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Abstract- A reactive fuzzy logic based control strategy was 
developed for mobile robot navigation. To decrease the number 
of fuzzy rules and related processing, a RAM-based neural 
network was combined with the fuzzy logic strategy. The fuzzy 
rules are used to interpret sensor information.  The neural 
network uses results from the fuzzy logic as well as 
environmental information to make navigation decisions. The 
feasibility of this neuro-fuzzy approach was demonstrated on a 
mobile robot using a simple, 8-bit microcontroller. Experiments 
show the approach works well, as the robot was able to 
successfully avoid objects while seeking a goal in real-time. The 
neuro-fuzzy approach is code-efficient, fast, and easy to relate to 
the physical world. 

Keywords: Fuzzy systems, RAM-based neural network, robotic 
navigation, microprocessor system. 

I. INTRODUCTION 

The challenge to autonomously navigate an unexplored or 
unknown environment is to find local obstacles, navigate 
around these obstacles, and reach a goal destination with very 
limited computational resources.  

There are several difficulties with this problem. First, 
sensor data is often noisy and inaccurate. Determining the 
best actions based on sensor inputs is difficult, particularly in 
complex environments with many obstacles or where 
obstacles may be hidden or beyond sensor range.  

As we know, fuzzy logic handles this imprecise and 
uncertain data to produce complex decision outcomes [1]. 
Fuzzy logic is also well suited for limited computational 
platforms as it is intrinsically modular and computationally 
simple [2].  

The second difficulty is that the control strategy must be 
suitable for performance on a simple microprocessor system 
with modest capabilities in terms of both speed and memory.  

A RAM-based neural network is a good choice for use with 
modest microcontroller systems [3]. RAM-based neural 
networks specialize in pattern classification and rely largely 

on binary Boolean operations and memory reads and 
writes, rather than complex floating-point 
calculations.

A number of fuzzy logic approaches have been 
developed for mobile robot navigation. Chee et al. 
presented a two-layer fuzzy inference system that is 
capable of integrating the distance readings from 
different sensors and mapping the integrated results to 
the motion of the robot [4]. Fabrizi et al. proposed 
topology-based maps to represent the workspace of a 
mobile robot [5]. These maps capture the structure of 
the fre space in the environment in terms of the basic 
topological notions of connectivity and adjacency. 
Topology-based maps can be automatically extracted 
from an occupancy grid built from sensor data defined 
on fuzzy values. Coradeschi et al. proposed a fuzzy 
computational theory of anchoring to incorporate 
cognitive processes into a physically embedded 
reasoning system [6]. Anchoring is the process of 
creating and maintaining the correspondence between 
symbols and percepts that refer to the same physical 
objects. Modeling this process using fuzzy set 
theoretic notions enables dealing with perceptual data 
that can be affected by uncertainty/impression and 
imprecise/vague linguistic descriptions of objects. 
Wasik et al. proposed a hierarchical behavior-based 
system that can perform several vision-based 
manipulation tasks by using different combinations of 
the same set of basic behaviors. Behaviors can run 
concurrently, and they are arbitrated through “if-then” 
rules [7]. Zhang et al. proposed a fuzzy logic approach 
to target the goal using a decision table and fuzzy rule 
base [8]. However, this approach was not applicable to 
obstacle avoidance. Yao et al. presented a RAM-based 
neural network method for obstacle avoidance [9]. It 
used a conventional RAM-based network to classify 
the local environment and choose appropriate steering 
actions. This method is good for a single task (i.e. 
obstacle avoidance). However, if the robot must 
perform multiple tasks (i.e. goal seeking and obstacle 
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avoidance), this method becomes incapable. All the above
techniques were implemented only on computer simulation
instead of a hardware implementation.  None of these
methods are well suited for application on a modest
microcontroller-based robot system.

Some hardware implementations have been explored.
Tunstel and Jamshidi described a fuzzy logic controller that
provided a mobile robot equipped with a MC68HC11
microcontroller with the capability to exhibit a wall-following
behavior [10]. Saffiotti et al. presented a mobile robot that can 
avoid obstacles on the way and seek for the goal. It was
implemented on the mobile robot, named Flakey by SRI
International [11]. Buschka et al. uses fuzzy logic to account
for errors and imprecision in visual revognition, and for
extreme uncertainty in the estimate of the robot’s motion. It
only requires an approximate model of the sensor system and
a qualitative estimate of the robot’s displacement, and it has a 
moderate computational cost. The method was demonstrated
on a Sony AIBO legged robot in the RoboCup demain [12].

