and Walker 
(1972) for the buckling of plates under localised loading and Johansson and 
Lagerqvist (1995) for the resistance of plate edges under localised loading. In 
the application of the General Beam Theory (GBT), Natário, Silvestre, and 
Camotim (2012) further extended investigations for beams under concentrated 
loading. The results for plates, unlipped channel sections and I sections from the 
GBT have been benchmarked against previous research and the Shell Finite 
Element method (SFE).   
 
The Finite Strip Method (FSM) developed by Cheung (1976) is an efficient 
method of analysis in comparison with the FEM. This method is used 
extensively in the Direct Strength Method (DSM) of design of cold-formed 
sections in the North American Specification for the Design of Cold-Formed 
Steel Structural Members AISI S100-2012 (2012) and the Australian/New 
Zealand Standard AS/NZS 4600:2005 (2005).  It is therefore very important to 
extend the FSM of buckling analysis to localised loading. The SAFSM was 
applied in Chu, Ye, Kettle, and Li (2005) and Bui (2009) to the buckling 
analysis of thin-walled sections under more general loading conditions, where 
multiple series terms were used to capture the modulation of the buckles. The 
limitation of these investigations is that the transverse compression and shear are 
not included. Hancock and Pham (2013) applied the SAFSM to the buckling 
analysis of thin-walled sections subjected to shear forces. More recently, 
Hancock and Pham (2014) have extended the SAFSM to the analysis of thin - 
walled sections under localised loading for simply supported boundary condition 
using multiple series terms. In the longitudinal direction, a pre-buckling analysis 
was performed to compute stresses prior to the buckling analysis using these 
stresses. Solution convergence with increasing number of series terms was 
provided. However, in practice, cold-formed members are connected together by 
welds or bolts so that the end boundary conditions are expected to be different 
from simply supported. Thus, it is necessary to extend this method to the 
analysis of thin-walled sections under localised loading for general end 
boundary conditions. 
 
In this Part 2 – Buckling, the paper briefly introduces the functions used to 
compute the stress distributions in the strips of the structural member for 
different end boundary conditions. In addition, the theory of the SAFSM for 
buckling analysis of thin walled sections under localised loading for general end 
boundary conditions is developed. Numerical examples have been performed by 
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the SAFSM built into the THIN-WALL-2 program developed by the authors 
(Nguyen, Hancock, & Pham, 2015). The numerical solutions are compared with 
those from the analyses by the Finite Element Method (FEM) on ABAQUS 
(ABAQUS/Standard Version 6.13, 2013) to validate the accuracy. 
 
2. Strip displacements 
 
2.1. Flexural displacement 
 
An isometric view of flexural displacements of a strip is shown in Fig.1 of the 
companion paper Part 1 - Pre-buckling. 
 
The flexural deformations w of a strip can be described by the summation over μ 
series terms as: 

1 1
1

( ) ( )m m
m

w f y X x
µ

=

= ∑  
 

(1) 

where: 
µ is the number of series terms of the harmonic longitudinal function, 

1 ( )mX x  is the curve for longitudinal variation, as described in Part 1 - Pre-
buckling 

1 ( )mf y  is a polynomial for transverse variation. This function for the mth 
series term is given by: 

2 3

1 1 2 3 4( )m Fm Fm Fm Fm
y y yf y
b b b

α α α α     = + + +     
     

 
 

(2) 

{ }Fmα  are the vector polynomial coefficients for the mth series term which 
depend on the nodal line flexural deformations of the strip, 

{ } [ ]1 2 3 4
T

Fm Fm Fm Fm Fmα α α α α=  
b and L are the strip width and length respectively. 
 

The flexural deformations w can be written in matrix format: 

( )[ ][ ] { }1
1

1
m FL F Fm

m
w X x C

µ

δ−

=

= Γ∑  
 

(3) 

where: 
{ } [ ] { }1

Fm F FmCα δ−=  

[ ]{ }1 ( )m FL Fmf y α= Γ  

[ ] ( ) ( ) ( )2 31 / / /FL y b y b y b Γ =  
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{ }Fmδ  is the flexural displacement vector for nodal line displacements 

[ ]FC  is the evaluation matrix of the flexural displacement functions at the 
nodal lines 

In the computation of the flexural potential energy described later, the 
derivatives of the flexural deformation are required. The derivatives used are as 
follows: 

( )[ ]{ }'
1

1
m FL Fm

m

w X x
x

µ

α
=

∂
= Γ

∂ ∑  
 

(4) 

( ) [ ]{ }1
1

1
m FT Fm

m

w X x
y b

µ

α
=

∂
= Γ

∂ ∑  
 

(5) 

where [ ] ( ) ( )20 1 2 / 3 /FT y b y b Γ =  
 

 
2.2. Membrane displacement 
 
An isometric view of membrane displacements of a strip is shown in Fig.2 of the 
companion paper Part 1 - Pre-buckling. 

