
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Mathematics and Statistics Faculty Research & 
Creative Works Mathematics and Statistics 

01 Oct 2019 

An Optimal EDG Method for Distributed Control of Convection An Optimal EDG Method for Distributed Control of Convection 

Diffusion PDEs Diffusion PDEs 

X. Zhang 

Y. Zhang 

John R. Singler 
Missouri University of Science and Technology, singlerj@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/math_stat_facwork 

 Part of the Mathematics Commons, and the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
X. Zhang et al., "An Optimal EDG Method for Distributed Control of Convection Diffusion PDEs," 
International Journal of Numerical Analysis and Modeling, vol. 16, no. 4, pp. 519-542, University of Alberta, 
Oct 2019. 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Mathematics and Statistics Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat_facwork
https://scholarsmine.mst.edu/math_stat
https://scholarsmine.mst.edu/math_stat_facwork?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarsmine.mst.edu%2Fmath_stat_facwork%2F810&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


INTERNATIONAL JOURNAL OF © 2019 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 16, Number 4, Pages 519–542

AN OPTIMAL EDG METHOD FOR DISTRIBUTED CONTROL

OF CONVECTION DIFFUSION PDES

XIAO ZHANG, YANGWEN ZHANG, AND JOHN R. SINGLER

Abstract. We propose an embedded discontinuous Galerkin (EDG) method to approximate
the solution of a distributed control problem governed by convection diffusion PDEs, and obtain

optimal a priori error estimates for the state, dual state, their fluxes, and the control. Moreover,
we prove the optimize-then-discretize (OD) and discrtize-then-optimize (DO) approaches coincide.

Numerical results confirm our theoretical results.

Key words. Distributed optimal control, convection diffusion, embedded discontinuous Galerkin

method, error analysis, optimize-then-discretize, discrtize-then-optimize.

1. Introduction

We study the following distributed optimal control problem:

min J(u) =
1

2
‖y − yd‖2L2(Ω) +

γ

2
‖u‖2L2(Ω), γ > 0,(1)

subject to

−∆y + β · ∇y = f + u in Ω,

y = g on ∂Ω,
(2)

where Ω ⊂ Rd (d ≥ 2) is a Lipschitz polyhedral domain with boundary Γ = ∂Ω,
f ∈ L2(Ω), g ∈ C0(∂Ω), and the vector field β satisfies

∇ · β ≤ 0.(3)

Optimal control problems for convection diffusion equations have been exten-
sively studied using many different finite element methods, such as standard finite
elements [11–13], mixed finite elements [13, 35, 39], discontinuous Galerkin (DG)
methods [16, 21, 33, 34, 36, 40, 41] and hybrid discontinuous Galerkin (HDG) meth-
ods [17, 18]. HDG methods were first introduced by Cockburn et al. in [4] for
second order elliptic problems, and they have subsequently been applied to many
other problems [2, 3, 5, 7, 8, 23–26, 32]. HDG methods keep the advantages of DG
methods, but have a lower number of globally coupled degrees of freedom com-
pared to mixed methods and DG methods. However, the degrees of freedom for
HDG methods is still larger compared to standard finite element methods. Embed-
ded discontinuous Galerkin (EDG) methods were first proposed in [15], and then
analyzed in [6]. EDG methods are obtained from the HDG methods by forcing the
numerical trace space to be continuous. This simple change significantly reduces
the number of degrees of freedom and make EDG methods competitive for flow
problems [27] and many other applications [9, 10,19,27,29].

In [38], we utilized an EDG method for a distributed optimal control problem
for the Poisson equation. We obtained optimal convergence rates for the state,
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dual state and the control, but suboptimal convergence rates for their fluxes. This
suboptimal flux convergence rate for the Poisson equation is a limitation of the
EDG method with equal order polynomial degrees for all variables [6]. However,
Zhang, Xie, and Zhang recently proposed a new EDG method and proved optimal
convergence rates for all variables for the Poisson equation [37]. This new EDG
method is obtained by simply using a lower degree finite element space for the flux.
In this work, we use this new EDG method to approximate the solution of the
above convection diffusion distributed optimal control problem, and in Section 3
we prove optimal convergence rates for all variables.

There are two main approaches to compute the numerical solution of PDE con-
strained optimal control problems: the optimize-then-discretize (OD) and discretize-
then-optimize (DO) approaches. In the OD approach, one first derives the first-
order necessary optimality conditions, then discretizes the optimality system, and
then solves the resulting discrete system by utilizing efficient iterative solvers [31].
In the DO approach, one first discretizes the PDE optimization problem to obtain
a finite dimensional optimization problem, which is then solved by existing opti-
mization algorithms, such as [1,28]. The discretization methods for which these two
approaches coincide are called commutative. Intuitively, the DO approach is more
straightforward in practice; however, not all discretization schemes are commuta-
tive. In the non-commutative case, the DO approach may result in badly behaved
numerical results; see, e.g., [20, 22]. Therefore, devising commutative numerical
methods is very important. In Section 2, we prove the EDG method studied here
is commutative for the convection diffusion distributed control problem. Moreover,
we provide numerical examples to confirm our theoretical results in Section 4.