We present a novel neuro-fuzzy approach for mobile robot 
navigation that combines a fuzzy logic controller with a
RAM-based neural network. The hardware implementation of
the mobile robot embedded with a Phillips P89C51RC2
microcontroller was also described.

The rest of this paper is organized as follows. Section II 
introduces the mobile robot hardware design. Section III
presents an approach for neuro-fuzzy mobile robot navigation.
The design of the fuzzy system and neural network are
described. Section IV presents the experimental results. In
Section V, the performance of the neuro-fuzzy technique is
discussed. The conclusions are also given.

II. MOBILE ROBOT SYSTEM

Our experimental mobile robot was designed to find
obstacles in its immediate environment, to navigate around
those obstacles, and to detect and seek a goal destination.

The robot has two wheels used for driving and steering. A
separate stepper motor is used to drive each back wheel to
facilitate turns or forward and backward movement.  The
speed of the motors is set by the microcontroller. If there is 
no obstacle nearby, the robot will move quickly; otherwise, it 
will slow down.

The mobile robot is equipped with four infrared (IR) range
sensors to detect obstacles. The sensors are evenly mounted
in a semi-circle on the front of the robot, pointing in the left, 
left-front, right-front, and right directions. Distance is
measured from 10 cm to 80 cm. In addition, four photoelectric
sensors (i.e. goal-detectors) are mounted on the top of the
robot to detect signals from a light source placed at the goal 
location. The sensors are numbered from one to four as shown
in Fig. 1. The sensors are evenly spaced in a circle, pointing
outward from the center. Each sensor has a typical detection
angle of about 90 10 .

III. NEURO-FUZZY NAVIGATION SYSTEM
DESIGN

While the robot explores an unknown environment,
it is important for the robot to make a compromise
between avoiding collisions with obstacles and
moving toward the target. The robot detects obstacles 
and the goal location at the same time.

The neuro-fuzzy navigation system is shown in Fig.
1. The robot detects its environment using two groups
of sensors. Four IR range sensors detect obstacles
nearby and four photoelectric detectors find the
orientation of the light source placed on the goal.
Navigation is performed using two fuzzy logic
controllers, one to process information from the left 
side of the robot and another to deal with the right.
The fuzzy logic controllers consist of a rule base that
fuzzifies range values and goal direction and produces
defuzzified control actions. In addition, the controllers
implement a reactive control strategy. For example, if 
the robot finds an obstacle in front of it and in the path
to the goal, both fuzzy logic controllers will determine
the best steering direction and speed to avoid collision
while heading to the goal.

A RAM-based neural network chooses the reactive
outputs from these fuzzy logic controllers based on its
observation of the environment. The RAM-based
neural network works as an action supervisor. It
classifies the current environmental conditions based
on sensor inputs and then chooses the best control
response from the outputs of the two fuzzy logic
controllers.

Left
fuzzy
logic

Left
stepper
motorcontroller RAM-

based NN 
supervisor

Sensor
data

Right
stepper
motor

Right
fuzzy
logic

controller

Fig. 1. Block diagram of the neuro-fuzzy navigation system.

The navigation algorithm uses a sense-act cycle
where the robot senses nearby obstacles and the goal
direction and makes navigation decisions. For each
iteration, the fuzzy logic controllers and neural
network evaluate data from the sensors and choose an 
appropriate steering direction and speed. Normally,
the robot moves forward to the goal while surveying
its environment until an obstacle is detected within a 
fuzzy range threshold. If an obstacle is detected, the
steering direction and driving speed are modified by
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the navigation control system such that the robot veers away 
from the potential impact yet still makes progress toward its
goal.

A. Fuzzy Logic Controller Design

The fuzzy logic navigation controller performs a mapping
between the sensor input space and the robot’s action space.
The robot’s action space is given by the steering angle needed
to reach the goal ( ) and the robot’s linear velocity ( ).