 
The membrane deformations in the longitudinal and transverse directions of a 
strip can be described by the summation over μ series terms as: 

1
1

( ) ( )vm m
m

v f y X x
µ

=

= ∑  
 

(6) 

2
1

( ) ( )um m
m

u f y X x
µ

=

= ∑   
(7) 

where: 
1 2( ) and ( )m mX x X x is the longitudinal variation curve for the membrane 

transverse v and longitudinal u deformations respectively, as described in 
Part 1 - Pre-buckling 

( ) and ( )vm umf y f y  are the transverse variations. These functions for the mth 
series term are given by: 

1 2( )vm Mm Mm
yf y
b

α α  = +  
 

 (8) 

3 4( )um Mm Mm
yf y
b

α α  = +  
 

 (9) 

{ }Mmα  is the vector of polynomial coefficients for the mth series term 
which depend on the nodal line membrane deformations of the strips 

{ } [ ]1 2 3 4
T

Mm Mm Mm Mm Mmα α α α α=  
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The membrane deformations of the strip can be written in matrix format: 

( )[ ][ ] { }1
1

1
m Mv M Mm

m
v X x C

µ

δ−

=

= Γ∑  
 

(10) 

( )[ ][ ] { }1
2

1
m Mu M Mm

m
u X x C

µ

δ−

=

= Γ∑  
 

(11) 

where: 
{ } [ ] { }1

Mm M MmCα δ−=  

[ ]{ } [ ]{ }( )            and      ( )vm Mv Mm um Mu Mmf y f yα α= Γ = Γ   

[ ] [ ] [ ] ( )1 ( / ) 0 0     and    0 0 1 /Mv Muy b y b Γ = Γ =    

{ }Mmδ : is the membrane displacement vector 
In the computation of the membrane potential energy described later, the 
derivatives of the membrane deformations are required. The derivatives used are 
as follows: 

( )[ ]{ }'
1

1
m Mv Mm

m

v X x
x

µ

α
=

∂
= Γ

∂ ∑  
 

(12) 

( )[ ]{ }'
2

1
m Mu Mm

m

u X x
x

µ

α
=

∂
= Γ

∂ ∑  
 

(13) 

 
3. Membrane stresses 
 
3.1. Membrane stresses calculation 
 
The membrane stresses of a strip are given by: 

{ } [ ]{ }Mm M MmDσ = ∈  (14) 

where{ }Mm∈  is the membrane strain vector:    

{ } [ ]{ }Mm Mm MmB α∈ =  (15) 

Hence:       
{ } [ ][ ]{ }Mm M Mm MmD Bσ α=  (16) 

 
3.2. Stress distribution in a strip 
 
A strip subjected to loading will have complex stresses as shown in the Fig.1 
where the stresses due to the k=1 series term are drawn. The stresses are 
obtained from the pre-buckling analysis step described in Part 1- Pre-buckling. 
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Figure 1: Stress distribution of a strip with both ends simply supported (k=1) 

 
The longitudinal stress for buckling analysis which is obtained from Equation 
(16) varies in both the longitudinal and transverse directions and is given by: 

( ) ( ) ( )1 1 2 2 3
1 1

x k L k k L k L k
k k

yx x x
b

µ µ

σ σ σ σ σ σ
= =

 = + +  
∑ ∑  

 

(17) 

where: 
k is the series term of the stress functions 

( )x xσ is the longitudinal stress 

1 2 3, ,L k L k L kσ σ σ are the amplitude components of the longitudinal stress for 
series term k 

12
1 2 2 3 2 3 4 2;  and L k Mk L k Mk L k Mk

E E E
b

σ α σ α σ α= = =  

1 2( ), ( )k kx xσ σ  are the functions for the variation of the longitudinal stress 

( ) ( ) ( ) ( )'
1 1 2 2 and k k k kx X x x X xσ σ= =  

The transverse stress for buckling analysis which is obtained from Equation (16) 
is the average transverse stress in a strip and is given by: 

