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Abstract. We investigate a specific set of two-loop self-energy corrections
involving squared decay rates and point out that their interpretation is highly
problematic. The corrections cannot be interpreted as radiative energy shifts in
the usual sense. Some of the problematic corrections find a natural interpretation
as radiative nonresonant corrections to the natural line shape. They cannot
uniquely be associated with one and only one atomic level. While the problematic
corrections are rather tiny when expressed in units of frequency (a few hertz for
hydrogenic P levels) and do not affect the reliability of quantum electrodynamics
at the current level of experimental accuracy, they may be of importance for future
experiments. The problems are connected with the limitations of the so-called
asymptotic-state approximation, which means that atomic in- and out-states in
the S-matrix are assumed to have an infinite lifetime.

1. Introduction

In view of the rapid progress in ultra-accurate Lamb shift measurements in atomic hydrogen
[1, 2], it appears useful to investigate the mathematical foundations of the theorems on which our
level-shift calculations are based, in addition to the continuing efforts (e.g. [3]–[7]) of evaluating
higher-and-higher-order radiative corrections to the bound-state energy levels. Here, we focus on
a number of mathematical subtleties connected with the famous theorem of Gell-Mann, Low and
Sucher [8, 9] that forms the basis for the derivation of the expressions investigated in level-shift
calculations. This theorem has historically proven to be an extremely useful tool in the analysis
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of bound-state quantum electrodynamics, and it yields formal expressions for the renormalized
level shifts whose numerical and analytic evaluation has led to accurate predictions for the bound-
state energy levels that are in agreement with all experiments reported so far in the literature.
However, second thoughts about some mathematical subtleties connected with the theorem may
be required at the level of accuracy envisaged in projected experiments.

Consider the formula for the energy shift of an atomic state as given by the well-known
theorem of Gell-Mann et al [8, 9]:

∆En = lim
ε→0+

λ→1

iελ
2

∂

∂λ
ln[〈n|Sε,λ|n〉c], (1)

where |n〉 is an unperturbed asymptotic bound-electron state as given by the Dirac theory. Sε,λ

is the infinitesimally damped S-matrix given by the time-ordered exponential

Sε,λ = T exp
(
−iλ

∫ ∞

−∞
dt

∫
d3x exp(−ε|t|)HI(x)

)
(2)

where x denotes the 4-vector (t,x) and the interaction Hamiltonian density is

HI(x) = −e

2
Âµ(x)[ ˆ̄ψ(x), γµψ̂(x)] − 1

2
δm[ ˆ̄ψ(x), ψ̂(x)]. (3)

The interaction Hamiltonian density involves the quantized electromagnetic field Âµ(x), the
quantized Dirac field ψ̂(x) in the Furry picture and the mass counterterm δm. The index c in (1)
indicates that only connected graphs (see, e.g., ch 6 of [10]) enter into the expression for the
energy shift. Note that, in writing down the expression (1), we implicitly assume the physical
existence of the asymptotic state |n〉, i.e. of the unperturbed state |n〉 with an infinite lifetime. If
the interaction with the quantized electromagnetic field (the ‘vacuum modes’) could be ‘switched
off’ (as is assumed for the damped interaction (2) in the distant past and future), then all states
would be asymptotic states and could be used to construct S-matrix elements rigorously. While
this is—strictly speaking—unphysical, equation (2) is still an excellent approximation for most
bound-state calculations.

A second-order evaluation of (1) in powers of HI, which involves the one-loop self-energy,
shows that the radiative energy shift of an excited state with nonvanishing angular momentum
(say, a P state) has an imaginary part generated by the interaction of the atomic state with the
quantized electromagnetic field (which gives the expression for the decay rate Γ). This effect
limits the validity of the asymptotic-state approximation, which is a good approximation as long
as Γ is much smaller than the separation of atomic energy levels (see also the discussion in
ch XXI, especially equation (3.28) on p 547, of [11]).

