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AN OPTIMAL EDG METHOD FOR DISTRIBUTED CONTROL
OF CONVECTION DIFFUSION PDES

XIAO ZHANG, YANGWEN ZHANG, AND JOHN R. SINGLER

Abstract. We propose an embedded discontinuous Galerkin (EDG) method to approximate
the solution of a distributed control problem governed by convection diffusion PDEs, and obtain
optimal a priori error estimates for the state, dual state, their fluxes, and the control. Moreover,
we prove the optimize-then-discretize (OD) and discrtize-then-optimize (DO) approaches coincide.
Numerical results confirm our theoretical results.

Key words. Distributed optimal control, convection diffusion, embedded discontinuous Galerkin
method, error analysis, optimize-then-discretize, discrtize-then-optimize.

1. Introduction

We study the following distributed optimal control problem:

, 1 gl

subject to
) —Ay+03-Vy=f+u inQ,
2) y=g on 0},

where 2 C R? (d > 2) is a Lipschitz polyhedral domain with boundary T' = 9,
f € L3Q), g € C°(09), and the vector field 3 satisfies

(3) V-B8<0.

Optimal control problems for convection diffusion equations have been exten-
sively studied using many different finite element methods, such as standard finite
elements [11H13], mixed finite elements [13}35,|39], discontinuous Galerkin (DG)
methods |161[21}|33}/34},/36,40,41] and hybrid discontinuous Galerkin (HDG) meth-
ods [17,[18]. HDG methods were first introduced by Cockburn et al. in [4] for
second order elliptic problems, and they have subsequently been applied to many
other problems [2,[3}5}7.[8/23H26,[32]. HDG methods keep the advantages of DG
methods, but have a lower number of globally coupled degrees of freedom com-
pared to mixed methods and DG methods. However, the degrees of freedom for
HDG methods is still larger compared to standard finite element methods. Embed-
ded discontinuous Galerkin (EDG) methods were first proposed in [15], and then
analyzed in [6]. EDG methods are obtained from the HDG methods by forcing the
numerical trace space to be continuous. This simple change significantly reduces
the number of degrees of freedom and make EDG methods competitive for flow
problems [27] and many other applications [9}{10L[19L[27.[29].

In [38], we utilized an EDG method for a distributed optimal control problem
for the Poisson equation. We obtained optimal convergence rates for the state,
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dual state and the control, but suboptimal convergence rates for their fluxes. This
suboptimal flux convergence rate for the Poisson equation is a limitation of the
EDG method with equal order polynomial degrees for all variables [6]. However,
Zhang, Xie, and Zhang recently proposed a new EDG method and proved optimal
convergence rates for all variables for the Poisson equation [37]. This new EDG
method is obtained by simply using a lower degree finite element space for the flux.
In this work, we use this new EDG method to approximate the solution of the
above convection diffusion distributed optimal control problem, and in
we prove optimal convergence rates for all variables.

There are two main approaches to compute the numerical solution of PDE con-
strained optimal control problems: the optimize-then-discretize (OD) and discretize-
then-optimize (DO) approaches. In the OD approach, one first derives the first-
order necessary optimality conditions, then discretizes the optimality system, and
then solves the resulting discrete system by utilizing efficient iterative solvers [31].
In the DO approach, one first discretizes the PDE optimization problem to obtain
a finite dimensional optimization problem, which is then solved by existing opti-
mization algorithms, such as [1,28|. The discretization methods for which these two
approaches coincide are called commutative. Intuitively, the DO approach is more
straightforward in practice; however, not all discretization schemes are commuta-
tive. In the non-commutative case, the DO approach may result in badly behaved
numerical results; see, e.g., [20,22]. Therefore, devising commutative numerical
methods is very important. In we prove the EDG method studied here
is commutative for the convection diffusion distributed control problem. Moreover,
we provide numerical examples to confirm our theoretical results in

2. EDG scheme for the optimal control problem

2.1. Notation. Throughout the paper we adopt the standard notation W™ ()
for Sobolev spaces on 2 with norm || - ||;mp,0 and seminorm | - |, 0 . We denote
Wm2(Q) by H™(Q) with norm || ||, and seminorm ||, o. Specifically, H} (2) =
{v e HY(Q) : v =0on 9N}. We denote the L2-inner products on L?(Q) and L?(T")
by

(v,w):/vw Vo, w € L*(Q),
Q

<v,w>:/rvw Yo, w € L*(T).

Define the space H (div,{2) as
H(div,Q) = {v € [L*(Q)]4,V -v € L*(Q)}.

Let 75, be a collection of disjoint elements that partition 2. We denote by 07},
the set {OK : K € Tp}. For an element K of the collection 7y, let e = KNI denote
the boundary face of K if the d — 1 Lebesgue measure of e is non-zero. For two
elements K™ and K~ of the collection 7y, let e = K™ N K~ denote the interior
face between K+ and K~ if the d — 1 Lebesgue measure of e is non-zero. Let &9,
and 52 denote the set of interior and boundary faces, respectively. We denote by
€, the union of ¢} and 62. We finally introduce

(w,v)7, = > (w,0)x, (G Por, = D (GPax -

KeTy KeTs
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Let P*(D) denote the set of polynomials of degree at most & > 0 on a domain
D. We introduce the discontinuous finite element spaces

(4) Vi = {v e [L}(Q)])? : v|g € [PH(K)]? VK € Th},
(5) Wi = {w € L*(Q) : w|x € P*YK),YK € T},
(6) My, = {p € L?(ep) : ple € P*HL(e), Ve € &1},

Define Mj,(0) and My,(9) in the same way as Mp,, but with 9 and € replacing e,
Note that M), consists of functions which are continuous inside the faces (or edges)
e € g and discontinuous at their borders. In addition, for any function w € W,
we use Vw to denote the piecewise gradient on each element K € Tp,. A similar
convention applies to the divergence V - r for all » € V;,.

For EDG methods, we only change the space of numerical traces My, which is
discontinuous, into a continuous space M}, as follows:

(7) M), := My, NC°(ep).

The spaces Mh(o) and Mh(a) are defined in the same way as My (o) and My (9).
Recall we assume the Dirichlet boundary data ¢ is continuous. Let Zj; be an

interpolation operator, so that Z g is a continuous interpolation of g on 52.
Again, in most of the EDG works in the literature the polynomial degree is equal

for the three spaces Vi, W, and M. We lower the polynomial degree for the flux

space Vj, as in the recent work [37].

2.2. Optimize-then-Discretize. First, we consider the optimize-then-discretize
(OD) approach: we use the EDG method to discretize the optimality system for
the convection diffusion control problem.

