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Abstract - Optimizing the membership iunctions 01 a furzy 
system can be viewed as a sgstem identification problem for a 
nonlinear dynamic sgstem. Basically, we can view the 
optimization 01 furzy membership lunctions as a weighted 
least-squares minimiration problem, where the error vector is 
the diiierence between the iuery system outputs and the 
targel values lor those outputs. The cktendcd Kalman filter 
algorithm is a good choice tu solve this sgstem identification 
problem, not only because i t  is  a derivathe-based algorithm 
that i s  suitable to sohe the weighted least-squares 
minimization problem, but also because a i  i t 5  appealing 
predictor-currecfur irdture for nonlinear s)slem model. I n  this 
paper, w e  present an extended Kalman filler approach to 
optimire the membership iunctions o i  the inputs and outpuI$ 
01 the f u u y  controller. l h e  eifecl o f  the measurement noise 
cwariance R on the contergence a i  the fuzry controller i s  
also in\estigaied. Experimental results show that the 
optimired fuzzy controller achieves significant impro\ement 
on performance. I n  additiun. the smaller the mcasurcment 
noise cobariance K i). the raster the optimired fur,)’ 
controller uould con\ erge. 

I .  IN’IKODCCTION 

The perfonnance of a fuzzy system depend, on huth its 
rule base snd its membership lunctions. Given B rule hast, 
the membership functions can bc optimized in order tu 
obvain the best performance froin the fuzzy system. 
Sejeral methods ha\e been proposed tu solve thisprohlem. 
Jacomet Created a penalty function and applied it in his 
oplimiLation algorithm [ I ] ;  N a k m ”  adopted numerical 
op t imidon techniques to obtain the optimal values of 
Fuuy membership function parameters such that the 
performnnce measure i s  minimized 121; a heuristic mcthod 
was presented by Tau 131; \Vu and Chen presented a ne\\’ 
fuzzy learning algorithm based on the a-cuts of the 
equivalence relations and the U-cuts o f  fu/iy sets to 
Construct membership functions [4]. Several deri\,a[i\e- 
based algorithms are a h  proposed in [ 5 ] [ 6 ] .  

Kalman filter I> 3 powerful mathematical toul for 
stochastic estimation from nois) sensor mciirurcments. It  
is proposed by Rudolph E. Kalinan, who described a 
rccursive inethud for h e  discrete data linear filtcrin,: 
prublctn [7] The extended Kalinan filter algorithm 
resembles that of a prdrclor-rorrrcior algorithm for 
solving numerical problems [XI. It  makes an  
approxinintion of the system stater. called the a priori 
estinutc, which is used to predict the niedsureinenr that is 
ahout to arrive. .I‘his estimate i s  :idlusted by be actual 
measuremcnt, and thus obvains the upu.~rr~r;orr estimate. 
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Then the a posteriori estimate is used to predict the 
measurement at the next time step, and becomes the a 
priori estimate for the next time step. This recursive nature 
is one of the very appealing features of the Kalman filter. 
It recursively conditions the current estimate on all of the 
past measurements, and generally converges in a few 
iterations. A Kalman filter that linearizes ahout the current 
mean and covariance is referred to as an extended Kalman 
filter (EKF). The essential idea of the extended Kalman 
filter was proposed by Stanley F. Schmidt, and it has been 
called the ‘Kalman-Schmidt’ filter [9].  

We present an extended Kalman filter approach to 
optimize the membership functions of the inputs and 
outputs of the fuzzy controller. The performances of the 
fuzzy system before and after the optimization are 
compared, as well as the membership functions. We also 
investigated the effect of the measurement noise 
covariance R on the convergence of the fuzzy controller, 
which has not been explored previously in the existing 
publications. 

2. FUZZY MEMBERSHlP FUNCTIONS AND ITS 
PARAMETERS 

Consider a fuzzy system that uses correlation-product 
inference. Assume that the membership functions of the 
input and output are symmetric triangles. The initial rule 
base and membership functions are constructed on the 
imprecise hasis of experience, and trial and error. 

