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An Extended Kalman Filter (EKF) Approach on
Fuzzy System Optimization Problem
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Dept. of Electrical and Computer Engineering
University of Missouri-Rolla
1870 Miner Circle
Rolla, MO 65409 USA

nzhanp@umr.edu

Abstraet — Optimizing the membership functions of a fuzzy
system can be viewed as a system identification problem for a
nonlinear dynamic system. Basically, we can view the
optimization of fuzzy membership functions as a weighted
least-squares minimization problem, where the error vector is
the difference between the fuzzy system outputs and the
target values for those outputs. The extended Kalman filter
algorithm is a good choice to solve this system identification
problem, not only because it is a derivative-based algorithm
that is suitable to solve the weighted least-squares
minimization problem, but also because of its appealing
predictor-corrector feature for nonlinear system model. In this
paper, we present an extended Kalman filter approach to
optimize the membership functions of the inputs and outputs
of the fuzzy controller. The effect of the measurement noise
covariance R on the convergence of the fuzzy controller is
also investigated. Experimental results show that the
optimized fuzzy controller achieves significant improvement
on performance. In addition, the smaller the measurement
noise covariance R is, the faster the optimized fuzzy
controller would converge,

1. INTRODUCTION

The performance of a fuzzy system depends on both its
rule base and its membership functions. Given a rule base,
the membership functions can be optimized in order to
obtain the best performance from the fuzzy system.
Several methods have been proposed to solve this problem.
Jacomet created a penalty function and applied it in his
optimijzation algorithm [1]; Nakamura adopted numerical
optimization techniques to obtain the optimal values of
fuzzy membership function parameters such that the
performance measure is minimized [2]; a heuristic method
was presented by Tao [3]); Wu and Chen presented a new
fuzzy learning algorithm based on the o-cuts of the
equivalence relations and the o-cuts of fuzzy sets to
construct membership functions [4]. Several derivative-
based algorithms are also proposed in [5][6].

Kalman filter is a powerful mathematical tool for
stochastic estimation from noisy sensor measurements. It
is proposed by Rudolph E. Kalman, who described a
recursive method for the discrete data linear filtering
problem [7]. The extended Kalman filter algorithm
resembles that of a predictor-corrector algorithm for
solving numerical problems [8]. It makes an
approximation of the system states, called the a priori
estimate, which is used to predict the measurement that is
about to arrive. This estimate is adjusted by the actual
measurement, and thus obtains the a posteriori estimate.
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Then the a posteriori estimate is used to predict the
measutement at the next time step, and becomes the a
priori estimate for the next time step. This recursive nature
is one of the very appealing features of the Kalman filter.
It recursively conditions the current estimate on all of the
past measurements, and generally converges in a few
iterations. A Kalman filter that linearizes about the current
mean and covariance is referred to as an extended Kalman
filter (EKF). The essential idea of the extended Kalman
filter was proposed by Stanley F. Schmidt, and it has been
called the ‘Kalman-Schmidt’ filter [9].

We present an extended Kalman filter approach to
optimize the membership functions of the inputs and
outputs of the fuzzy controller. The performances of the
fuzzy system before and after the optimization are
compared, as well as the membership functions. We also
investigated the effect of the measurement noise
covariance R on the convergence of the fuzzy controller,
which has not been explored previously in the existing
publications.

2. FUZZY MEMBERSHIP FUNCTIONS AND ITS
PARAMETERS

Consider a fuzzy system that uses correlation-product
inference. Assume that the membership functions of the
input and output are symmetric triangles. The initial rule
base and membership functions are constructed on the
imprecise basis of experience, and trial and error.