It is well known that the optimal control problem — is equivalent to the
optimality system

(8a) -Ay+p8-Vy=f+u in €,
(8b) y=g on 01,
(80) Ae-V (B2 =y-ya O
(8d) z=10 on 09,
(8e) z+yu =0 in Q.

For ¢ = —Vy and p = —Vz, the mixed weak form of the optimality system —
is given by

(9a) (@.r) = (¥, V-r)+(y,r-n) =0,
(9b) (V- (g+By),w) - (yV:Bw) = (f+u w),
(9c) (p,r) — (2, V1) =0,
(9d) (V-(p—B2),w) = (y Ya, w),
(9e) (2 +yu,v) =0,

for all (r,w,v) € H(div,Q) x L*(Q) x L?(1Q).
To approximate the solution of this system, the EDG method seeks approximate
fluxes gn,pn € Vi, states yp, 2z, € Wp, interior element boundary traces yy,z;, €
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Mh(o), and control up € W, satisfying

(10a) (@n,m1)7 — (Wn, V- 11)75 + (Uh 1 M)agneo = —(Thg 71 M0,

—(qn + Byn, Vwi)7, — (unV - B,w1)7, +(Gn - mywi)oT;,
(10b)  +(B - nyp, wi)or\c0 — (un, w1)7, = —(B - nIpg,wi)eo + (f, w1)7;,
for all (r1,wq1) € Vi, x Wy,

(100) (phv TQ)Th - (Zh’ V- T2)Th + <EZ,T‘2 : n>87’h\52 =0,
—(pn — Bzn, Vwa) 7, + (Pr - 1, wa) a7,
(10d) —(B-nZ}, w2)o7;\c0 — (Yn, w2) 7, = —(Ya, w2)75,,

for all (7‘2,11}2) eV, x Wy,

(10e) (@n-n+ B nyy, p)ap\0 =0,
(10f) (Ph-m — B-nZ}, p2)og;\e0 =0,

h
for all pq, o € Mh(o), and the optimality condition
(10g) (2 + yun, w3)7, =0,

for all ws € W),
The numerical traces on 07}, are defined as

(10h) Gn-n=qn-n+h (Y — ) +nlyn—07)  ondTh\ep,
(10i) an-n=aqp-n+h(y, —Ing) + 11(yn — Ing) one,
(10)  Prnom=pr-n+h e - )+l —F)  ondTh\e),
(10k) Drn-n=pp-n+htz+ 1z on e,

where 71 and 79 are positive stabilization functions defined on 97,. We show below
that the OD and DO approaches coincide if 75 = 7y — 3 -n. The implementation of
the OD approach is very similar to the HDG method in |1§], and hence is omitted
here.

2.3. Discretize-then-Optimize. Now we derive the optimality conditions for the
discretize-then-optimize (DO) approach when the optimal control problem is dis-
cretized by the EDG method. Therefore, we solve

. 1 2 Y 2
(11) u?é%h §||Z/h - yd||Th =+ §||Uh||7‘h7 v >0,

subject to the discrete state equations
(12)  (gn:r1)7 = Wn, V1)1 + W1 Moo = —(Tng,T1 )0,
—(qn + Byn, Vi) 7, — (ynV - B,w1)7, + (gn - n,w1)aT;,
H(h™ + )y, wi)or, + (81— (R~ + 71)yp, wi)om e
(13) —(un,wr)p, = =(B-n — (W' + 1)Ing, wi)or 0 + (fsw1) 7,
(14) (gn-n+ (W +7)(yn = T7)s 1)omnes =0,

for any (r1,wy, u1) € Vi x Wy, x Mh(o).
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The discretized Lagrangian functional is defined by

Loty T2 2m 200 78) = 5 lon = ally, + 3 3,
+ (qn Pr) 7 = (Yn, V- P) 7 + Ui Ph - MaTieo + (Tngs Ph - 1) o
+(qn + Byn, V)7, + (UnV - B, zn) 7, — (@n - 1, 20) 075,
— (A" +T)yns zn)ors, — (B —h™" = 1T, 2n) o e0
+ (un, 20) 7, = ((B-m = h™' = 7)Tng, 2n)og\e0 + (fs 20) 75
+{gn-n+ (W 1) (yn = T7)s ) om0

Since the constraint PDE is linear and the cost functional is convex, the necessary
and sufficient optimality conditions can be obtained by setting the partial Fréchet-
derivatives of with respect to the flux gy, state y;, numerical trace yj and
control u, equal to zero. Thus, we obtain the system consisting of the discrete
adjoint equations

oLy

" (Pr,72) 75, + (Van, r2) 75, — (20,72 - M)om, + (25,12 - N\ 0

(15)

= (Pr,72)7, — (20, V- m2) 75 + (23,72 - M) o0 = 0,

oL
W:wz = —(V - pn,wo)7, + (BVzp,wa)7 + (2nV - B, w2)T,
— (W™ + 1)z, wa)ar, + (W71 + 1)Z7, wa) o eo + (Yn — ya, w2) 7,
= (pn — Bz, Vwa) 7, — (pr -+ (W + 71— B-n)zp, wa)or,
<(h + Tl)zh7w2>87’h\5a + (yh - yd7w2)Th 07
oLy,

i (ph-m—(B-n—h"t —7)zn — (A1 +7)2, p2)ome0 =0,

Furthermore, we obtain the same optimality condition (10g) as in the OD approach.

oLy

hdad) , =0.

oun, w3 = (Yup + 2n, wW3) T,
In the OD approach, if the stabilization functions 7 and 75 satisfy
(17) 7'2:7‘17,3‘7’1/,

then by comparing the above discrete adjoint equations with we obtain identical
discrete systems; therefore, the two approaches coincide in this case, i.e., OD = DO.

2.4. Implementation of DO. In the DO approach, we need to deal with a large
optimization problem and ([12)-(14) since the EDG method generates three
variables: the flux gy, the scalar variable y;,, and the numerical trace 7;,. Fortu-
nately, we can reduce the large scale problem into a smaller problem using the local
solver for the EDG method.