In order to reduce the number of fuzzy rules, we made two
adjustments to reduce the number of the fuzzy rules.  First, 
the four photoelectric goal detectors were treated as one
sensor. As long as is in the range of the detectors’ sensitivity,
at least one detector will find it. One variable ( ) is enough to
describe the angular position of the goal relative to the robot’s
current position. Therefore there is only one goal-angle
membership function. The value of  is the index of the goal
detector.

In addition, we divide the four IR range sensors into two 
groups, one group describing the distance between the
obstacle and the left or left-front of the IR range sensors (dL,
dLF), and another group describing the distance between the
obstacle and the right or right-front of the IR range sensors
(dR, dRF). One fuzzy logic controller is developed to work
with sensors on each side (left and right). The RAM-based
neural network chooses the appropriate fuzzy logic command
from the two controllers.

Fuzzy membership functions are designed for both the
inputs and outputs of the fuzzy controllers. The inputs to the
left fuzzy controller is (dL, dLF, ) and the inputs to the right
fuzzy controller is (dR, dRF, ), where dL, dLF, dR, and dRF are 
the distance information produced by the left, left-front, right,
and right-front IR range sensors;  is the angular position of
the goal relative to the robot’s current position. The outputs
are steering direction and velocity, ( , ). The linguistic labels
are summarized as follows: 

Input variables:
dL, dLF dR, dRF: VN - very near : LB - left big

 N - near LS - left small
 F  - far Z - zero

   RS - right small
   RB - right big

Output variables:
: HI - high speed : TLB - turn left big
LO - low speed   TLS - turn left small

  FW  - forwards
  TRS - turn right small
  TRB - turn right big

The memberships for all input and output variables are
shown in Fig. 2 to Fig. 4 and Table 1.

1  VN   N   F

  0  20  40  60  80   d (cm)

Fig. 2. Membership functions for the linguistic variable
“Distance from robot to obstacle (d)” (dL/ dLF/ dR/ dRF/).

1
LO  HI

0   1.0   2.0  3.0   v (cm/s)
Fig. 3. Membership functions for the linguistic variable
“linear velocity of robot ( )”.

 TLB TLS W  TRS TRBF1

-90  -60  -30  0   30  60   90 ( )

Fig. 4. Membership functions for the linguistic variable
“steering angle of robot ( )”.

Because  is not a continuous value, its membership
function parameters are mapped into the four input
values directly, as shown in Table 1.

Table 1  Fuzzy sets for the linguistic variable “angular
direction to goal relative to robot ( )”

LB LS Z RS RB
 = 4  = 2  = 1  = 3  = 4

The fuzzy rules for the left fuzzy controller include: 
Rule1: If dL is VN and dLF is VN and  is LB
  Then  is TLB and  is LO. 
Rule2: If dL is VN and dLF is VN and  is LS
  Then  is TRB and  is LO. 

 ••• 
Rule45:  If dL is F and dLF is F and  is RB 
   Then  is TRB and  is HI.

Since input dL and input dLF have 3 possible values,
and input has 5 possible values, there are 45 
combinations for the outputs  and . There are also 
45 fuzzy rules for the right fuzzy controller.
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B. Neural Network Design

A RAM-based neural network is used to determine the
direction of the obstacles, based on which the two fuzzy
controllers would take action. The architecture of the neural
network is shown in Fig. 5. It has two-layers. The input layer
has four neurons and the output layer has six neurons. The
inputs are Left, Left-front, Right-front, and Right obtained
from the four IR range sensors.  The six outputs are:

Output 1: One or two obstacles in front of the robot (left-
front side or right-front side or both);

Output 2: One obstacle to the left-front of the robot,
another to the right;

Output 3: One obstacle to the right-front of the robot,
another to the left;

Output 4: One or two obstacles on the left side of the
robot (left or left-front or both);

Output 5: One or two obstacles on the right side of the
robot (right or right-front or both);

Output 6: More than two obstacles (obstacles on multiple
sides).

The RAM-based network classifies the robot’s immediate
environment by recognizing patterns that were encountered
during training. For RAM-based networks, the training does
not require a direct measure of error, just an indication that
the current training pattern is correct or incorrect. The training
therefore proceeds very quickly. This is especially well suited
to microcontroller-based real-time systems because it requires
very modest computing capabilities.

