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Abstract 

 

This paper presents a first-order Generalized Beam Theory (GBT) formulation for thin-

walled members with circular axis and undergoing complex global-distortional-local 

deformation. The fundamental equations are derived on the basis of the usual GBT 

kinematic assumptions (Kirchhoff, Vlasov and wall in-plane inextensibility), leading to a 

formulation able to retrieve accurate solutions with only a few cross-section deformation 

modes (cross-section DOFs). It is shown that the classic Winkler and Vlasov theories can 

be recovered from the derived formulation. A GBT-based finite element is use to analyze 

numerical examples illustrating the application and potential of the proposed formulation. 

 

1. Introduction 

Generalized Beam Theory (GBT) is a thin-walled prismatic bar theory that incorporates 

cross-section in-plane and out-of-plane (warping) deformation, through the consideration 

of “cross-section deformation modes” (cross-section DOFs), whose amplitudes 

along the member axis constitute the problem unknowns. GBT was introduced by 

Richard Schardt (1966, 1989) and has been continuously developed since then 

(Camotim et al. 2010, Basaglia & Camotim 2013)  it is presently widely recognized 

as a very efficient tool to solve prismatic thin-walled member problems, due to its 

ability to (i) obtain accurate and structurally enlightening solutions with just a few 

deformation modes and (ii) include or exclude specific behavioral features in a 

straightforward manner. In fact, GBT often leads to analytical or semi-analytical 

solutions, which make it possible to draw meaningful conclusions concerning the 

structural behavior of prismatic thin-walled members. 
 
This paper presents a first-order GBT formulation for naturally curved thin-walled 

members with circular axis (without pre-twist) and undergoing global-distortional-local 

deformation. Although the analysis of curved members is significantly more complex 
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than that of straight bars, it is shown that the most remarkable features of the classic 

GBT are retained, namely that (i) accurate solutions are obtained with only a few 

deformation modes and finite elements, and (ii) the unique GBT modal decomposition 

can be employed to investigate the complex structural behavior of curved thin-walled 

members, as illustrated by the numerical examples presented in the paper. 

 

2. First-Order GBT for Members with Circular Axis 

Due to space limitations, only an overview of the derivation of the fundamental relations 

and equations is provided  a detailed account can be found in Peres et al. (2016). Fig. 1 

shows the global cylindrical (, Z, R) and local wall (x, y, z) coordinate systems for an 

arbitrary curved thin-walled member. The member axis arc-length X defines the arbitrary 

cross-section “center” C, lies on the Z = ZC horizontal plane and has curvature equal to 

1/RC. Concerning the wall local axes, y and z define the mid-line and through-thickness 

directions, respectively, and x is concentric to X. The small-strain-displacement relations 

are first obtained in the global cylindrical axes (e.g., Reddy 2013) and then transformed to 

the local axes using the angle . Then, using R = r + z cos , where r is the mid-line radius 

(Fig. 1 shows R and r for an arbitrary point P), Kirchhoff’s thin-plate assumption 

(z z =  z = y z = 0) is enforced, which eliminates plate-like shear locking and allows writing 

the local displacements (u,v,w) in terms of the mid-line (or membrane “
M

”) ones, 
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where the commas indicate derivatives (e.g., f,x = f/x), although the derivative with 

respect to the arc-length is indicated by a prime, i.e., ()' = ()/X. Next,  = X/RC is 

employed and the usual GBT variable separation is used, 

 u
M

 = )(yT
u '(X),         v

M
 = )(yT

v (X),         w = )(yT
w (X), (2) 

where wvu ,,  are column vectors containing the mid-line displacement components 

pertaining to each deformation mode k and the column vector  collects their 

amplitude functions (the unknowns). The derivative ' appearing in u
M

 is necessary to 

incorporate Vlasov’s assumption. The strains read 
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Fig. 1. Global and local (wall) axes for a naturally curved thin-walled beam 
 
where ()

M
, ()

B
 are membrane/bending terms, Ky = cos/RC, Kz = sin/RC are the 

curvatures along the local axes and  = RC/r. Comparing Eqs. (3) with those obtained 

for straight bars (Gonçalves & Camotim 2011, 2012) shows that the latter have much 

less terms and 11 = 0, since the v, w displacements cause no longitudinal strains. 