2.4.1. Matrix equations. Assume V; = span{gai}fv:ll, Wy, = span{gb,;}f-v:zl, and
M, (0) = span{t;} 3 . Then

N N» Ns Ns
(18)  an=Y_ 5 wn=Y Bid; Tn :Z iy un =Y (o
j=1 j=1 j=1 j=1
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Substitute into — to give the following finite dimensional optimization
problem:

o1 1
(192) in 58" AsB b1 B+ 5¢" As

subject to

A —Ay Ay 0 g —by
(19b) AT Ay Ay —Ag — | by —by |,
AT A, —4As 0 z 0

where a, 3,7, ¢ are the coefficient vectors for g, yn, 5, un, respectively, and

A =[(@j,ei)ml, A2 =1[(9;,V-wi)7],  As=[{¢, i n)ar\0];
Ay =—((6;, V- (B 6)) 7] + (B + 10)os, di)om,
As =[((B-n—h"" =795, $i)omneo)s Ao = [(05:0i) 7],
Az = (W7 + 1)) ¥idomneal,  As = (A1 + 1), vi) a7\ c0),
b1 = [(ya, di)73)s b2 = [(Tng,1-m)e0l, b3 = [(f, di) 73],
bi=[(B-n—h"" —71)g,¢i).0].
Due to the discontinuous nature of the approximation spaces V3, and W, the

first two equations of (19b)) can be used to eliminate both & and 3 in an element-
by-element fashion. As a consequence, we can write system (19bf) as

a =Gy + G+ Hi,
(20) B = Gsv + G4C + Ho,
G5y + GoC = Hs.
We provide details on the element-by-element construction of the coefficient matri-

ces G1,...,Gg and Hy, Hy, H3 in the appendix.
Substituting into (19)) gives the reduced optimization problem

o1 B: B
RIS I F P Ll ]
subject to
(21b) [ G5 G | [Z]ZH:;,
where

By = G3TA6G37 By = G§A6G4, B3 = Cv'fz‘laGg7 B, = GIA(;G;L + Ag,
bs = GT(AgHy — b1), bs = Gt (AgHy — by).
Remark 1. In the DO approach, we need to solve the optimization problem ;

there are many existing optimization algorithms [14] that can efficiently solve this
problem.
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3. Error Analysis

Next, we provide a convergence analysis of the above EDG method for the opti-
mal control problem. Throughout this section, we assume 8 € [W1>°(Q)]4, Q is a
bounded convex polyhedral domain, the solution is smooth enough, and A < 1.

3.1. Main result. For our theoretical results, we require the stabilization func-
tions 71 and 7o are chosen to satisfy

(Al): =7 — 3 n.
(A2): For any K € Ty, min (1, — 38 - n)|ox > 0.

We note that (A1) and (A2) imply
. 1
(22) m1n(7'2—|—§ﬁ-n)|aK >0 forany K €7),.

Furthermore, (A1) implies the OD and DO approaches yield equivalent results;
therefore, all of our convergence analysis is for the OD approach.

Theorem 1. We have

lg = anll7 S P (glks + [Ylkre + [Pl + [2]k42),
Ilp = pall7 S P (glkir + lylkse + [Pletr + |2lk12),
Iy = ynllz S W2 (lglkrr + [Ylkre + [Pl + [2[k12),
Iz = znll7 S P2 (1glkrs + lylksa + 1Pliss + [2lk12),

( )

7S hht? |lqlrt1 + (Yl + 1Pler1 + [2]r12)-

l|w — un|

3.2. Preliminary material. Next, we introduce the standard L?-orthogonal pro-
jection operators ITy and Iy, as follows:

(23a) (Mvq,r)x = (¢, 7)x  Vr € [Pu(K)),
(23b) (Hwy,w)K = (y,w)K Yw € Pk+1(K).

We use the following well-known bounds:

(24a) g — qu||7—h < Ch*H! ||q||k+1,Q sy = HWyHTh < ChFt? ||ka+2,Q )
3 1

(24b)  |ly — HWyHaTh < ChM> ||y||k+2797 g — HV‘I”aTh < ChFt2 ||Q||k+1,Q )
3 _1

(24c) Ny = Tuyllor, < CR* 2 |lyllyynn s lwllyr, < Ch72 [lwlly, Yo € Wy,

where 7, is the continuous interpolation operator introduced earlier.
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We define the following EDG operators %1 and Ho:

B1(qn; Yn, Y T1, W14 p1)
= (an, 7)1 — Wh, V- T1) 75 + (Ui, 71 - M) o7\ 00
= (gn + Byn, Vwi)7, — (V- Byn, w1)7,
+{an-n+ (W m)yn,w)er, + (B-n — b7 = 1)F, wi)or\c0
(25) —{gn-n+B-ngp, + (A" +7)(yn — T)s 1)o7\ 0
PBa(Phs 2hy 25 T2, W, f12)
= (Pr,72)7, — (20, V- 12) 75, + (2], 72 - M) g0 — (Pr — Bzn, V)T,
+{pn-m+ (W )z, wa)ar, — ((B-n+h71 4+ 72) 2, wa) o e
(26) —(pr-m—B-nZ + (W + ) (zn = 27), p2)omeo-
By the definition of #; and %5, we can rewrite the EDG formulation of the

optimality system as follows: find (qn, P, Yn, 2h, Un, U5, 25) € Vi X Vi x W), %
Wi, X Wy, x Mp(0) x Mp(0) such that

%1((1117?/}17@\2;7'17@01»/11) = (f+uh7w1)7—h,

(27a) — (Thy, (,@-TL—Tl—hil)’wl —|—’I’1-’I’L>5§?’7
(27b) %2(17}“2}“22;7'2711)2,#2) = (yh - yd7w2)7—h7
(27c) (zn + yun, ws) 7, =0,

for all (r1,re, w1, wa, ws, p1, p2) € Vi X Vi x Wi, x Wy x W), x My (0) x Mp(0).

Next, we present two fundamental properties of the operators %, and %5, and
show the EDG equations have a unique solution. The proofs of these results
are similar to proofs in [17,|18] and are omitted. We note that condition (A1) is
used in the proof of which is fundamental to the error analysis in this
work. Furthermore, (A1) and (A2) are used in the proof of [Proposition 1]

Lemma 1. For any (vp, wp, pp) € Vi, X Wy X Mh, we have
PB1(Vh, Wh, fh; Vs Why k)
_ 1
= (v, on)7;, + (A7 + 7= 5B m)(wh — ), wh = pn)orin g

1 1
— i(V . ﬂwh,wh)n + <(h_l +7m - 5,E)' . n)wh,wh>52,
B (Vh, W, fih; Vhs Why k)
_ 1
= (vn,on) 7 + (A1 + 1+ 3B ) (W = pn), W — Hn)oTieg
1 1
— i(v . /Bwhawh)Th, =+ <(h71 + 7 + 5[6 . n)wh,wh>€§.

Lemma 2. The EDG operators satisfy

%1(Qh7yh7§Z§Pha —Zh, _EZ) + ‘%2(17}“ Zhy 227 —dqh, yh,%) =0.