Certain two-loop self-energy contributions to the hydrogenic energy levels involve the
square of the imaginary parts of two one-loop insertions, which result in a shift of the real
energy eigenvalue. The error initially made in ignoring the decay width of the resonances thus
influences the real part of the eigenvalues which theory predicts at two-loop order. This leads
to a problem in connection with the asymptotic-state approximation that is originally used in
writing down the expression (1). At present, we have no better way to gauge the magnitude of
this problematic effect but to evaluate it, according the current formalism, within a theory that
a priori involves asymptotic states. The effects discussed here touch a certain question regarding
the mathematical foundations of bound-state quantum electrodynamics.

This paper is organized as follows: in section 2, we present an evaluation of the problematic
two-loop corrections involving the squared decay rates for the 2P state of atomic hydrogen. In
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section 3, we argue that some of the problematic corrections find a natural interpretation as
radiative corrections to the off-resonance effects that influence the line shape in atomic transitions.
Conclusions are left to section 4.

2. A concrete example

An expression for the two-loop self-energy correction to the energy of a bound hydrogenic
state within the formalism of nonrelativistic quantum electrodynamics (NRQED) has been
derived in [7] (see equation (16) there) and we take this equation as the starting point of our
investigations. Diagrammatically, the two-loop self-energy can be represented as in figure 1.
We will investigate the effect within the ε method that involves a scale-separation parameter ε
for the photon energy (this method is explained in [12] and the appendix of [13]). For the two
photons with energies ω1 and ω2, we need two scale-separation parameters ε1 and ε2. These
cancel when the high- and low-energy parts are added, and it is permissible to keep only the
divergent and constant terms as both ε1 → 0 and ε2 → 0. We therefore keep ε1/2 as variables
and evaluate only those contributions to the two-loop self-energy integrals that correspond to
the square of the residues along the ω1 and ω2 integrations (these correspond to the ‘squared
imaginary parts’ or ‘squared decay rates’). We focus on the 2P state of atomic hydrogen and
use natural Gaussian (‘microscopic’) units with h̄ = c = ε0 = 1. The Schrödinger energy of
an atomic state is En = −(Zα)2m/(2n2), where n is the principal quantum number, α is the
fine-structure constant and Z is the nuclear charge number.

There is a contribution due to the diagram with crossed loops in figure 1(a):

T1(2P) = lim
δ→0+

−
( 2α

3πm2

)2 ∫ ε1

0
dω1 ω1

∫ ε2

0
dω2 ω2

× 〈2P|pi 1
H − iδ − E2P + ω1

pj 1
H − E2P + ω1 + ω2

pi

× 1
H − iδ − E2P + ω2

pj|2P〉. (4)

Here, the pi are the momentum operators and H is the Schrödinger Hamiltonian. We ‘pick up’
only the terms of the ‘squared-decay’ type, i.e. the terms generated by the infinitesimal half-
circles around the poles at ω1 = E2P − E1S and ω2 = E2P − E1S. For the evaluation of these
terms, the specification of the infinitesimal imaginary part −iδ is required in order to fix the sign
of the pole contribution. For the contribution C1(2P) generated by the poles at ω1 = E2P − E1S

and ω2 = E2P − E1S in T1(2P), we obtain

C1(2P) = α2 4
27m4 (E2P − E1S)2|〈1S|p|2P〉|2〈1S|pi 1

H + E2P − 2E1S
pi|1S〉

=
25

39α2(Zα)6mM1, (5)

where the summation convention is used and the matrix element M1 is

M1 =
1
m

〈1S|pi 1
H + E2P − 2E1S

pi|1S〉 = 0.880 (6)

and ∣∣∣∣〈1S| p

m
|2P〉

∣∣∣∣
2

=
29

38 (Zα)2. (7)
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Figure 1. The crossed loop (a), the rainbow diagram (b) with one loop inside
the other and the loop-after-loop diagram (c) which contribute to the two-loop
self-energy for a bound electron. The propagator of the bound electron is denoted
by a double line and the arrow of time is from left to right.

Note that the contribution C1 lacks the factors π in the denominator which are characteristic of
other two-loop corrections: these are compensated by additional factors of π in the numerator
that characterize the pole contributions.