We denote the centroid, lower half-width and upper
half-width of the ith fuzzy membership function of the jth
input by ¢, by, by’, respectively [10]. The degree of
membership of a crisp input x in the ith category of the jth
mput is specified as follows:

0 x<b;
F,(x)= (x-b;) (] —b) bisxgb;. M
0 x>c’j

Similarly, for a single output fuzzy system, we denote
the centroid and half-width of the jth fuzzy membership

function of the output by » .and f ;, respectively. For a
J j Y

two inputs and one output fuzzy system, the fuzzy output
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is mapped into a crisp value using centroid defuzzification
[11]:
4]
jélm(}’jﬁ’jﬁj
I @
_)_‘glm(}’ 7 )8 7

where n is the number of fuzzy outpul sets. The fuzzy
output function m(y) is computed as follows:

crisp output =

m(y) = fuzzy output function = -L;cm""‘ (») 3
I

where m (y) is defined as the consequent fuzzy output
function when (input 1 € class i) and (input 2 & class k).
My (y)= wym . (r) )
m,, (7) is the fuzzy function of the consequent that is
activated when (input ! € class 1) and (input 2 € class k).
And w, is the activation level of that consequent.
Wiy = minf f;; (inputl), | %2 {inpur2)) (5)
Since the fuzzy membership functions are triangles as
assumed, derivative-based methods can be used to
optimize the centroid and half-widths of the inpur and

output membership functions. Consider ar error function
given by

1 N

E = EFZ:'E‘f (6)
g=

E, =5, -7, )

where N is the number of training samples, ), is the target

value of the fuzzy system, and J_is the output of the
fuzzy system [12]. We can optimize E by using the partial
derivatives of E with respect to the centroids and half-

widths of the input and output fuzzy membership
functions. The detailed derivation formula can be found in

[13]).
3. THE EXTENDED KALMAN FILTER (EKF)
This section briefly outlines the extended Kalman filter

algorithm. Consider a nonlinear finite dynamic model
given as follows {14]:

X =f(xk—l,k'l)+wk (8)
we~ N©.Qp)

with a nonlinear measurement model:
2 = h(xg k) + v ©)

v, ~ N(O,R,)
where the vector X is the state of the system at time k, the
random variables wpand v, represent the process and

measurement noise, respectively. 2, is the measurement

vector, ) and h(") are nenlinear vector functions of the
state, and Qy is the process noise covariance, Ry is the
measurement noise covariance. Assume that the initial
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state xq and sequences {wy} and {v,} are white, Gaussian
and independent from each other with

E(xg) =%, (10)
El(rg - % )xg - %) 1= By an
E(w,)=0 (12)
Ewywi ) =03y, (13)
E(v;)=0 (14)
E(vyv] )= RSy, (15)

where E{-) 1s the expectation operafor, 8, is the Kronecker
delta, which is interpreted as:

5 < 0 k=l
=1 k=1
The problem addressed by the extended kalman filter is to

find an estimate }k+l of Xpi givenz (j=0,1,... k).

If the nonlinearities in {8) and (9) are sufficiently
smooth, the system can be approximated as

xk_l_l:Fkxk +Wk +¢k (16)
& (x)

where F, = - 18
T Oh(x)

H;, = R 19

k o ¥ %% (19)

¢k =f(ik)“FkJ‘fk (20}

o =HE)-H % @

It can be shown that the desired estimate i’k can be
obtained by the recursion

Ry = F )+ Ky Lz, —h(E, )] 22)
T -1
T T
Pro = Fp By — Ky HE B DFp + 9 24

where K, is the Kalman gain, and the Py is the state
estimation error covariance matrix.

4, KALMAN FILTER TRAINING OF THE FUZZY
MEMBERSHIP FUNCTIONS

The use of Kalman filter training for the membership
parameters of a fuzzy estimator was introduced by Simon
for motor current windings [15]. It gives a straightforward
representation of fuzzy estimator structure,