( ) ( ) ( )1 1 2 2
1 1

y k T k k T k
k k

x x x
µ µ

σ σ σ σ σ
= =

= +∑ ∑  
 

(18) 

where: 
( )y xσ is the transverse stress 

1 2,T k T kσ σ  are the amplitude components of the transverse stress for series 
term k 

z

x

y

L b

σx

dx
dy

σ2k

σ1k

-1.0

1.0

τk(x)

σTk

σTk

τxy
τyx

1.0 σk(x)

σy

τk

τk

x,y,z are local axes aligned with strip

σLk
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1
1 2 2 3 12 4 12

1 and 
2T k Mk T k Mk Mk

E E E
b

σ α σ α α = = +  
 

1 2( ), ( )k kx xσ σ  are the functions for the variation of the transverse stress 

( ) ( ) ( ) ( )'
1 1 2 2 and k k k kx X x x X xσ σ= =    

The shear stress for buckling analysis which is obtained from Equation (16) is 
the average stress in a strip and is given by: 

( ) ( ) ( )1 1 2 2
1 1

xy k k k k
k k

x x x
µ µ

τ τ τ τ τ
= =

= +∑ ∑  
 

(19) 

where: 
( )xy xτ is the shear stress 

1 2,k kτ τ  are the amplitude components of the shear stress for series term k 

1 1 2 2 4
1  and 
2k Mk Mk k Mk

GG G
b

τ α α τ α = + =  
  

1 2( ), ( )k kx xτ τ  are the functions for the variation of the shear stress 

( ) ( ) ( ) ( )'
1 1 2 2 and k k k kx X x x X xτ τ= =  

For different boundary conditions, different functions are required for flexural 
and membrane displacements, as described in Part 1 - Pre-buckling 
 
4. Strain energy and potential energy 
 
In order to compute the stiffness matrix of a strip according to conventional 
finite strip theory (Cheung, 1976), it is necessary to define the strain energy in a 
strip under deformation and the potential energy of the membrane stresses. 
 
4.1. Strain energy of a strip 
 
The flexural strain energy UF and the membrane strain energy UM are given in 
Part 1 - Pre-buckling. 
 
4.2. Potential energy of the membrane stresses 
 
The flexural potential energy of the membrane stresses is given by: 

( ) ( )

( ) ( )

22

0 0

1
2

x yL b

F

xy xy

w wx x
x y

V tdydx
w w w wx x
x y y x

σ σ

τ τ

  ∂ ∂  + +   ∂ ∂   = −     ∂ ∂ ∂ ∂    + +       ∂ ∂ ∂ ∂       

∫ ∫
 

 
(20) 
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Substitution of equations (17), (18), (19) into equation (20) and using Equations 
(4), (5) results in: 

1 2F FL FT FS FSV V V V V= + + +  (21) 
where: 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

'
1 1 1 2 2 3

1 1
1 10 0 '

1

1
2

T TL b
Fm FL m k L k k L k L k

k kFL
m n

n FL Fn

yX x x x
bV

X x tdydx

µ µ
µ µ α σ σ σ σ σ

α
= =

= =

  Γ + +  = −   
Γ

∑ ∑∑∑∫ ∫
 

 

(22) 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

1 1 1 2 22
1 1

1 10 0
1

1
1
2

T TL b
Fm FT m k T k k T k

k kFT
m n

n FT Fn

X x x x
bV
X x tdydx

µ µ
µ µ α σ σ σ σ

α
= =

= =

 
Γ + = −  

Γ

∑ ∑∑∑∫ ∫
 

 
(23) 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

'
1 1 1 2 2

1 1 1
1

0 0
1

1
2 1

T T
L b Fm FL m k k k k

m n k k
FS

n FT Fn

X x x x
V

X x tdydx
b

µ µ µ µ

α τ τ τ τ

α

= = =

 
Γ + 

 = −

Γ

∑∑ ∑ ∑
∫ ∫

 

 
(24) 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

1 1 1 2 2
1 1 12

0 0 '
1

1
1
2

T TL b
Fm FT m k k k k

m n k kFS

n FL Fn

X x x x
bV

X x tdydx

µ µ µ µ

α τ τ τ τ

α
= = =

 
Γ + = −  

Γ

∑∑ ∑ ∑
∫ ∫  

 
(25) 

 
Note that in Equations (21) to (25), summation is taken over the k=1 to µ series 
term for stress as well as the m, n=1 to µ modal terms. 
 