The rainbow diagram in figure 1(b) with the second loop inside the first does not create
squared imaginary contributions. From the irreducible part of the loop-after-loop diagram in
figure 1(c) (we exclude the reference state in the intermediate electron propagator), we obtain

T2(2P) = lim
δ→0+

−
( 2α

3πm2

)2 ∫ ε1

0
dω1ω1

∫ ε2

0
dω2ω2

× 〈2P|pi 1
H − iδ − E2P + ω1

pi
( 1

H − E2P

)′
pj 1

H − iδ − E2P + ω2
pj|2P〉. (8)

Again, picking up only those terms which are generated by the infinitesimal half-circles around
the poles at ω1 = E2P − E1S and ω2 = E2P − E1S, we obtain the contribution C2(2P) involving
squared decay rates:

C2(2P) = α2 4
27m4 (E2P − E1S)2|〈1S|p|2P〉|2〈1S|pi

( 1
H − E2P

)′
pi|1S〉 =

25

39α2(Zα)6mM2,

(9)

where the matrix element M2 is

M2 =
1
m

〈1S|pi
( 1

H − E2P

)′
pi|1S〉 =

6952
6561

+
4096
2187

ln
(9

8

)
= 1.28. (10)

The prime in the reduced Green function indicates that the 2P state is excluded from the sum
over intermediate states.
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This contribution deserves a more detailed discussion becauseC2 can be written as a ‘second-
order perturbation’ according to

C2 = 〈2P|{iImΣ(1L)
NR (E2P)}

( 1
E2P − H

)′
{iImΣ(1L)

NR (E2P)}|2P〉, (11)

where Σ(1L)
NR (E) denotes the one-loop nonrelativistic self-energy operator with the energy

argument E; the matrix elements of this operator are

〈φ1|Σ(1L)
NR (E)|φ2〉 = lim

δ→0+
−2α

3

∫ ε

0
dωω〈φ1|

p

m

( 1
H − iδ − E + ω

)
p

m
|φ2〉. (12)

In (11) and (12), we pick up only the term corresponding to the square of the two imaginary
contributions and obtain the expression

∑
n�=2

(
−i

2α
3

(E2P − E1S)〈2P|p
i

m
|1S〉〈1S|p

i

m
|nP〉

) 1
E2P − EnP

×
(
−i

2α
3

(E2P − E1S)〈nP|p
j

m
|1S〉〈1S|p

j

m
|2P〉

)
, (13)

where the sum covers all P states except the reference state (both discrete and continuum
states). Now, we complete the sum over the intermediate states, observing that only P states
yield a nonvanishing contribution. After angular averaging over atomic momenta, we obtain a
contribution of

4
27

α2(E2P − E1S)2
∣∣∣∣〈1S| p

m
|2P〉

∣∣∣∣
2
〈1S|p

j

m

( 1
H − E2P

)′ pj

m
|1S〉 (14)

in agreement with (9).
From the derivative term (reducible part of the loop-after-loop diagram), we obtain

T3(2P) = lim
δ→0+

( 2α
3πm2

)2 ∫ ε1

0
dω1 ω1

∫ ε2

0
dω2 ω2

× 〈2P|pi 1
H − iδ − E2P + ω1

pi|2P〉〈2P|pj
( 1

H − iδ − E2P + ω2

)2
pj|2P〉,

(15)

C3(2P) = −α2 4
9m4 (E2P − E1S)|〈1S|p|2P〉|4 = −1

4
Γ2

2P

E2P − E1S
= −217

317α2(Zα)6m, (16)

where Γ2P = (2/3)8α(Zα)4m is the decay width of the 2P state. The last contribution of the
‘squared-decay’ type—it originates from the ‘seagull term’ characteristic of NRQED—is

T4(2P) = lim
δ→0+

( 2α
3πm2

)2 ∫ ε1

0
dω1 ω1

∫ ε2

0
dω2 ω2

× 〈2P|pi 1
H − iδ − E2P + ω1

1
H − iδ − E2P + ω2

pi|2P〉, (17)

C4(2P) = −α2 4
9m3 (E2P − E1S)2|〈1S|p|2P〉|2 = − 39

214

Γ2
2P

E2P − E1S
= −25

38α2(Zα)6m. (18)