We denote the centroid, lower half-width and upper 
half-width of the ith fuzzy membership function of the jth 
input by cij, b,, b,f, respectively [IO]. The degree of 
membership of a crisp input x in the ith category of the jth 
input is specified as follows: 

0 

Similarly, for a single output fuzzy system, we denote 
the centroid and half-width of the jth fuzzy membership 
function of the output by y -and p . , respectively. For a 
two inputs and one output fuzzy system, the fuzzy output 

J J 
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is mapped into a crisp value using centroid defuzzification 
[ I l l :  

2 m ( r j ) r j P j  

1 m(r,)P, 
(2) 

j=l 
crisp output = 

where n is the number of fuzzy output sets. The fuzzy 
output function m(y) is computed as follows: 

j=l 

m(7 )  = fuzzy output function = C mik ( y )  (3) 
i,k 

where mik ( y )  is defined as the consequent fuzzy output 
function when (input 1 E class i) and (input 2 E class k). 

mOik (y )  is the fuzzy function of the consequent that is 
activated when (input 1 E class i) and (input 2 E class k). 
And w, is the activation level of that consequent. 

m;k ( Y )  = W;kmoik ( Y )  (4) 

wik = min[ fil(inpufl), fk2(input2)] ( 5 )  
Since the fuzzy membership functions are triangles as 

assumed, derivative-based methods can be used to 
optimize the centroid and half-widths of the input and 
output membership functions. Consider an error function 
given by 

E,  =.;, - Y ,  (7) 
where N is the number of training samples, y, is the target 

value of the fuzzy system, and 3,;s the output of the 
fuzzy system [12]. We can optimize E by using the partial 
derivatives of E with respect to the centroids and half- 
widths of the input and output fuzzy membership 
functions. T h e  detailed derivation formula can be found in 
~ 3 1 .  

3. THE EXTENDED KALMAN FILTER (EKF) 

This section briefly outlines the extended Kalman filter 
algorithm. Consider a nonlinear finite dynamic model 
given as follows [ 141: 

X k  f (xk - l , k  - + wk (8) 

zk = h ( x k , k ) + v k  (9) 

wk N(O, Qk ) 
with a nonlinear measurement model: 

vi - N(O,Rk) 
where the vector xk is the state of the system at time k, the 

random variables wk and vk represent the process and 

measurement noise, respectively. zk is the measurement 
vector, @) and h ( )  are nonlinear vector functions of the 
state, and Qk is the process noise covariance, Rk is the 
measurement noise covariance. Assume that the initial 

state xo and sequences (wk] and (Vk) are white, Gaussian 
and independent from each other with 

E(xo)  = Y o  (10) 

E(Wk) = 0 (12) 

(11) 
E[(so  -X0)(xo -Z0) T ] = P o  

(15) 
T 

E ( V k V I  = Rakl 
where E(.) is the expectation operator, &k, is the Kronecker 
delta, which is interpreted as: 

'kl = {  1 k = l  
The problem addressed by the extended kalman filter is to 
find an estimate ?k+l of x ~ + ~  given zi fj = O , l ,  ..., k). 

If the nonlinearities in (8) and (9) are sufficiently 
smooth, the system can be approximated as 

0 k t l  

(16) 

zk = H k x k  1 + v k  + q k  

@k = f (?k ) - Fkik (20) 

(21) pk = h ( i k )  - H [ i k  

K k  = P k H k ( R k  + H k  T PkHk)- '  

It can be shown that the desired estimate i k c a n  be 
obtained by the recursion 

i k  = fc ik- l  + Kk iZk  - h(ik-1 (22) 

(23) 

pk+l = Fk (Pk-1 - K k H I P k - l  )F{ + Qk 
where Kk is the Kalman gain, and the Pk is the state 

(24) 

estimation error covariance matrix. 

4. KALMAN FILTER TRAINING OF THE FUZZY 
MEMBERSHIP FUNCTIONS 

The use of Kalman filter training for the membership 
parameters of a fuzzy estimator was introduced by Simon 
for motor current windings 1151. It gives a straightforward 
representation of fuzzy estimator shucture. 

The optimization of fuzzy membership functions can be 
viewed as a weighted least-squares minimization problem, 
where the error is the difference between the fuzzy system 
outputs and the target values for those outputs. We use z to 
denote the target vector for the fuzzy system outputs, and 
h(k) to denote the actual outputs at the kth iteration of the 
training. 
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z (k )  = [Z,(k).'.ZL(k)lT (25) 

h(k)  = [h,(k)...h,(k)lT (26) 
where L denotes the number of outputs of a fuzzy system. 