The optimization of fuzzy membership functions can be
viewed as a weighted least-squares minimization problem,
where the error is the difference between the fuzzy system
outputs and the target values for those outputs. We use z to
denote the target vector for the fuzzy system outputs, and
h(k) to denote the actual outputs at the kth iteration of the
training.
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z2(k) =[z,(k)--z, (O] @5
h(k) = [ (k)b (k)] (26)
where L denotes the number of outputs of a fuzzy system.
Let’s consider a 2-input, one-output fuzzy system. One
input has p fuzzy sets, the other input has v fuzzy sets, and
the output has k fuzzy sets. In order to cast the
membership function optimization problem in a form
suitable for Kaiman filtering, we let the membership
function parameters constitute the state of a nonlinear
system, and let the output of the fuzzy system constitute
the output of the nonlinear system to which the Kalman
filter is applied. We denote the centroid, lower half-width
and upper half-width of the ith fuzzy membership function
of the jth imput by ¢y, by, by", respectively, and we denote
the centroid and the half-width of the ith fuzzy

membership function of the output by y; and g,

respectively. The state of the nonlinear system can be
adapted as

-+ -+ -+ -+
x=ybnen b me bz 22

T
Biry o Brrgl (27)
The nonlinear dynamic system to which the Kalman filter
can be applied is as follows:

where z,can be seen as the target output of the fuzzy

system, and h(%; )} is the actual cutput of the fuzzy system

given the current membership function parameters. And
then we can apply the Kalman recursion interpreted in (22)
- (24).

5. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

Consider a dynamic process plant [16] given as follows:
=@+ f ) +k,*0 - M * 98 * sin(grad)

(23) -
where M = 800 kg, o = 100N/(m/sec), B = 102N/(m/secy’,

and k, is 4000 Newtons. v is the velocity of the plant, & is

the throttie position, and grad is a variable of the outside
world that is liable to vary. The plant is expected to
maintain the velocity at 70 m/s if the variable grad has a
15 percent positive increase. The problem is how to let the
velocity and the throttle position of the plant reach the
velocity at 70 m/s as fast as possible, and converge to this
value unless there is another change.

A two inputs and one output fuzzy controller is designed
by defining the error as the reference speed minus the
measured speed, and implementing the rule base shown in
Table 1. The rule base has five membership functions for
each of inputl, input2, and the output. So p ,v and k in
(27) are all five. Since each membership function of an
input has three parameters (i.e. centroid, lower half-width
and upper half-width) to determine, and each membership
function of the cutput has two parameter (i.e. centroid and

hatf-width) to determine. Thus the fuzzy controller has a
total of 40 parameters to be determined.

TABLE 1 FUZZY RULE BASE (ROWS = DIFFERENCE,
COLUMNS = CHANGE IN DIFFERENCE)

NL NS Z PS PL
NL NL NL NL Z PS
NS NL NS NS Z PS
Z NS 2 Z Z PS
PS NS Z PS PS PL
PL NS Z PL PL PL

NL = Negative Large, NS = Negative Small, Z = Zero, PS = Positive
Small, PL = Positive Large.

We use the Intel Pentium IV processors up to 2.2GHe,
and 1GB memory PC to do the experiments. We simulate
the fuzzy controller in MATLAB for 100 s with an update
rate of 0.25 s, so N in (6) equals to 400. The Kalman filter
method is implemented to optimize the membership
function parameters of the controller’s inputs and output.
Fig. 1 shows the training error of the extended Kalman
filter during the optimization of the membership functions.
We can see that it finally converged to 0.0008216 at the
30th iteration.

t
4

Training efror
. o s

-

e .
s W %W B RK M s 0

Heration
Fig. 1 Training error

In addition, we compare the membership functions of
the inputs and the output before and after the optimization.
The membership functions of inputl, input2, and the
output before optimization are shown in Fig. 2 (a), Fig. 2
{b), and Fig. 2 (c¢), respectively. The membership functions
of inputl, input2, and the cutput after optimization are
shown in Fig. 3 (a), Fig. 3 (b), and Fig. 3 (), respectively.
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Fig.3 (a) The membership function of input] after the

gleder o bl optimization, (b) The membership function of input2 after
T OO TN O 7 the optimization. (¢) The membership function of the
gw P / \\ {4\ output after the optimization.
e} : rpress
= X . oernd The comparison of the training data of the velocity
§: : i between the nominal fuzzy controller and the optimized
gt / ..... \ / \ f” o controller with the EKF is shown in Fig. 4. The blue solid
-8, f i \\ . lmfi relf)resc(rints d;h;z}a) vglcig:ity of the nomi&al ﬁlzlzy contrgllglr,
8 : ; ; and the re ed line represents the velocity of the
3’_&_«1’3\ : MV;,__ - VWJM e optimized fuzzy controller. At time t = (, the variable grad
L T has a 15 percent positive increase, so both curves dropped
(©) drastically in the next three seconds. However, the

controllers attempt to maintain their velocities at 70 m/s,
thus the curves began te oscillate until they converge to the
desired value. From Fig. 4, we can see that the optimized
fuzzy controller converges much faster than the nominal
fuzzy controller.