Adding all contributions, we obtain a shift of
4∑

i=1
Ci(2P) =

(
α

π

)2 (Zα)6m

23 (−0.188) (19)
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for the 2P level. For atomic hydrogen (Z = 1), this correction amounts to −14.9 Hz. Compared
to the total Lamb shift of the 2P level, for which a value of −12 638 380(80) Hz has been given
in [14] (for the 2P1/2 state), this is a tiny effect. The comparison illustrates the accuracy of the
predictions obtained using the Gell-Mann–Low–Sucher theorem (1). The theoretical value of
the 2P Lamb shift has been improved in part by the recent numerical evaluation of the one-loop
self-energy for low Z [15], but the removal of the main theoretical uncertainty will necessitate the
complete evaluation of the two-loop self-energy corrections of order α2(Zα)6. Currently, only
the double logarithm is known in this order in the (Zα) expansion [16, 17] and the groundwork
for the evaluation of single-logarithmic and nonlogarithmic corrections has been laid in [7]. In
equation (19), we write the final result as a contribution to the B60 coefficient (for a definition
of the analytic B coefficients of the two-loop self-energy see, e.g., [13]).

For the 3P state, we have to take into account the decays into the 1S and 2S states. For
example, the contribution C1(3P) is

C1(3P) = α2 4
27m4

{
(E3P − E1S)2|〈1S|p|3P〉|2〈1S|pi 1

H + E3P − 2E1S
pi|1S〉

+ (E3P − E2S)2|〈2S|p|3P〉|2〈2S|pi 1
H + E3P − 2E2S

pi|2S〉
}

+ α2 8
27m4χRe

(
〈3P|pj|1S〉〈1S|pi 1

H + E3P − E2S − E1S
pi|2S〉〈2S|pj|3P〉

)

=
(

α

π

)2 (Zα)6m

33 (0.135), (20)

where χ = (E3P −E1S)(E3P −E2S). The sum of C1 −C4 for the 3P state of atomic hydrogen is
4∑

i=1
Ci(3P) =

(
α

π

)2 (Zα)6m

33 (−0.319). (21)

For atomic hydrogen, this correction evaluates to −7.47 Hz.

3. Interpretation of the squared decay rate

In this section, we will investigate the question of whether the squared decay rates receive a
natural interpretation within the formalism of scattering theory.

We consider the scattering amplitude associated with the diagram in figure 2. The
hydrogenic atom in the ground state is excited by a laser photon with frequency ωL that is
close to the resonance ωL ≈ E2P − E1S. Within the resonance approximation, we may restrict
the sum over intermediate states to the 2P level only, as indicated by the label ‘2P’ for the electron
line. This is the so-called resonance approximation.

Figure 2(a) represents the dominant Kramers–Heisenberg contribution [18] without
radiative corrections. In figure 2(b), we have a one-loop self-energy insertion in the electron
propagator. We assume that the absorbed photon is very close to the resonance (ωL ≈
E2P − E1S) and set the energy argument of the self-energy insertion equal to E2P. Using
these approximations, the self-energy insertion, within the resonance approximation, can be
described by the diagonal matrix element 〈2P|Σ(1L)

NR (E2P)|2P〉 of the self-energy operator (12).
The imaginary part of this matrix element is

i Im〈2P|Σ(1L)
NR (E2P)|2P〉 = −i

Γ2P

2
, (22)
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Figure 2. Contributions to the photon scattering cross section near the 2P
resonance of atomic hydrogen. The laser photon of frequency ωL ≈ E2P − E1S

is absorbed and the dominant contribution to the scattering amplitude is from the
virtual 2P state, as indicated by the label on the electron line. The spontaneously
emitted photon has a frequency ωs. (b) and (c) represent radiative corrections to
the scattering amplitude. The arrow of time is from left to right.