Proposition 1. There exists a unique solution of the EDG equations (27).
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3.3. Proof of Main Result. To prove the convergence result, we split the proof
into eight steps. We first consider the following auxiliary problem: find

(gn(w), pr(w), yn (u), 21 (w), 75 (w), (1)) € Vi x Vi, x Wi, x Wi, x My (0) x My (o)
such that

B (qn(u), yn(w), Y (w); m1,wr, pn) = (f + u, wi)7,
(28a) —{Tng,(B-n—1 —h Hwy + 7, Mo,
(28b)

Bo(pn(w), 2 (), 27 (w); 72, wa, i2) = (Yn(u) — ya, w2)7,,
for all (rq,re, w1, we, 1, ) € Vi, x Vi, x Wi, x Wj, X Mh(o) X ]T/fh(o).

In Steps 1-3, we focus on the primary variables, i.e., the state y and the flux g,
and we use the following notation:

09 =q—TIlyq, ef =Ty q — qn(u),
29) 0¥ =y —Iwy, €Z =Ilwy — yn(u),
67 =y — Ty, ef =Ty — Yn(u),

81 =07 n+B-nd? + (ry +h7) (Y - 57),
where 3, (u) = 32 (u) on €5 and gy, (u) = Zpg on €7, which implies 5% =0 on &Y.

3.3.1. Step 1: The error equation for part 1 of the auxiliary problem
28a).
Lemma 3. We have the following error equation
By (2, 6Y eV ry wr, ) = — (09,71 - nYar, + (B6Y, Vw7, + (V- B6Y, w17,
(30) — (1, wi)or, + (01, 1)o7\ e0-
Proof. By definition of the operator #4; in , we have
%1 (v q, wy, Tpy; 71, w1, pa)
= Mvq,r1)7, — Twy, V- ri)7, + (Tny, 1 m)or\e0
— (Ilyq + Bllwy, Vuw1)7, — (V- Blly, wi)7,
+({Iyg-n+ (1 +h™)wy,wi)or, +((B-n — 71 — h™ )Ty, wi) o, \c0
—(vg-n+B-nDyy + (11 + 1) Uwy — Zny), i )or, \o0-
Using properties of the L?-orthogonal projection operators gives
%1 (v q, wy, Tny; 71, w1, pa)
=(g.r)7 — W,V r)7 + (Y71 ">aTh\e§ — (6%, '">aTh\eg
— (g + By, Vwi)7, + (B6Y,Vwi)7, — (V- By, wi)7, + (V- B6Y, w1)7,
+{g-n+ (n+h Yy, w)ar, — (69 n+ (1 +h7H)8%, wi)aT,
+{(B-n—1 —h )y, wi)erco —((B-n—71 — h=1)a7, W1)a7;,\22
—{a-n+B8 ny, oy \e0
+ (0% n+B-nd" + (11 + 571 (0Y = 6%), m) o e0-
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Note that the exact solution q and y satisfies
(q7r1)7_h - (y7 V- Tl)Th + <yv ry- n>87—h\62 = —<g7’l"1 ' n>ega
—(g+ By, Vwi)7, — (V- By,wi)7, + (g - n+ B -ny,wi)or, = ([ +uw,wi)7,
_<q "N+ 16 ! nyvﬂ1>87’h\gg = 07
for all (ry, w1, pu1) € Vi, x Wy, X Mh(o). Therefore, we have
@1(qu,ﬂwy, Iny;r1, w1, pa)
—(g,r1-m)0 — (67,7 - M) om0 T (80Y, Vwi)T,
+(V 55 wl)T + (f +u,w1)7, — (67 - m,w1)o7;,
—((B-n—m—h Ny, wi)e0 = (B-n =71 = b)Y, wi)or 0
+ (87 m+B-nd? + (11 + ) (8 = 7)) oy co-
Finally, subtracting (28a)) from the above equation completes the proof. (I

3.3.2. Step 2: Estimate for ¢} by an energy argument. First, we give an
auxiliary result that is very similar to a result from [30]. The proof is also very
similar, and is omitted.

Lemma 4. We have
_1 7
(31) Vel S lletlln, +h™2 e} — eplloT,-

Lemma 5. We have

_1 7

(32) lefllz, +h™Zlleh — ehllom < P (lalkss + [ylesa)-

Proof. Taking (r1,wy, p1) = (EZ,EZ,&Z) in ingives
(el et el cl) = (57, ), + (88", Vel

+ (V- B0, wi)7, — (81,¢) —€)or,
= T1 +T2+T3+T4,

where we used Eg =0 on 52. We estimate T;, for i = 1,2, 3, 4, as follows. First,
. 1
-1 2 2
T1 S Ch ||6yHaTh + ZH‘EZ”T;N

where we used trace and inverse inequalities. For the second term T, by [Cemma 4]
we have

T, < CIo¥I%, + el + gl — L3,
For the third term T3, we have
Ty < CIovI, + (- - B) LB,
For the last term T},

~ 1 ~
Ty < Ch|loi[l3, + 1 e — el
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Sum all the estimates for {T;}}_; to obtain

eI, +h el — enll3r, S P HI6% 157, + 16°11%, + k613,
S PP (gl + lylie)-
O
3.3.3. Step 3: Estimate for ¢} by a duality argument. Next, we introduce
the dual problem for any given © in L2():
P+VU =0 in Q,
(33) V- (®-pV)=0 in Q,
U=0 on 0f).
Since the domain € is convex, we have the following regularity estimate
(34) 1@l 0+ 10 < Creg [Ollg -
We use the following notation below:
(35) §T =% —IIy®, oY =0TV, o%=1U-7,0.
Lemma 6. We have

(36) gz, S P2 (alksr + lylera)-
Proof. First we take (r1,wy, p1) = (IIy @, -y ¥, -7, V) in equation to get

By (1 ¥ Y Ty @, —Tlyy ¥, T, D)
= (e, Ty @), — (1, V- Ty @), + (], Ty ® - n)yr, oo
+ (e} + Bep, VIIw ¥) 75, + (V- Bef, Tw V) 75,
— (et n+ (7 + 1)l Tw V) o7,
—{(B-n— ht— Tl)fg»HW‘I’>aTh\a§
+ (el -n+ B nel + (W7 + 1) () — €l). Tn W) \co-
Moreover, we have

—(e,, V- Iy ®)o7, = (Vey,, ®)7, — (€, IIv @ - n)or,
= (e}, V- ®)7, + (e].,6% - m)or,,
(eh, VIIw @) 75, = =(V - €3, W) 75, + (e, - m, Hw W)or,
1V = (e m,6Y)aT,
e V- (BIIw )7,
en, V- (BY) 7, — (¢4, V - (B5"))T,
0V (BY)7, + (8- (Ve)),8")T,

— <,6 . ’I”LEZ, (5\P>37*h.