The equilibrium equations may then be cast as 
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where Xij are generalized stresses, B-G are GBT modal matrices and Qi are generalized 

external loads, given by 

 

,
)1(

,
)1(

,
)1(

,
)1(

,,

,
)1(

,
)1(

1111213112

21112132122

32321221

1313221212

dA
R

RE
dA

R

RE

dA
R

RE
dA

R

RE

dA
R

GR

dA
R

RE
dA

R

RE

A

T

C
A

T

C

A

T

C
A

T

C

A

T

C

T

A

T

C
A

T

C





























ξξξξ

ξξξξ

ξξ

ξξξξ













GF

ED

DDDDD

CB

 (6) 

 
,)(,

,)(,)(

21

2

*

ΦΦXΦX

ΦΦXΦΦX





CFDD

DEBFEG
TT

xxyy

T

yyxx  (7) 

 

.

,)(,)( ,

dA
R

Rq

dA
R

Rq
zdA

R

Rq
zzK

A
C

z
z

A
C

y

yy
A

C

x
yx









wQ

wvQwuuQ 
 (8) 

3



In these expressions, A is the cross-section area, L is the beam axis length, E is Young’s 

modulus,  is Poisson’s ratio, G is the shear modulus and qi are body forces. The Xxx 

resultants are associated with longitudinal normal stresses, whereas Xxy are shear 

stress resultants and Xyy reflect transverse normal stresses.  
 
As in the classic GBT, besides Kirchhoff’s assumption, two additional strain constraints 

are enforced: (i) null wall transverse membrane extensions ( 0M

yy ) and (ii) Vlasov’s 

assumption ( 0M

xy ), generally acceptable for open sections. Both these constraints 

reduce the number of admissible deformation modes with no significant accuracy loss 

and, in particular, Vlasov’s assumption eliminates shear locking effects. Concerning the 

first constraint, it is concluded that the kv  functions must be constant in each wall, as in 

the classic GBT. To avoid over-stiffness, the membrane and bending terms must be 

uncoupled, by taking R/RC  r/RC = 1/ and replacing E/(12
) by E in the membrane 

terms. Vlasov’s assumption leads to 

 ./, kzykk uKuv    (9) 

Although this constraint is more complex than that for straight members, together with 

the 0M

yy  assumption it turns out that the ku  functions must be at the most linear in y, 

as in the classic GBT. 
 

3. Rigid-Body Modes for Open Sections 

The particular case of the so-called “rigid-body” (RB) modes (axial extension, 

bending and torsion) for open sections is now addressed. It is assumed that C coincides 

with the centroid/shear centre and that the cross-section principal axes are parallel to 

the global Z, R axes. For the in-plane case (coupled axial force and bending), 

consider external loads applied along the beam axis, namely distributed axial forces n, 

transverse forces pR and moments mZ, deemed positive according to the global axes. 
 
For the axial extension and bending modes (k = 1, 2, respectively), one obtains the 

classic relations, with the shear force eliminated from the equilibrium equations 

(e.g., Winkler 1868, Armero & Valverde 2012), 
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where UC is the C displacement of C along the -axis and ,  stand for the axis 

extension and curvature. 
 
For the out-of-plane case (torsion-bending coupling), vertical forces pZ and torsional 

moments mX distributed along the axis, one obtains the Vlasov (1958) equations for 

bending (k = 3) and torsion (k = 4), 
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where B is the bi-moment, TSV is the St. Venant torsion moment, T = B' + TSV is 

the total torsion,  is the twist rotation, IW is the warping constant, J is the St. 

Venant torsion constant and  is the torsion curvature. 

 

4. Deformation Modes 

The present formulation can handle deformation modes involving any combination 

of the strain components in Eqs. (3). In particular, all the modes for straight members, as 

defined in Gonçalves et al. (2010, 2014), can be employed  they can be calculated using 

the GBTUL software (Bebiano et al., 2015), freely available at www.civil.ist.utl.pt/gbt. 