Let's consider a 2-input, one-output fuzzy system. One 
input has p fuzzy sets, the other input has v fuzzy sets, and 
the output has k fuzzy sets. In order to cast the 
membership function optimization problem in a form 
suitable for Kalman filtering, we let the membership 
function parameters constitute the state of a nonlinear 
system, and let the output of the fuzzy system constitute 
the output of the nonlinear system to which the Kalman 
filter is applied. We denote the centroid, lower half-width 
and upper half-width of the ith fuzzy membership function 
of the jth input by q, hi;, hi{, respectively, and we denote 
the centroid and the half-width of the ith fuzzy 
membership function of the output by yi and pi, 
respectively. The state of the nonlinear system can be 
adapted as 
x = [ b i b A c 1 1  . . . b p l b p l ~ , , ~ b 1 Z b : 2 ~ ~ 2  ...b;2b:2cv~ 

- +  

(27) 
T 

PI Y l  "'flk?'k 1 
The nonlinear dynamic system to which the Kalman filter 
can he applied is as follows: 

'k+l = ' k  + wk (7.8) 

zk = h ( x k )  + vk (29) 

wherez-can he seen as the target output of the fuzzy 

system, and h ( i k )  is the actual output of the fuzzy system 
given the current membership function parameters. And 
then we can apply the Kalman recursion interpreted in (22) 
- (24). 

5 .  IMPLEMENTATION AND EXPERIMENTAL 
RESULTS 

Consider a dynamic process plant [16] given as follows: 
M=-(av+pV ) + k , * B  - M * 9.8 * sin(grad) 
(23) 
where M = 800 kg, a = 100N/(m/sec), p = 102N/(dsec)3, 
and k ,  is 4000 Newtons. v is the velocity of the plant, Q is 
the throttle position, and grud is a variable of the outside 
world that is liable to vary. The plant is expected to 
maintain the velocity at 70 m / s  if the variable grad has a 
15 percent positive increase. The problem is how to let the 
velocity and the throttle position of the plant reach the 
velocity at 70 m / s  as fast as possible, and converge to this 
value unless there is another change. 

A two inputs and one output fuzzy controller is designed 
by defining the error as the reference speed minus the 
measured speed, and implementing the rule base shown in 
Table 1. The rule base has five membership functions for 
each of inputl, input2, and the output. So p ,v and k in 
(27) are all five. Since each memhenhip function of an 
input bas three parameters (i.e. centroid, lower half-width 
and upper half-width) to determine, and each membership 
function of the output has two parameter (i.e. centroid and 

3 

half-width) to determine. Thus the fuzzy controller has a 
total of 40 parameters to he determined. 

TABLE 1 FUZZY RULE BASE fROWS =DIFFERENCE. 

NL = Negative L a m .  NS = Newtive Small. Z = Zero, PS = Positive 
smaii, p i =  Positivi Large. - 

We use the Intel Pentium IV processors up to 2.2GH2, 
and 1GB memory PC to do the experiments. We simulate 
the fuzzy controller in MATLAB for 100 s with an update 
rate of 0.25 s, so N in (6)  equals to 400. The Kalman filter 
method is implemented to optimize the membership 
function parameters of the controller's inputs and output. 
Fig. 1 shows the training error of the extended Kalman 
filter during the optimization of the membership functions. 
We can see that it finally converged to 0.0008216 at the 
30th iteration. 

1 1  

Fig. 1 Training erroi 

In addition, we compare the membership functions of 
the inputs and the output before and after the optimization. 
The membership functions of inputl, input2, and the 
output before optimization are shown in Fig. 2 (a), Fig. 2 
(b), and Fig. 2 (c), respectively. The membership functions 
of inputl, input?, and the output after optimization are 
shown in Fig. 3 (a), Fig. 3 (h), and Fig. 3 (c), respectively. 
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(C) 

Fig.2 (a) The membership function of inputl before the 
optimization. (b) The membership function of input2 
before the optimization. (c) The membership function of 
the output before the optimization. 