The membrane potential energy of the membrane stresses is given by: 

2 2

0 0

1 ( ) ( )
2

L b

M x x
v uV x x tdydx
x x

σ σ
 ∂ ∂   = − +     ∂ ∂    

∫ ∫  
 

(26) 

As stated in Plank and Wittrick (1974), it is believed that there are no membrane 
instabilities associated with transverse stress and shear stress so that there are no 
term in above equation associated with these. 
 
Substitution of equation (17) into equation (26) and using equations (12), (13) 
results in: 

M Mv MuV V V= +  (27) 
where: 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

'
1 1 1 2 2 3

1 1
1 10 0 '

1

1
2

T TL b
Mm Mv m k L k k L k L k

k kMv
m n

n Mv Mn

yX x x x
bV

X x tdydx

µ µ
µ µ α σ σ σ σ σ

α
= =

= =

  Γ + +  = −   
Γ

∑ ∑∑∑∫ ∫
 

 
(28) 
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{ } [ ] ( ) ( ) ( )

( )[ ]{ }

'
2 1 1 2 2 3

1 1
1 10 0 '

2

1
2

T TL b
Mm Mu m k L k k L k L k

k kMu
m n

n Mu Mn

yX x x x
bV

X x tdydx

µ µ
µ µ α σ σ σ σ σ

α
= =

= =

  Γ + +  = −   
Γ

∑ ∑∑∑∫ ∫
 

 
(29) 

 
5. Stability matrix 
 
5.1. Flexural and membrane stiffness matrices 
 
The flexural and membrane stiffness matrices are given in Part 1 – Pre-buckling. 
 
5.2. Flexural stability matrix  
 
The total flexural potential energy of the membrane stresses can be written as: 

{ } [ ]{ }1
2

T
F Fm Fmn FnV gδ δ= −  

 

(30) 

where [ ]Fmng  is the flexural stability matrix corresponding to the mth and nth 

series terms and { }Fnδ  is the flexural displacement vector of a strip 

corresponding to the nth series term. The matrix [ ]Fmng is given in the Research 
Report 959 (Nguyen, Hancock, & Pham, 2016). The coefficients CLw1mnk ,  
CLw2mnk ,  CT1mnk ,  CT2mnk ,  CS11mnk ,  CS12mnk ,  CS21mnk ,  CS22mnk in the report have 
been evaluated exactly for the displacement functions satisfying different 
boundary conditions as described in Part 1 - Pre-buckling. 
 
5.3. The membrane stability matrix 
 
The total membrane potential energy of the membrane stresses can be written as: 

{ } [ ]{ }1
2

T
M Mm Mmn MnV gδ δ= −  (31) 

where [ ]Mmng  is the membrane stability matrix corresponding to the mth and nth 

series terms and { }Mnδ  is the membrane displacement vector of a strip 

corresponding to the nth series term. The matrix [ ]Mmng is given in the Research 
Report 959 (Nguyen et al., 2016). The coefficients CLv1mnk , CLv2mnk , CLu1mnk , 
CLu2mnk in the report have been evaluated exactly for the displacement functions 
satisfying different boundary conditions as described in Part 1 - Pre-buckling. 
 
5.4. The stability matrix of whole section 
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The stability matrix of a strip is assembled from both the flexural stability matrix 
and the membrane stability matrix in local coordinates. These matrices are 
transformed to global coordinates by a multiplication with transformation 
matrices. The stability matrix of the whole section for each series term is 
assembled from the stability matrices of individual strip. Finally, the complete 
stability matrix of the whole section is assembled from the stability matrices 
taken over the series terms, thus the size of this matrix is 4 times the node 
number and times the number of series terms. 
 
6. Buckling analysis 
 
The total potential energy is the sum of the elastic strain energy stored in a strip 
and the potential energy of the membrane stresses, thus: 

U Vφ = +  (32) 
The principle of minimum total potential energy requires that: 

{ } { }0
b

φ
δ

 ∂  = ∂  
 

 
(33) 

Thus, we have: 
[ ] [ ]( ){ } { }0bK Gλ δ− =  (34) 

where  
[K] and [G] are the system stiffness and stability matrix respectively 
λ is the load factor against buckling 
{ }bδ  are the vector of nodal line displacements which are the buckling 
mode 
 r is the size of the stiffness matrix [K] and the stability matrix [G], 

4r nµ= × ×  
µ is the number of series terms 
n is the number of nodes in the section 
 