However, note that the determination of the so-called “natural Vlasov modes” (warping 

modes complying with Vlasov’s assumption) requires special attention, as Eq. (9) 

differs from its straight bar counterpart. A two-step procedure is proposed, where 

(i) the warping functions are first calculated, using GBTUL, and (ii) the corresponding 

in-plane shapes are retrieved from Eq. (9), as in the classic GBT. Fig. 2 shows the 

deformation modes for a straight I-section member, based on the discretization indicated 

(6 natural nodes and a single intermediate node). For curved members, modes 5-21 are 

retained, together with the warping functions of the Vlasov modes 1-4, which, in this 

case, correspond to the rigid-body modes. As shown in Fig. 3, in curved members the 

in-plane shapes of the Vlasov modes depend on the cross-section orientation. In 

particular, (i) axial extension may involve a radial displacement, (ii) the bending modes 

may involve twists and (iii) the torsional mode may involve a shift of the conventional 

shear centre (with respect to the straight member location). 
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Fig. 2. Cross-section deformation modes for a striaght I-section member 

 

 

Fig. 3. In-plane shapes of the rigid-body (Vlasov) modes for curved members 

 

5. A GBT-Based Finite Element 

The examples presented next are solved using a standard GBT-based finite element 

which approximates the deformation mode amplitude functions using Hermite cubic 
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and Lagrange quadratic functions, the latter for the deformation modes involving only 

warping displacements  for further details, see, e.g., Gonçalves & Camotim (2012). 

Locking is mitigated by using reduced integration along X, with 3 Gauss points. In the 

mid-line direction y, the number of Gauss points between cross-section nodes generally 

depends on the mode types included in the analysis  however, it was concluded that two 

points suffice in all the examples presented in the paper. It is assumed that R/RC  1/, 

which uncouples the membrane/bending terms and makes it possible to perform 

analytical integration along z. Finally, it is worth noting that the finite element procedure 

was implemented in MATLAB (The MathWorks Inc. 2010). 

 

6. Numerical Examples 

All examples concern 90º cantilever beams under free end section forces. For comparison 

purposes, classic Winkler and Vlasov theory solutions are provided, together with 

results obtained with refined shell finite element models, using ANSYS (ANSYS Inc. 

2016). The displacement values reported are work-conjugate to each applied force. 

6.1 In-Plane Bending of an I-Section Arch Beam 

Consider the I-section beam displayed in Fig. 4. The graph plots the GBT-based 

displacement, obtained with the extension/bending modes and normalized with respect 

to the classic Winkler solution, as a function of the number of equal-length finite 

elements. As expected, the GBT results tend to the Winkler solution as more elements 

are used (<1% for >4 elements). The table compares the displacements obtained 

with a shell model with the Winkler solution and GBT results determined with 10 

finite elements and several deformation mode sets: (i) RB modes 1-2, (ii) web-symmetric 

shear modes 10 and 13-15 and (iii) the web-symmetric local-plate (LP) modes 8-9. 

The Winkler and GBT-RB solutions fall almost 3% below the shell model value, 

due to cross-section deformation. This discrepancy is easily deal with in the GBT 

approach by including the shear (S) and LP modes, leading to a 0.8% difference. 
 
In order to examine further the effect of cross-section deformation, RC is decreased 

to 2.5 m and the results are shown in Fig. 5. The GBT analyses involved a cross- section 
 

 

Fig. 4. In-plane bending of an I-section arch beam with RC = 5 m 
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Fig. 5. In-plane bending of an I-section arch beam with RC = 2.5 m 
 
discretization with three web intermediate nodes and were carried out with 10/20 

elements, as indicated in the table. The Winkler and GBT-RB solutions now fall 

almost 10% below the shell model value, which means that the extension/bending 

modes alone do not provide accurate results. The GBT results improve as more modes 

are included in the analysis  the best ones are obtained with all web symmetric 

modes (including the transverse extension ones) and 20 elements. The deformed 

configurations depicted in Fig. 5 show an excellent agreement between the shell 

and GBT solutions. The r.h.s. configurations detail the tip zone, showing that the top 