2. EDG scheme for the optimal control problem

2.1. Notation. Throughout the paper we adopt the standard notation Wm,p(Ω)
for Sobolev spaces on Ω with norm ‖ · ‖m,p,Ω and seminorm | · |m,p,Ω . We denote
Wm,2(Ω) by Hm(Ω) with norm ‖·‖m,Ω and seminorm | · |m,Ω. Specifically, H1

0 (Ω) =
{v ∈ H1(Ω) : v = 0 on ∂Ω}. We denote the L2-inner products on L2(Ω) and L2(Γ)
by

(v, w) =

∫
Ω

vw ∀v, w ∈ L2(Ω),

〈v, w〉 =

∫
Γ

vw ∀v, w ∈ L2(Γ).

Define the space H(div,Ω) as

H(div,Ω) = {v ∈ [L2(Ω)]d,∇ · v ∈ L2(Ω)}.
Let Th be a collection of disjoint elements that partition Ω. We denote by ∂Th

the set {∂K : K ∈ Th}. For an element K of the collection Th, let e = ∂K∩Γ denote
the boundary face of K if the d − 1 Lebesgue measure of e is non-zero. For two
elements K+ and K− of the collection Th, let e = ∂K+ ∩ ∂K− denote the interior
face between K+ and K− if the d − 1 Lebesgue measure of e is non-zero. Let εoh
and ε∂h denote the set of interior and boundary faces, respectively. We denote by
εh the union of εoh and ε∂h. We finally introduce

(w, v)Th =
∑

K∈Th

(w, v)K , 〈ζ, ρ〉∂Th =
∑

K∈Th

〈ζ, ρ〉∂K .
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Let Pk(D) denote the set of polynomials of degree at most k ≥ 0 on a domain
D. We introduce the discontinuous finite element spaces

Vh := {v ∈ [L2(Ω)]d : v|K ∈ [Pk(K)]d,∀K ∈ Th},(4)

Wh := {w ∈ L2(Ω) : w|K ∈ Pk+1(K),∀K ∈ Th},(5)

Mh := {µ ∈ L2(εh) : µ|e ∈ Pk+1(e),∀e ∈ εh}.(6)

Define Mh(o) and Mh(∂) in the same way as Mh, but with εoh and ε∂h replacing εh.
Note that Mh consists of functions which are continuous inside the faces (or edges)
e ∈ εh and discontinuous at their borders. In addition, for any function w ∈ Wh

we use ∇w to denote the piecewise gradient on each element K ∈ Th. A similar
convention applies to the divergence ∇ · r for all r ∈ Vh.

For EDG methods, we only change the space of numerical traces Mh, which is

discontinuous, into a continuous space M̃h as follows:

(7) M̃h := Mh ∩ C0(εh).

The spaces M̃h(o) and M̃h(∂) are defined in the same way as Mh(o) and Mh(∂).
Recall we assume the Dirichlet boundary data g is continuous. Let Ih be an

interpolation operator, so that Ihg is a continuous interpolation of g on ε∂h.
Again, in most of the EDG works in the literature the polynomial degree is equal

for the three spaces Vh, Wh, and M̃h. We lower the polynomial degree for the flux
space Vh as in the recent work [37].

2.2. Optimize-then-Discretize. First, we consider the optimize-then-discretize
(OD) approach: we use the EDG method to discretize the optimality system for
the convection diffusion control problem.

It is well known that the optimal control problem (1)-(2) is equivalent to the
optimality system

−∆y + β · ∇y = f + u in Ω,(8a)

y = g on ∂Ω,(8b)

−∆z −∇ · (βz) = y − yd in Ω,(8c)

z = 0 on ∂Ω,(8d)

z + γu = 0 in Ω.(8e)

For q = −∇y and p = −∇z, the mixed weak form of the optimality system (8a)-(8e)
is given by

(q, r)− (y,∇ · r) + 〈y, r · n〉 = 0,(9a)

(∇ · (q + βy), w)− (y∇ · β, w) = (f + u,w),(9b)

(p, r)− (z,∇ · r) = 0,(9c)

(∇ · (p− βz), w) = (y − yd, w),(9d)

(z + γu, v) = 0,(9e)

for all (r, w, v) ∈ H(div,Ω)× L2(Ω)× L2(Ω).
To approximate the solution of this system, the EDG method seeks approximate

fluxes qh,ph ∈ Vh, states yh, zh ∈ Wh, interior element boundary traces ŷoh, ẑ
o
h ∈
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M̃h(o), and control uh ∈Wh satisfying