(c) 

Fig.3 (a) The membership function of inputl after the 
optimization. @) The membership function of input2 after 
the optimization. (c) The membership function of the 
output after the optimization. 

The comparison of the training data of the velocity 
between the nominal fuzzy controller and the optimized 
controller with the EKF is shown in Fig. 4. The blue solid 
line represents the velocity of the nominal fuzzy controller, 
and the red dashed line represents the velocity of the 
optimized funy controller. At time t = 0, the variable grad 
has a 15 percent positive increase, so both curves dropped 
drastically in the next three seconds. However, the 
controllers attempt to maintain their velocities at 70 d s ,  
thus the curves began to oscillate until they converge to the 
desired value. From Fig. 4, we can see that the optimized 
fuzzy controller converges much faster than the nominal 
fuzzy controller. 

Fig. 4 Comparison of the training data of the velocity 
between the nominal fuzzy controller and the optimized 
controller. 

Similarly, we can observe the comparison of the training 
data of the throttle position between the nominal fuzzy 
controller and the optimized controller, as shown in Fig. 5.  
The blue solid line represents the throttle position of the 
nominal fuzzy controller, and the red dashed line 
represents the throttle position of the optimized fuzzy 
controller. From Fig. 5 ,  we can see that the optimized 
fuzzy controller converges much faster than the nominal 
fuzzy controller. 
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Fig. 5 Comparison of the training data of the throttle 
position between the nominal fuzzy controller and the 
optimized controller. 

Furthermore, we conducted three experiments to 
investigate the effect of measurement noise covariance, R 
on Kalman filter performance, and thus the optimized 
fuzzy controller's convergence. In the first simulation, we 
set the measurement noise covariance at R = l e  - 2, and 
then train the extended Kalman filter. And then we applied 
the optimized membership functions parameters to the 
fuzzy controller. The performance of the fuzzy controller 
is evaluated by the convergence speed. Fig. 6 (a) depicts 
the results of this first simulation. 

Fig. 6 (a) The response of the optimized fuzzy controller 
after we train the EKF with R = le - 2. 

In the second simulation, we decrease the parameter R 
to le - 6. Fig. 6 (h) shows the response of the optimized 
fuzzy controller after we train the EKF with R = l e  - 6. By 
comparing Fig. 6 (a) and Fig. 6 (b), we can see that the 
convergence in Fig. 6 (b) is faster than that in Fig. 6 (a). 

In the third simulation, we decrease the parameter R to 
le - 8. Fig. 6 (c) shows the response of the optimized fuzzy 
controller after we train the EKF with R = l e  - X. By 
comparing Fig. 6 (b) and Fig. 6 (c), we can see that the 
convergence in Fig. 6 (c) is faster than that in Fig. 6 (b). 

By comparing Fig. 6 (a) through Fig. 6 (c), we conclude 
that the smaller the measurement noise covariance R is, the 
faster the fuzzy controller converge. 

Fig. 6 @) The response of the optimized fuzzy controller 
after we train the EKF with R = le.- 6. 

Fig. 6 (c) The response of the optimized fuzzy controller 
after we train the EKF with R = le - 8. 

6. CONCLUSION 

The power of the Kalman filter has led it to its wide 
applications in technologies and industries. This paper 
demonstrates that the extended Kalman filter (EKF) 
provides an efficient solution to the optimization of fuzzy 
membership function for both the inputs and output of the 
fuzzy controller. In our approach, after casting the fuzzy 
system to a nonlinear system, to which the extended 
Kalman filter will be applied, the derivative-based EKF 
approach is then carried out to optimize the membership 
functions. An appropriate fuzzy rule base is designed. The 
experimental results are satisfactory. It shows that the 
optimized fuzzy controller has improved its performance 
greatly on the fast convergence for both the velocity and 
the throttle position. The training error of the EKF 
converges to O.OOOX216 at the 3OLh iteration, which 
presents the EKF's accuracy and efficiency. We also 
investigate the effect of the measurement noise covariance 
R on the convergence of the fuzzy controller to which the 
extended Kalman filter is applied. It shows that the smaller 
the value of R is, the faster the optimized fuzzy controller 
converges. 
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