(bottom) flange curls downwards (upwards). The bottom graph plots the mode amplitude 

functions along X/L. It is observed that the most relevant modes are E (extension) and B 
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(bending), although there are visible participations of the LP modes 8 and 9 (the curve 

corresponds to the sum of the two participations), evidencing the observed curling 

phenomenon. It is also noted that the shear mode 10 has a relevant participation near 

the tip, due to the present of the concentrated force, and that the transverse extension 

modes play a minute role. 

6.2 Out-of-Plane Bending of an I-Section Arch Beam 

In this example, the force is applied, along Z, at the end section centroid (see Fig. 6). 

The GBT cross-section discretization involves a single intermediate node in the web, 

leading to the deformation modes 5-21 depicted in Fig. 2 and to the RB modes shown 

in Fig. 3 (case b). The graph below the table in Fig. 6 plots the tip displacement, 

obtained with all deformation modes, against the number of finite elements considered. 

It is concluded that 10-20 elements lead to satisfactory results. 
 
The deformed configurations displayed in Fig. 6 provide further evidence of the excellent 

agreement between the GBT and shell model solutions. However, it is noted that, 

in spite of the influence of the LP and S modes on the tip displacement value, their 

presence is, at best, barely visible. Further insight can only be provided by the mode 

amplitude graphs depicted at the bottom of the figure. The left graph makes it possible 
 

 

Fig. 6. Out-of-plane bending of an I-section arch beam with RC = 5 m 
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to conclude that the bending and torsion modes are dominant  their amplitudes 

are two orders of magnitude above those of the LP and S modes. The right graph shows a 

detailed view of the most relevant LP and S modes. It is observed that their amplitudes 

are mostly relevant near the support and that the LP modes 5 and 6 (flange rotation and 

web transverse bending) are the most significant, even if the LP mode 7 (symmetric 

transverse bending) and the bi-shear mode S12 also play non-negligible roles. 

6.3 Arch Beam with a 45º Rotated I-Section 

In this example, the beam cross-section is rotated by 45º and the load is applied, 

along the radial direction, at the lower flange-web junction  see Fig. 7. The RB modes 

are shown in Fig. 3 (case c). The table in this figure makes it possible to compare the 

radial displacements of the point of load application obtained by means of a refined 

shell model and GBT with 20 finite elements and including various deformation mode 

sets. It is concluded that the GBT shear modes do not play a significant role also in this 

example (moreover, the transverse extension modes do not participate in the solution 

 this is not shown) and that very accurate results are obtained if the LP modes are 

included in the analysis. The deformed configurations displayed in Fig. 7 provide further 
 

 

Fig. 7. Arch beam with a 45º rotated I-section. 
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evidence of the good agreement between the shell finite element and GBT solutions. 

The two modal amplitude graphs depicted in the bottom of the figure provide additional 

relevant information. The four RB modes are predominant, with amplitudes several 

orders of magnitude above those of the LP modes  nevertheless, as already shown, 

the LP modes are essential to obtain accurate tip displacement values. Finally, the r.h.s. 

graph shows that only the LP modes 5-7 have visible participations. 

5.3 Local-Plate Bending of an I-Section Arch 

Consider now that the arch acted by two self-equilibrated concentrated forces, as 

shown in Fig. 8. The GBT analyses are based on a cross-section discretization with no 

intermediate nodes, leading to 18 deformation modes  they consist of the set shown in 

Fig. 2, excluding modes 7, 15 and 21 (for simplicity, the mode numbers in Fig. 2 are 

kept), and the RB modes depicted in Fig. 3 (case b). The table in Fig. 8 displays the 

radial displacement of the points of load application, obtained with a refined shell 

model and GBT analyses including all 18 modes and various numbers of equal-length 

finite elements. The GBT solution with 20 elements is already quite close to the shell 

model one, but increasing the number to 50 brings the difference to a remarkable 

1.4%. The deformed configurations depicted in the figure show, once more, the excellent 
 

 

Fig. 8. Local-plate bending of an I-section arch beam 
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agreement between the two models, namely in the close vicinity of the beam free end  

the GBT deformed configuration was obtained with 30 elements. 
 