<
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Together with the dual problem , using © = —¢}, we have
Bl el el Ty @, ~ 1wV, ~I, V)

= (], ®)7 — (1, V- ®)7;, + (e} — 1, 6% - ),
+ (67, V)7, — (€] -1, 8% )or, + (], V - (BY))7,
+(B-(Ve}),0%) 7, — (B-ne},0%)ar,
— {4+ h) (e = €f) + B el Tw ¥)or,
+ (el n+ (i +h (] - Eg) +08- nz—:g,Ih\I/)aTh
= (¥, eV) 7, + (¥ —e7,0% -n)or, — (e - n,é‘f’)m—h
(B-Veh,6") — (8- neh —<1).0")or,
((ri+h~ )(5h - Eh) 5 — 5‘II>8771

n
€h

+
+

9]

Here, we used that (5%, ®-n)yr\0 =0, ¥ =¢j =0onej, and

<ﬂ . nag, (5\P>a7*h = 07

since EZ is single-valued on interior faces and Eg = 0 on boundary faces. On the
other hand, from equation (30)),

B ep e Ty @, ~Tyw ¥, —1,,0)
= —<(5§, Hv‘ﬁ . n>57'h - (,@(Sy, VHW\I/)T,L - (V : ﬁéy,HW\I/)Th
+ (01, My ¥ — T, W)y .
Comparing the two equations above, we have
el ||Z = (67,6% - n)or, — (81,6 — 6¥)ar, — (B6Y, VL ¥)7,
— (V- B8, Ty W) 7, — (¥ — €7 6% - n)or, + (€2 -1, 6%)or,
—((m+h7) (el —eh), 8% = 8")or, + (B- (Vel), 6%),
— (B (e} —€]),0%)or,
9
—. ZT%
=1

We estimate each term separately. For the first term,

_ L L
Ty < 16907 116% los S A2 16707 | ®ll1.0 S h2 (16707,

eplle-
For the second term,
3.2 3.0
Ty < h2||o1llo7, 1Wll2.0 S h2101]lo7 lley|I7-
For the third term T3,
T3 < ||Bllo,cc.ll8? (7. (1V6% |7, + [V ¥l0)
S 0% 7 (¥ |20 + [1¥]l1,0)
S 6%z llek 7. -
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For Ty,
T, < B

100,218V [175, 1 Thw ¥ |75, < 116% |75, [l l7, -
For T5,
Ts < e = epllom. 6% o

h N
S h2lley — ehlloT 1@

1,0
S hElef = efllomlefliz
For Ty, T7, and Ty, following the same idea for T5, we have
T < hllegll el T
Tr < htlleh — fllom fliT.
Ty S 118
And by Lemma [, we have
Ty < 11Bllo.c0.0hel Vel 7 1211
S bl

Therefore, summing the estimates and using the bounds and Lemma [5| gives
the result. (]

| o
0,00,002 |le}, — eplloT. ek I 7. -

_ 1 n
7 +h 72 le) — e

m)llenllT, -

The triangle inequality yields optimal convergence rates for ||g — qn(u)||7, and
ly = yn ()7,

Lemma 7. We have

(37a) lg — an (w7 < 1897 + lleflz < A" (lalerr + yler2),
(37b) ly = yn(@)ll7s < 116%ll7 + llehllz < B2 (lalkss + [ylrez2)-

3.3.4. Step 4: The error equation for part 2 of the auxiliary problem
(28b]). Next, we bound the error between the solution of the dual convection diffu-

sion equation — for z and the auxiliary HDG equation (28b)).

First, we define

0P =p—TIyp, e, =Iyp — pa(u),

0" =z —lwz, e; = Mwz — zp(u),
(38) z z =

60 =z —Thz, e =Inz — zp(u),

8 =07 -n—B-n8 + (12 +h 1) (5 — 67),

where Zj,(u) = 2 (u) on €9 and zj,(u) = 0 on £9. This gives ¢} = 0 on 9.

Following the same idea with we have the following error equation:
Lemma 8. We have
%g(eﬁ,si,ei;rg,wg,ug)
= —(0%,r2 - a7, — (B5", V),
(39) — (2, wa)or;, + (02, adorieo + (yn (1) =y, wa)7;.
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3.3.5. Step 5: Estimates for £/ and ¢; by an energy and duality argument.
First, it is easy to see that still holds for €7, ai, and 6’,[: .

Lemma 9. We have
z -1y 2 z
(40) IVerllm < Clleillm +h™2ef, — exllor,)-

Also, to estimate €}, we need the following discrete Poincaré inequality that is
very similar to a result from [30]. The proof is essentially the same, and is omitted.

Lemma 10. We have
1 >
(41) lerllm < CUIVerllm +h™2llel —erllor,)-
Lemma 11. We have
_1 >

rITh h T EnllOTh S k+1 k+2 k41 k+2),
42) el +h 2 leh —enllorn S P (glkrs + [lkse + 1Plisr + [2]k12)
(43) el < PE P (Iglesr + [Yles2 + [Plesr + |2]rs2)-
Proof. Since £ = 0 on 2, the energy identity for %, in gives

'@2(55752755752775;’5%)

2
Th-

= |7

— 1 1, 2 z 1 12
%L+||(h 1+7'2+§/8'")2(5h—5h)||%7’h+§||(_v'5)25h\

Take (rq, wa, a) = (eﬁ,ez,ei) in the error equation to obtain

_ 1 1, ., > 1 1
2+ (0 4t 28w (e — 3, + 2V - Bl

= —(6%,€f, - n)or, — (B6%, Vei)T,
—{b2.f, — o + (un(w) — y.€5),
=Ty +To + T3+ Ty
By the same argument as in the proof of apply and to get
T S 0216 o, 1K | 7.
T S 11Bllo,sc,0ll6% |7 I VeR |7,
S 118llo.so.oll™ 17 (€817 + B2 le5 = qllom),
Ts < 1 (182l b 2lef, — eillom.