where

Γ2P =
28

38α(Zα)4m (23)

is the well-known decay rate of the 2P state. The diagram in figure 2(c) involves two one-loop
self-energy insertions and entails in that sense the ‘square of the decay rate’ of the 2P level within
the resonance approximation. This square of the decay is usually not interpreted as an energy
shift. Rather, one sums the infinite series of one-loop insertions, of which the first terms are
shown in the Feynman diagrams in figures 2(a)–(c). We ignore in the following the real part of
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the self-energy operator and define the ‘decay rate operator’ Γ̂ via the relation

i Im〈φ1|Σ(1L)
NR (E)|φ2〉 = − i

2
〈φ1|Γ̂(E)|φ2〉 (24)

so that

− i
2
〈2P|Γ̂(E2P)|2P〉 = −i

Γ2P

2
. (25)

This leads to the following infinite series representing the electron propagator in the resonance
approximation with an infinite number of one-loop self-energy insertions (of which we discard
the real part and keep only the imaginary part −iΓ2P/2):

|2P〉〈2P|
E2P − (E1S + ωL)

− |2P〉
E2P − (E1S + ωL)

(
−i

Γ2P

2

) 〈2P|
E2P − (E1S + ωL)

+
|2P〉

E2P − (E1S + ωL)

(
−i

Γ2P

2

) |2P〉〈2P|
E2P − (E1S + ωL)

(
−i

Γ2P

2

)

× 〈2P|
E2P − (E1S + ωL)

+ · · · =
|2P〉〈2P|

E2P − iΓ2P/2 − (E1S + ωL)
. (26)

This result expresses the well-known fact that the decay rate term −iΓ2P/2 in the electron
propagator denominator is generated by summing an infinite series of Feynman diagrams
involving one-loop self-energy insertions; the first three terms in this series are shown in
figures 2(a)–(c).

Let us now go beyond the resonance approximation inherent to equation (26) and consider
off-resonant atomic states (see figure 3). We therefore replace

|2P〉〈2P|
E2P − iΓ2P/2 − (E1S + ωL)

→ 1
H − iΓ̂/2 − (E1S + ωL)

. (27)

That means that the resonance term involving only the 2P state is replaced by the full Green
function of the electron, including the off-resonant states and the ‘decay rate operator’ Γ̂ defined
in equation (24). The ‘energy argument’ of Γ̂ ≡ Γ̂(E) is to be taken as E = E1S +ωL ≈ E2P. In
equation (27), H is a priori the Schrödinger Hamiltonian for the bound electron (we have done all
calculations in the nonrelativistic (NR) approximation, but the calculations may be generalized
to the relativistic case).

It is now easy to verify by inspection that the amplitudes corresponding to the Feynman
diagrams in figures 3(a) and (b) are generated by an expansion of the propagator 1/{H − iΓ̂/2−
(E1S + ωL)} in powers of Γ̂. Furthermore, the diagram in figure 3(b) exactly corresponds to
the ‘second-order perturbation’ in equation (11). So, we conclude that the energy shifts by
squared decay rates should rather be interpreted as radiative nonresonant corrections to the
photon scattering cross section than energy shifts of individual atomic levels. Specifically, the
‘second-order perturbation’ in equation (11), which corresponds to the diagram in figure 3(b),
is merely a nonresonant generalization of the resonant diagram figure 2(c). Both diagrams—
figures 2(c) and 3(b)—can be treated in a natural way by appropriate replacements within the
electron propagator denominator. Specifically, we have the replacement H → H − iΓ̂/2 for the
infinite series involving the diagrams in figures 3(a) and (b) and the corresponding replacement
E2P → E2P − iΓ2P/2 for the propagator denominator in the resonance approximation (see
figures 2(b) and (c) and the right-hand side of equation (26)). Both added terms (−iΓ̂/2 and
−iΓ2P/2) are not real energy shifts.

New Journal of Physics 4 (2002) 49.1–49.11 (http://www.njp.org/)

http://www.njp.org/


49.9

Figure 3. Same as figures 2(b) and (c), but with off-resonant virtual states (nP
states with n �= 2). The arrow of time is from left to right.