The mode amplitude graphs provided in the bottom of Fig. 8 (at the r.h.s. one details 

the [ 0.0001, 0.0001] range) enable a clear visualization of the participation of all LP 

modes. Throughout the beam, the most significant participations are from the minor-

axis bending (B3) and torsion (T) modes. Near the free end, the LP modes 5, 8 and 9 

are also relevant, due to the concentrated force effects. The r.h.s. graph shows that the 

end section deformed configuration is rather complex  contributions from many 

deformation modes (the unnumbered curves correspond to transverse extension modes). 

6.4 Square Hollow Section Arch 

The last example concerns the thin-walled square hollow section shown in Fig. 9. 

The GBT analyses are based on a cross-section discretization with no intermediate 

nodes (this particular example does not require such nodes), leading to 12 modes, 

whose in-plane shapes and warping functions are also displayed in Fig. 9. The first 3 RB 

modes comply with Vlasov’s assumption (for curved members). Since the cross-section 

is closed, the torsional mode (4) causes membrane shear deformation and does not 

comply with Vlasov’s assumption  for this reason, the mode shape for straight beams 

is considered. The shear modes comprise one in-plane distortional-type mode (5) and 

three warping functions  the first two (modes 6-7) correspond to those of modes 2-3. 

Finally, 4 transverse extension modes are also obtained. 
 
A cantilever arch beam is analyzed, loaded as shown in Fig. 10. The table in this 

figure provides the displacement values obtained with a refined shell model and 

GBT analyses with 20 equal-length finite elements and considering different 

deformation mode sets. These results show that the inclusion of the shear mode 5 is 

absolutely essential to obtain the correct displacement value  the difference with 
 

 
Fig. 9. Deformation modes for a square hollow section 
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Fig. 10. Square hollow section arch beam 
 
respect to the shell model value drops from about 70% to less than 1%! The 

graph below the table plots the variation of GBT-based displacement, calculated 

with all deformation modes, with the number of finite elements. It is noted that 4 

elements already lead to satisfactory results (difference with respect to the shell 

model below 2%), a feature that can be attributed to the fact that the cross-section 

deformation is not severely localized, as discussed below. 
 
Fig. 10 also displays the deformed configurations obtained from both analyses 

and an excellent agreement is again observed. These configurations clearly show 

cross-section flattening occurring along the member. Finally, the deformation 

mode amplitudes are plotted in the bottom of Fig. 10. Clearly, modes 2 (bending), 

4 (torsion) and 5 (shear) are the most relevant. In particular, and even though a 

concentrated force is applied, it is observed that the amplitudes of modes 4 and 5 

are not markedly localized, but rather smoothly varying along the member length. In 

fact, note that the maximum distortion occurs near X/L = 0.5. 
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7. Concluding Remarks 

This paper presented the development and validation of a first-order GBT formulation 

for naturally curved thin-walled members with circular axis (constant bending 

curvature). Attention is called to the following aspects of the proposed formulation: 

(i) It accommodates the standard GBT kinematic assumptions (Kirchhoff's, Vlasov’s 

and null transverse membrane extensions), thus retaining the efficiency of the 

classic GBT. Moreover, shear and transverse extension modes can be also handled. 

(ii) The equilibrium equations may be written in terms of GBT modal matrices (the 

standard approach) or stress resultants.  

(iii)When particularized, the proposed formulation recovers the classic Winkler and 

Vlasov equations and fundamental relations.  

(iv) A GBT-based finite element was implemented and employed to solve a set of 

representative numerical examples involving complex local-global deformation. In 

all cases it was concluded that accurate results are obtained with only a few 

deformation modes and finite elements. The GBT modal decomposition features 

were shown to provide in-depth insight on the structural behavior of curved members. 
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