Equation (34) is called a Linear Eigenvalue Problem. The r values of λ for 
which the determinant of ([K]- λ[G]) is zero are called the Eigenvalues. The r 
eigenvalues are the load factors for buckling in the r different modes. Obviously 
the section will buckle at the lowest calculated value of  λ. The eigenvalue λ is 
obtained from this equation by using Eigenvalue routines in Matlab. The values 
of { }bδ  corresponding to the values of λ are called the Eigenvectors. They are 
the buckling modes of the section which are obtained from Eq (34). Each 
eigenvector { }bδ  corresponds to a practical eigenvalue λ in the above equation. 
The eigenvectors are computed by solving Eq (34) in Matlab. In the calculation, 
the buckling mode is the eigenvector corresponding to the minimum eigenvalue. 
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 7. Numerical example 
 
A buckling analysis has been performed for a lipped channel section with 
rounded corners and lips under localised loading using the THIN-WALL-2 
program. The geometry of the beam and the loading are shown in Fig.2. The 
beam is analysed with different boundary conditions for the web and the flanges 
of the end sections. In addition, lateral restraints are applied along the beam at 
Nodal Lines 11 and 35 to avoid twisting caused by eccentric loading. The results 
from the buckling analysis of the beam under localised loading include buckling 
modes and load factor. The buckling modes are obtained from Nodal Line 23 for 
all sections.  
 
A buckling analysis of the beam has been performed using the ABAQUS 
software with an equivalent loading and boundary condition. It was meshed into 
5mm x 5mm, except at the section’s corners. The corners were modelled with 
1mm x 5mm mesh to accurately represent the influence of corner radius. The 
buckling mode values are obtained from Nodal Line 23 for all sections. 
 

 
 

Figure 2: Lipped channel section under localised loading 
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A buckling analysis of the section has been performed for different boundary 
conditions by both the SAFSM and the FEM. The detail comparison of the 
buckling load factor λ for the different boundary conditions is shown in Table 1. 
It is clear that the SAFSM provides accurate estimates of buckling load factor in 
comparison with the FEM. 
 

Table 1: Buckling load factor (λ) comparison 
 

Boundary 
conditions 

SAFSM 
(THIN-WALL-2) 
(15 series terms) 

FEM 
(Abaqus) 

Different 
(%) 

SS 2.88402 2.87770 0.2196% 

SC 3.23008 3.19310 1.1582% 

SF 3.30027 3.30360 0.1008% 

CC 3.45942 3.43930 0.5850% 

CF 3.18921 3.18080 0.2643% 

FF 2.88612 2.88610 0.0007% 
 
The comparison between the results from the SAFSM and the FEM are shown 
in Table 2 for the Clamped - Free (CF) case which uses the Bradford and Azhari 
(1995) displacement functions with 15 series terms. The results for other 
boundary conditions can be seen in the Research Report 959 (Nguyen et al., 
2016). 
 
8. Convergence study 
 
A study has been performed for the lipped channel section in 7 with different 
boundary conditions and different number of series terms to find the required 
number of series terms for a converged buckling analysis. The relationships 
between the load factor (λ) and the number of series terms are shown in Fig.3 
for different boundary conditions. There is convergence of the buckling load 
factor (λ) from 0.0007% to 1.158% when the number of series terms reaches 15 
in comparison with ABAQUS as shown in Table 1. It means that a smaller 
number of series terms is required for buckling analysis in comparison with the 
number of series terms for pre-buckling analysis as described in Part 1 - Pre-
buckling. 
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Table 2: Buckling modes comparison for CF case (Nodal Line 23) 
 

  
SAFSM (THIN-WALL-2) 

(15 series terms) 
 

 
FEM (Abaqus) 

 

 
 
 
 
Mode 

 

 
 

 

 

 
 
 
 

Dx 
(mm) 

 

 
 

 

 
 
 
 
 

Dy 
(mm) 

 

 
 

 

 
 
 
 
 

Dz 
(mm) 
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Figure 3: Convergence of load factor (λ) 

 
9. Conclusion 
 
The Semi-Analytical Finite Strip Method of buckling analysis of thin-walled 
section under localised loading has been developed for general end boundary 
conditions. This method has proven to be accurate and efficient in comparison 
with the Finite Element Method.  
 
Different displacement functions are required for flexural and membrane 
displacements for different support and loading conditions. The buckling 
analysis requires a smaller number of series terms than the pre-buckling analysis 
to obtain the converged buckling load factor and buckling modes in comparison 
with the FEM. 
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