The final command decision is based on the environment
classification by the neural network and the outputs of the
fuzzy logic controllers. The neural network classifier uses
both fuzzy logic controllers and chooses appropriate actions
to avoid obstacles and keep heading to the target. For case 1,
the classifier selects the steering direction and velocity, ( , )
from either the left or right fuzzy logic controller; for case 2, 3
and 6, the classifier selects the larger  and from the two
fuzzy logic controllers; for case 4 the classifier selects the 
and  from the left fuzzy logic controller; for case 5 the

classifier selects the  and  from the right fuzzy logic
controller.

IV. EXPERIMENTAL RESULTS

Three experiments were performed. Of particular
concern was the case where a dead-end existed and 
the robot could be trapped, such as with a U-shaped
obstacle pattern. The first experiment used a cluttered
environment but with a clear path to the goal, as 
shown in Fig. 6. The goal is shown with a triangle.
The robot’s path is shown with circles.  Obstacles are
indicated with filled squares. The second experiment
used multiple obstacles in a small U-shaped pattern, as 
shown in Fig. 7. The radius and the depth of this U-
shape were no more than 30 cm. The third experiment
used a combination of obstacles in a big U-shaped
pattern, as shown in Fig. 8. Each environment was 2
m by 2 m in size. Navigation was attempted in these
environments from a fixed starting point.  In the
figures shown, the robot started from the lower left
corner and proceeded toward the goal located in the 
upper right corner.Output 1 

Output 2 

Output 3 

Output 4 

Output 5 

Output 6 

Left

Left-front

Right-front

Right

Input layer Output layer

Fig. 5. The structure of the RAM-based neural network
action supervisor.

Fig. 6. The robot’s path through a cluttered
environment to its goal location.

In experiment 1, the robot was able to navigate its 
way through the obstacles to the goal with little
difficulty. The environment shown in Fig. 7 was more
challenging. The robot started by navigating into the
U-shaped combination of objects; however, the neuro-
fuzzy navigation algorithm was able to successfully
navigate its way through these obstacles to the goal as 
long as the radius and the depth of the U-shape were
not too large, i.e., less than 2 or 3 times the turning
radius of the mobile robot. When the robot started
navigating, it moved toward the goal at high speed
because it saw no obstacles in its immediate
environment. When it detected the U-shaped pattern
of obstacles, it moved along the edge of the obstacles
until it freed itself.  Once free of the objects, the robot
proceeded to the goal with high speed. In experiment
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2, the robot successfully navigated past the “trap” to the goal.

Fig. 7. The robot’s path to its goal through an
environment with obstacles in a small U-shaped
configuration.

When we increased the radius of the U-shaped combination
and moved the light source to the right behind the
combination, the robot was trapped more easily. It turned
around in the concave “trap” made by the U-shape and could
not find an exit, as shown in Fig. 8.

Fig. 8. The robot may get trapped in some large U-shaped
obstacle configurations.

V. DISCUSSION AND CONCLUSIONS

We proposed a neuro-fuzzy algorithm for reactive robot
navigation. It performed reliably and in real-time on a simple
8-bit microcontroller system. This method can effectively deal
with imprecise or noisy sensor information and coordinate
conflicts among multiple reactive behaviors.

An efficient approach to reduce the number of fuzzy rules is
presented. For our navigation system, the fuzzy controller is
broken into two halves, which dramatically decreases the size
of the overall rule base. A RAM-based neural network is used
as a supervisor to these controllers (the two halves), to
classify the environment and choose appropriate navigation
decisions from the two controllers. The advantage of this
combined fuzzy controller and RAM-based neural network

approach is that it requires very little computational
power or memory while still maintaining the ability to
handle imprecise or complex data. A possible
drawback is that it may produce suboptimal solutions
and cannot guarantee that the robot will reach its goal
destination.

While this method of detecting the goal direction is 
simple, it is effective for demonstrating the quality of 
our navigation approach. Experimental results showed
that the robot could avoid obstacles in a complex
environment. The robot had a very modest
microprocessor system (8 bits), a small amount of data
memory (512 bytes), and only 16 KB of code
memory, showing the algorithm could be
implemented well on a comparatively modest
computational platform. Compared with model-based
navigation approaches, the neuro-fuzzy method reacts
quickly and requires few computational resources.

Intelligent control strategies are needed to overcome
the ambiguities in sensor data and reach appropriate
navigation decisions.
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