Ty S lly = yn(wll7 ek |7

ek

2
Th

—L1.z z
Sy = yn(W 7 (b7 + 2™ 2leh, — erllor,)-
Finally, applying and yields . Together with and , we
can obtain . [l

3.3.6. Step 6: Estimate for ¢ by a duality argument. Next, we introduce
the dual problem for any given © in L?():

P+ VI =0 in Q,
(44) V- &-3.VU =0 in Q,
¥ =0 on 0f.
Since the domain €2 is convex, we have the following regularity estimate
(45) 12110+ [¥l]5.0 < Cres [©]l0 -
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Lemma 12. We have
(46a) leillz < P2 (1alker + lylerz + [Pl + |2le42)-
Proof. Consider the dual problem (44), and let © = ef. Take (72, w2, p2) =
(IIy®, -IIw ¥, —1,¥) in in Since ¥ = 0 on £ we have
Bo(P,e5,65; Ty @, Ty ¥, — 1, T)
= (ef, Iy @) 7, — (€], V- Ty ®)7;, + (¢}, Ty @ - m)or,
+ (eF — Bej, VIlw W) 7, — (eF - n — B nej + 7a(ef, — &7,), Mw ¥ — T V) o,
Moreover, we have

—(e}, V- Iy @)oT;, = (Vey, @)1, — (7, Iy @ - m)oT,
= _<EIZN A (I)>Th + <€}Zwéq) ' n>6771>

(5277 VIw V)7, = —(V- 55’ )7, + <€E -, Iy ¥)or,

= (Eﬁ, V\Ij)Th - <6§L] ’ n75q]>37'h,’

—(Bef,, VIw ¥) 7, = —(Bej,, V&¥) 7, + (Bef,, V)7,
= —(B-nej,0%)or, + (V- Bej,, 6¥) 7,
+ (8- Vep, 87) 7, + (Bef,, V) 75,
Then we have
Bo(eP e i Ty @, —1ly ¥, —1,0)
= (e, @)1 — (7, V- @) 75, + (67,0 - m)or;, + (cf,, v @ - m)or;
+ (2, V)7, — (eF - n,éq’)m—h —(B-nei, Vo
+ (V- Bej,, 6%) 7, + (B Ve, 0") 7, + (65, 8- V)7,
+(8 - ne;, 0%)or, + (na(ef — 4),8% = 0V)or,
= (55,007, + (65 — €5, 8% - nom, — (€8 -1, 6%) o7, + (V- Bei 6%)7,
+ (8- Ve;, 6) 7, — (B-nlef — <), 6o,
F((r2+ BN (R — €2),6% — %) or,.

Here, we used (55, ® - n)y7, =0, which holds since 55 if single-valued function on

interior edges and 5% =0on 62. We also used (3- ne%, 8% o7, = 0, which is derived
similarly.

On the other hand, by
Bo(P, 65,65 Ty @, — Ty ¥, —T,T)
= —(0*, Ty ® - n)or, + (867, VIIy )7,
(47) + (82, Ty ¥ — T, W) o7, — (yn(u) — 5, Ty )7,
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Comparing the above two equalities gives
€, = —(eF. = &7, 0% - (2 + B (8" = 67) = B8,
+ (€8 n,6Vor, + (8- Vi, 8%) 7, + (V- Bei,6%)7,
—(0%,8% - m)or;, + (86, VIIy ¥) 7,
+ (89, Ty W — T, W) o7, — (yn(u) — y, Ty ),
i
For the terms Ri-Ry, 1] gives
Ry = —(e} — 5?(5‘1) n—B-n8Y + (o +hH (Y - 5@»8771
ShE(re+h7t 4B n)2 (5 — g)llom (12 le + 1¥]h.0)
She|(+h 48 ) CREAEACATY
Ry S h2|ePom | h
R3 < [|Bllo,cc,0bIVeR |7 [[¥]l1,0,
Ry Sh|(=V - B) il ¥lie S hI(=V - B)Eilzllei 7.

For R5, we have

o7, llek I 7, s

-
Rs < h2[[6%loT, l€q [l 75.-

For the terms Rg and Rg, we use the triangle inequality, the regularity estimate
, and the assumption h < 1 to give

Re S 1Bllo,00, |07 17, (V67 17, + 1¥17:.) < 18llo,00, 2167
Rs < [lyn(u) = yll7 ekl 7. -
For the term R,

Ry ShE[6P nt (ri+ k)67 = 6%) o7 | ¥ll2
2 z z z
S k2 ([16%llo7, + 1071175, + 1167 [lo7)ll€R 7. -
Summing R; to Rg, together with , , , and gives

il S P2 (lalkr1 + [Ylkr2 + [Pless + [2lke2)-

Th 6izz”Th’

(]
The triangle inequality gives optimal convergence rates for ||p — pp(u)||7;, and
Iz = zn(u)|7:

Lemma 13.

1P = pr(W)l7 < 116%|l7, + [k 7

(48a) S P (glkr + lylkse + [Pler + [2lk12),
Iz = zn (w7, < 16%)7 + lleillz,

(48Db) S P2 glkrs + [ylkse + [Plirs + [2lk12)-
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3.3.7. Step T7: Estimates for |[u — unll7,, |y —ynll7,, and ||z — zp |5, . Next,
we bound the error between the solutions of the auxiliary problem and the EDG
discretization of the optimality system (27). We use these error bounds and the
error bounds in [Lemma 7| and [Lemma 13| to obtain the main result.

The proofs in Steps 7 and 8 are similar to proofs in our earlier work [18|; we
include the proofs here to make the final steps self-contained.

For the remaining steps, we denote

0

Cq=an(u) —qn, C=uyn(w) —yn, ¢ =uyn(u)—

20

Gp=pn(u) —pn, ¢ =z2n(u)—2zn, G=2zp(u)—

)

N8

Subtracting the auxiliary problem and the EDG problem gives the following error
equations

(498“) ﬂl(quCyaC@Thwlaﬂl) = (u_uh7w1)7—h,7
(49b) ‘%2<Cpa<-za<2;’r27w2a//‘2) = _(Cy7w2)771'

Lemma 14. We have
M —unl7, + llyn(u) = ynll7,
(50) = (zp + yun,u —up) 7, — (2n(w) + yu,w — up) 7T, -
Proof. First, we have
(zn + Yun, u — up)7, — (2n(w) + YU, u — up)7,

= —(Coru —un) T, +[lu = unl%,-

Next, [Cemma 2] gives
931(<q7 Cya Cﬂ; pr _Czy _C?) + QQ(va <z7 C?; _qu <y7 C@) =0.
On the other hand, using the definition of %#; and %> gives
%1(an Cyv Cﬂ; Cpa —Cz, *CE) + %2(§pa (2, (5 *qu Cya Cﬂ)
= _(u - U’h?CZ)Th - HCyH%’h

Comparing the above two equalities gives

—(u—un, )5, = HCyH%’h

This completes the proof. ([

Theorem 2. We have

(51a) lw— w7, S h2(alks1 + [Ylete + [Plest + [2]rr2),

(51b) ly = yull7 S hk+2(“1|k+1 +Ylere + [Pl + [2|rr2),
(51c) 12 = znll7, < B2 (|@lkgr + [Ylkr2 + |Plrsr + |2]e42)-
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Proof. Recalling the continuous and discretized optimality conditions and ([27¢])
gives

Yw = unllZ, + 16117,
= (zn +yun, v —up)7;, — (2n(w) +yu,u — up) 7,
= —(zn(u) — 2,u —un)7,

llzn(u) = zll7; llw — unll 7,

IN

IN

1 o
5||Zh(ﬂ) —2||%, + §Ilu — un 7, -

By we have

(52) lu = unll7 + 1S 17 S W2 (alksr + ylksz + [Pl + [2lk42).
Then, by the triangle inequality and we obtain
ly =yl S B2 (alker + [ylkse + [Pleer + |2lks2).