4. Conclusions

We have investigated a problematic set of two-loop self-energy corrections involving the square
of the decay rate of the atomic state. These self-energy corrections cannot be interpreted as radia-
tive energy shifts in the usual sense, although the relevant terms are generated by a fourth-order
expansion of the Gell-Mann–Low–Sucher theorem (1) in powers of the quantum electrodynamic
interaction Lagrangian (3). As explained in section 2, some of the expressions arise naturally if
we treat the self-energy leading to the decay rate as a first-order perturbation and consider the
resulting second-order perturbation. The same problematic expressions involving squared decay
rates result from the alternative formalism for deriving level shifts based on the two-time Green
function method [19]. At some risk to over-simplification, we can state that the difficulties are
related to the fact that the current methods inadequately address the question of the preparation of
the excited atomic states and involve asymptotic states with an infinite lifetime. As explained in
section 3, some of the problematic two-loop self-energy corrections find a natural interpretation
as radiative nonresonant corrections to the line shape for atomic transitions which are of second
order in the ‘decay rate operator’ Γ̂ defined in equation (24).

For the 2P level in atomic hydrogen, as shown in section 2, the problematic energy shift by
squared decay rates is −14.9 Hz (see equation (19)). For the 3P state of atomic hydrogen, the
correction amounts to −7.47 Hz (see equation (21)). It is perhaps interesting to note that the effect
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discussed here scales as α2(Zα)6mc2 (for P states and states with higher angular momenta). The
same order of magnitude is characteristic of the shift of the peak of the total photon scattering
cross section in electric–dipole transitions in atomic hydrogen [20]–[23]. As is evident from
equations (16) and (18), an order-of-magnitude estimate for the problematic two-loop effect is
given by the ratio of the square of the decay rate of the atomic state to a typical atomic energy
level difference. For the 2S state with a natural line width of 1.3 Hz, the squared decay rate
therefore does not represent an appreciable predictive limit in current and future experiments.
The situation is different for the 2S–8D transition studied in [1]. Parametrically, the ‘squared
decay’ corrections are of the order of α2(Zα)6 for the 8D state; however, if we assume a typical
1/n3-type scaling of the effect (n is the principal quantum number), then we immediately obtain
an estimate below 1 Hz for the problematic effect in the 2S–8D transition in atomic hydrogen.

There has recently been a dramatic increase in the accuracy to which atomic energy levels
can be measured experimentally [2] and evaluated theoretically (e.g. [3]–[7]). Tiny nonresonant
effects that influence the natural line shape of hydrogenic transitions have received considerable
attention [21]–[23] and it has been pointed out that nonresonant effects are enhanced in
differential cross sections as opposed to total cross sections [22, 23]. Essentially, the nonresonant
effects give rise to a process-dependent new line shape, different from the Lorentzian, which has
to be fitted by a number of parameters. By a suitable fit of the line shape, taking into account
properly the relevant experimental conditions, it is in principle possible to correct the observed
peak of the cross section for the nonresonant contributions. The same applies, at least in part, to
the problematic two-loop corrections discussed here (see the discussion in section 3), provided
they are interpreted properly as radiative corrections to the off-resonance effects on the line
shape. The problematic two-loop corrections illustrate that it is impossible to separate atomic
energy levels at the order of α2(Zα)6mc2, that is to say, to define an energy shift that relates to
one and only one level.

In [24], it has been stressed that several important problems associated with the
normalization of electronic states and with the infrared catastrophe can be avoided if we
consider the electron in a free state as obtained by ionization of a bound state (for example, by
ionization of the atomic ground state which does not decay at all and is therefore the only ‘true’
asymptotic state). The considerations presented in [24] imply that infrared divergences of free-
electron quantum electrodynamics originate because one ‘disregards the methods of obtaining
and detecting these (free) states’. It has been shown that, in special cases, the spontaneous
emission from a certain ‘well’ constructed state is exactly exponential [24]. We have mentioned
above that the interpretation of the energy shift by squared decay rates is problematic because
it is calculated as a matrix element evaluated on the excited atomic state. Within the formalism
introduced in [24], we can argue that this procedure, of evaluating the energy shift of the excited
atomic state according to the current formalism, is inconsistent because it disregards the fact
that, according to [24], the only ‘proper’ way of defining the excited state is to view this state as
having been obtained by excitation from the ground state.
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