Fig.2 (a) The membership function of inputl before the
optimization. (b) The membership function of input2
before the optimization. (¢) The membership function of
the output before the optimization.
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Fig. 4 Comparison of the training data of the velocity
between the nominal fuzzy controller and the optimized
controller,

Similarly, we can observe the comparison of the training
data of the throttle position between the nominal fuzzy
controller and the optimized controller, as shown in Fig. 5.
The blue solid line represents the throttle position of the
nominal fuzzy controller, and the red dashed line
represents the throttle position of the optimized fuzzy
o h b controller. From Fig. 5, we can see that the optimized

iy fuzzy controller converges much faster than the nominal

L fuzzy controller.
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Fig. 5 Comparlson of the training data of the throttle
position between the nominal fuzzy controller and the
optimized controller.

B 3 T ]

Furthermore, we conducted three experiments to
investigate the effect of measurement noise covariance, R
on Kalman filter performance, and thus the optimized
fuzzy controller’s convergence. In the first simulation, we
set the measurement noise covaniance at R = le — 2, and
then train the extended Kalman filter. And then we applied
the optimized membership functions parameters to the
fuzzy controller. The performance of the fuzzy controller
is evaluated by the convergence speed, Fig. 6 (a) depicts
the results of this first simulation.

i3

wa P gowa te 4
v - T

e
h v\ Ay

A,

Cx -

i

Vet
s)

H N
R I R T e

Fig. 6 (a) The response of the optimized fuzzy controller
after we train the EKF with R=1e -2,

In the second simulation, we decrease the parameter R
to le — 6. Fig. 6 (b) shows the response of the optimized
fuzzy controller after we train the EKF with R = le - 6. By
comparing Fig. 6 (a) and Fig. 6 (b), we can see that the
convergence in Fig. 6 (b} is faster than that in Fig. 6 (a).

In the third simulation, we decrease the parameter R to
le - 8. Fig. 6 {c) shows the response of the oplimized fuzzy
controller after we train the EKF with R = le — 8. By
comparing Fig. 6 (b) and Fig. 6 (c), we can see that the
convergence in Fig. 6 (c) is faster than that in Fig. 6 (b).

By comparing Fig. 6 (a) through Fig. 6 (c) we conclude
that the smaller the measurement noise covariance R is, the
faster the fuzzy controller converge.
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Fig. 6 (b) The response of the optimized fuzzy controller
after we train the EKF with R = 1e - 6.
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Fig. 6 (¢) The response of the optimized fuzzy controller
after we train the EKF with R = 1e - 8.

6. CONCLUSION

The power of the Kalman filter has led it to its wide
applications in technologies and industries, This paper
demonstrates that the extended Kalman filter (EKF)
provides an efficient solution to the optimization of fuzzy
membership function for both the inputs and output of the
fuzzy controller. In our approach, after casting the fuzzy
system to a nonlinear system, to which the extended
Kalman filter will be applied, the derivative-based EKF
approach is then carried out to optimize the membership
functions. An appropriate fuzzy rule base is designed. The
experimental results are satisfactory. It shows that the
optimized fuzzy controller has improved its performance
greatly on the fast convergence for both the velocity and
the throttle position. The training ermor of the EKF
converges to 0.0008216 at the 30" iteration, which
presents the EKF’s accuracy and efficiency. We also
investigate the effect of the measurement noise covariance
R on the convergence of the fuzzy controller to which the
extended Kalman filter is applied. It shows that the smaller
the value of R is, the faster the optimized fuzzy controller
converges.
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