Finally, since z = yu and zp, = yup we have

Iz = 2l S H*2(lalkrr + [Ylkrz + [Plos1 + [2]k42)-

3.3.8. Step 8: Estimate for ||¢ — ¢x||7;, and ||p — px|

T
Lemma 15. We have

(53a) I<all 7 S B* 2 (lalkr + lylere + [Plier + [2li+2),

(53b) ISoll7 S P2 (lalks1 + [Ylisz + [Plrr + [2]k42)-

Proof. By the error equation , and the estimate we have

1¢all 7. S %1 (Cas Gy G Car G Gp)
= (u—un,Gy) 75
< = wnll 7 1S 7,
S B glhsr + [ylke + IPlesr + [2]es2).

Similarly, by the error equation (49b)), [Lemma 13| and [Theorem 2| we

have

rey

5 S BalCp, Gy (5 Cpy (2, (2)
= (¢ )7
< ¢yl lIc: 7,
< ¢yll7 (lzn(w) = 2ll7 + |2 = 2nll7)
S P glkrs + [ylkre + [Pl + 2lk2)?.

O

The above lemma along with the triangle inequality, [Lemma 7 and [Lemma 13|
complete the proof of the main result:
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TABLE 1. Example |l Errors for the state y, adjoint state z, and
the fluxes ¢ and p when k = 0 with the OD approach.
h/v/?2 1/8 1/16 1/32 1/64 1/128
llg — qhHO7Q 2.8775E-01 | 1.4501E-01 | 7.2649E-02 | 3.6342E-02 | 1.8173E-02
order - 0.98861 0.99716 0.99929 0.99982
lp — ph||07Q 2.1036E-01 | 1.0341E-01 | 5.1480E-02 | 2.5712E-02 | 1.2852E-02
order - 1.0244 1.0063 1.0016 1.0004
ly — yh||07Q 1.1842E-02 | 3.2095E-03 | 8.4824E-04 | 2.1887E-04 | 5.5641E-05
order - 1.8834 1.9198 1.9544 1.9759
Iz — ZhHo,Q 1.8304E-02 | 5.3420E-03 | 1.4422E-03 | 3.7460E-04 | 9.5451E-05
order - 1.7767 1.8891 1.9449 1.9725

Theorem 3. We have

(54a) lg = anll7 S P (glken + [Ylkre + [Pl + [2]kr2),
(54b) lp = pull7 S P (gler + [Ylrr + [Plesr + [2]ks2)-
4. Numerical Experiments

In this section, we present three numerical examples to confirm our theoretical
results. We consider the problems on a square domain Q = [0,1] x [0,1] C R2.
For the first two examples, we take v = 1, 71 = 1, B8 = [22, 1], and the exact
state y(x1,x2) = sin(mwxzy). We used the optimize-then-discretize (OD) approach in
and the discretize-then-optimize (DO) approach in In the
third example, we take v = 1, 7 = 5, B = [cos(z1) exp(z2), x1 cos(x2)], and the
same exact state y(z1,z2) = sin(mz1). In these examples, the data f, g, and yg4
is generated from the optimality system after we specified the exact dual state
z(x1, 22) = sin(mzy) sin(rza).

Numerical results for £k = 0 and k& = 1 for the two approaches are shown in
Table [I}-Table [] for the first two examples. The observed convergence rates and
numerical results exactly match the theoretical results.

Example 1. For the OD approach, we set the stabilization parameter 75 using
(A1); hence, conditions (A1)-(A2) are satisfied. We obtain optimal convergence
rates for all variables for ¥ = 0 and k = 1 in[Table 1] and [Table 2} respectively. This
matches our theoretical results.

Example 2. For the DO approach, we used the same data as in From
the tables we can see that the numerical results are exactly the same with the OD
approach, which confirms our theoretical results.

Example 3. In this example, we give a brief comparison of the EDG method with
an HDG method. Specifically, we use the HDG method for the optimal control of
convection diffusion PDEs from [18]. This HDG method uses discontinuous poly-
nomials of equal degree for all variables. There is no doubt that the degrees of
freedom for the EDG method is much smaller than the HDG method if we use
the same polynomial degree for the numerical trace in both methods. However, in
this case the convergence rates of the HDG method (with an element-by-element
postprocessing for the state variables) are one order higher than the EDG method.
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TABLE 2. Example |l Errors for the state y, adjoint state z, and
the fluxes ¢ and p when k = 1 with the OD approach.

h/\V?2 1/8 1/16 1/32 1/64 1/128
g — anlloq | 1-8365E-02 | 4.9165E-03 | 1.2726E-03 | 3.2189E-04 | 8.0742E-05
order - 1.9012 1.9498 1.9831 1.9952
[P —pnlloq | 1.6649E-02 | 5.6050E-03 | 1.5952E-03 | 4.1463E-04 | 1.0475E-04
order - 1.5707 1.8129 1.9439 1.9848
Iy = ynllo.q | 1.3524E-03 | 1.8347E-04 | 2.3956E-05 | 3.0691E-06 | 3.8882E-07
order - 2.8819 2.9371 2.9645 2.9807
Iz = 2nllo.q | 3-2125E-03 | 4.2489E-04 | 5.4721E-05 | 6.9745E-06 | 8.8190E-07
order - 2.9186 2.9569 2.9719 2.9834

TABLE 3. Example |2} Errors for the state y, adjoint state z, and
the fluxes q and p when k = 0 with the DO approach.

h/\V?2 1/8 1/16 1/32 1/64 1/128
la— anlly.q | 2-8775E-01 | 1.4501E-01 | 7.2649E-02 | 3.6342E-02 | 1.8173E-02
order - 0.98861 0.99716 0.99929 0.99982
[P — Prllyg | 2-1036E-01 | 1.0341E-01 | 5.1480E-02 | 25712E-02 | 1.2852E-02
order - 1.0244 1.0063 1.0016 1.0004
Iy = ynllo.o | 1.1842E-02 | 3.2095E-03 | 8.4824E-04 | 2.1887E-04 | 5.5641E-05
order - 1.8834 1.9198 1.9544 1.9759
Iz = 2nlloq | 1.8304E-02 | 5.3420E-03 | 1.4422E-03 | 3.7460E-04 | 9.5451E-05
order - 1.7767 1.8891 1.9449 1.9725

TABLE 4. Example |2t Errors for the state y, adjoint state z, and
the fluxes q and p when k = 1 with the DO approach.

h/V2 1/8 1/16 1/32 1/64 1/128
la — anllyq | 1-.8365E-02 | 4.9165E-03 | 1.2726E-03 | 3.2180E-04 | 8.0742E-05
order - 1.9012 1.0498 1.9831 1.9952
[P —pnllyq, | 1.6649E-02 | 5.6050E-03 | 1.5952E-03 | 4.1463E-04 | 1.0475E-04
order - 15707 1.8129 1.9439 1.9848
Iy — vl | 1.3524E-03 | 1.8347E-04 | 2.3956E-05 | 3.0691E-06 | 3.8882E-07
order - 2.8819 2.9371 2.9645 2.9807
Iz — znllgq | 3-2125E-03 | 4.2489E-04 | 5.4721E-05 | 6.9745E-06 | 8.8190E-07
order - 2.9186 2.9569 2.9719 2.9834

Hence, to make a more fair comparison, for the numerical traces we take discontin-
uous piecewise linear basis functions for the HDG method and continuous piecewise
quadratic basis functions for the EDG method; in this case, the convergence rates
for all variables are the same for both methods (using postprocessing for the HDG
method). From [Table 5| and [Table 6, we can see that the EDG method is competi-
tive both in terms of accuracy and globally coupled degrees of freedom.
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TABLE 5. Example |3f Errors for the state y, adjoint state z, and
the fluxes g and p for the EDG method with continuous piecewise
quadratic basis functions for the numerical trace. Here, DoF is the

number of globally coupled degrees of freedom.

h/V2 1/8 1/16 1/32 1/64 1/128
la— anllo.q | 1.8432E-02 | 4.9222E-03 | 1.2730E-03 | 3.2192E-04 | 8.0743E-05
order - 1.9048 1.9511 1.9835 1.9953
D —pnlloq | 1.6809E-02 | 5.6229E-03 | 1.5966E-03 | 4.1473E-04 | 1.0476E-04
order - 1.5798 1.8163 1.9448 1.9851
Iy — ynllo.q | 1.3561E-03 | 1.8358E-04 | 2.3959E-05 | 3.0692E-06 | 3.8882E-07
order - 2.8851 2.9378 2.9646 2.9807
Iz = znlloq | 3-2125E-03 | 4.2475E-04 | 5.4714E-05 | 6.9743E-06 | 8.8190E-07
order - 2.9190 2.9566 2.9718 2.9834
DoF 226 962 3970 16130 65026

TABLE 6. Example |3t Errors for the state y, adjoint state z, and
the fluxes g and p for the HDG method (with postprocessing)
from [18] with discontinuous piecewise linear basis functions for
the numerical trace. Here, DoF is the number of globally coupled
degrees of freedom, and the superscript x denotes the postprocessed

approximations.

h/ﬁ 1/8 1/16 1/32 1/64 1/128
llg — QhHo,Q 1.8427E-02 | 4.7138E-03 | 1.1891E-03 | 2.9831E-04 | 7.4684E-05
order - 1.9668 1.9870 1.9950 1.9979
lp —Dpnlly o | 3.-5193E-02 | 8.9732E-03 | 2.2614E-03 | 5.6736E-04 | 1.4208E-04
order - 1.9716 1.9884 1.9949 1.9976
ly — yh||0)Q 1.2751E-02 | 3.2022E-03 | 8.0021E-04 | 1.9989E-04 | 4.9944E-05
order - 1.9935 2.0006 2.0012 2.0008
Iz — ZhHo,Q 2.3555E-02 | 5.9284E-03 | 1.4837E-03 | 3.7092E-04 | 9.2716E-05
order - 1.9903 1.9984 2.0000 2.0002
ly —yilloq | 8-2590E-04 | 1.0219E-04 | 1.2658E-05 | 1.5731E-06 | 1.9600E-07
order - 3.0147 3.0132 3.0083 3.0047
Iz — z,’;HO)Q 1.3013E-03 | 1.6247E-04 | 2.0306E-05 | 2.5383E-06 | 3.1729E-07
order - 3.0017 3.0002 3.0000 3.0000
DoF 352 1472 6016 24320 97792

5. Conclusions

We considered a recently proposed EDG method to approximate the solution of
an optimal distributed control problem for an elliptic convection diffusion equation.
We showed the optimize-then-discretize and discretize-then-optimize approaches
coincide, and proved optimal a priori error estimates for the control, state, dual
state, and their fluxes. EDG methods are known to be competitive for convection
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dominated problems; therefore, this new EDG method has potential for optimal
control problems involving such PDEs.
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Appendix

By simple algebraic operations in equation (19b)), we obtain the following for-
mulas for Gy, G2, G3, G4, Hy, and Hs in :

Gy = A7 Ag(Ay + ATATT A9) 71 (As — AT AT As) — AT A,
Go = AT Ag(Ay + AT AT Ap) ™1 A,

Gz = —(Ay + AT AT A5) 1 (A5 — AT AT 43),

Gy = (Ay+ AT AT A5) 71 A,

Hy = A7 A (Ag + AT AT Ag) (b3 — by + AT AT bg) — AT Mbo,
Hy = (Ay + AT AT A)) 71 (bs — by + AT AT D).

In general, forming these quantities is impractical; however, for the EDG method
described in this work these matrices can be easily computed. We briefly sketch
this process below.

Since the spaces Vj, and W}, consist of discontinuous polynomials, some of the
system matrices are block diagonal and each block is small and symmetric positive
definite (SSPD). The inverse of such a matrix is another matrix of the same type,
and the inverse is easily computed by inverting each small block. Furthermore, the
inverse of each small block can be computed in parallel.

It can be checked that A; is a SSPD block diagonal matrix, and therefore Al_1
is easily computed and is also a SSPD block diagonal matrix. Therefore, G1, G2,
Gs, Gy, Hy, and Hy are easily computed since Ay +A2TA1_1A2 is also a SSPD block
diagonal matrix. Also, once these quantities are computed, G5, Gg, and Hs in
are also easy to compute using .
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