(qh, r1)Th − (yh,∇ · r1)Th + 〈ŷoh, r1 · n〉∂Th\ε∂h = −〈Ihg, r1 · n〉ε∂h ,(10a)

−(qh + βyh,∇w1)Th − (yh∇ · β, w1)Th + 〈q̂h · n, w1〉∂Th
+〈β · nŷoh, w1〉∂Th\ε∂h − (uh, w1)Th = −〈β · nIhg, w1〉ε∂h + (f, w1)Th ,(10b)

for all (r1, w1) ∈ Vh ×Wh,

(ph, r2)Th − (zh,∇ · r2)Th + 〈ẑoh, r2 · n〉∂Th\ε∂h = 0,(10c)

−(ph − βzh,∇w2)Th + 〈p̂h · n, w2〉∂Th
−〈β · nẑoh, w2〉∂Th\ε∂h − (yh, w2)Th = −(yd, w2)Th ,(10d)

for all (r2, w2) ∈ Vh ×Wh,

〈q̂h · n+ β · nŷoh, µ1〉∂Th\ε∂h = 0,(10e)

〈p̂h · n− β · nẑoh, µ2〉∂Th\ε∂h = 0,(10f)

for all µ1, µ2 ∈ M̃h(o), and the optimality condition

(zh + γuh, w3)Th = 0,(10g)

for all w3 ∈Wh.
The numerical traces on ∂Th are defined as

q̂h · n = qh · n+ h−1(yh − ŷoh) + τ1(yh − ŷoh) on ∂Th\ε∂h,(10h)

q̂h · n = qh · n+ h−1(yh − Ihg) + τ1(yh − Ihg) on ε∂h,(10i)

p̂h · n = ph · n+ h−1(zh − ẑoh) + τ2(zh − ẑoh) on ∂Th\ε∂h,(10j)

p̂h · n = ph · n+ h−1zh + τ2zh on ε∂h,(10k)

where τ1 and τ2 are positive stabilization functions defined on ∂Th. We show below
that the OD and DO approaches coincide if τ2 = τ1−β ·n. The implementation of
the OD approach is very similar to the HDG method in [18], and hence is omitted
here.

2.3. Discretize-then-Optimize. Now we derive the optimality conditions for the
discretize-then-optimize (DO) approach when the optimal control problem is dis-
cretized by the EDG method. Therefore, we solve

(11) min
uh∈Wh

1

2
‖yh − yd‖2Th +

γ

2
‖uh‖2Th , γ > 0,

subject to the discrete state equations

(qh, r1)Th − (yh,∇ · r1)Th + 〈ŷoh, r1 · n〉∂Th\ε∂h = −〈Ihg, r1 · n〉ε∂h ,(12)

−(qh + βyh,∇w1)Th − (yh∇ · β, w1)Th + 〈qh · n, w1〉∂Th
+〈(h−1 + τ1)yh, w1〉∂Th + 〈β · n− (h−1 + τ1)yoh, w1〉∂Th\ε∂h
−(uh, w1)Th = −〈β · n− (h−1 + τ1)Ihg, w1〉∂Th\ε∂h + (f, w1)Th ,(13)

〈qh · n+ (h−1 + τ1)(yh − ŷoh), µ1〉∂Th\ε∂h = 0,(14)

for any (r1, w1, µ1) ∈ Vh ×Wh × M̃h(o).
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The discretized Lagrangian functional is defined by

Lh(qh, yh, ŷ
o
h;ph, zh, ẑ

o
h) =

1

2
‖yh − yd‖2Th +

γ

2
‖uh‖2Th

+ (qh,ph)Th − (yh,∇ · ph)Th + 〈ŷoh,ph · n〉∂Th\ε∂h + 〈Ihg,ph · n〉ε∂h
+ (qh + βyh,∇zh)Th + (yh∇ · β, zh)Th − 〈qh · n, zh〉∂Th
− 〈(h−1 + τ1)yh, zh〉∂Th − 〈(β · n− h−1 − τ1)ŷoh, zh〉∂Th\ε∂h
+ (uh, zh)Th − 〈(β · n− h−1 − τ1)Ihg, zh〉∂Th\ε∂h + (f, zh)Th

+ 〈qh · n+ (h−1 + τ1)(yh − ŷoh), ẑoh〉∂Th\ε∂h .

(15)

Since the constraint PDE is linear and the cost functional is convex, the necessary
and sufficient optimality conditions can be obtained by setting the partial Fréchet-
derivatives of (15) with respect to the flux qh, state yh, numerical trace ŷoh and
control uh equal to zero. Thus, we obtain the system consisting of the discrete
adjoint equations

∂Lh

∂qh
r2 = (ph, r2)Th + (∇zh, r2)Th − 〈zh, r2 · n〉∂Th + 〈ẑoh, r2 · n〉∂Th\ε∂h

= (ph, r2)Th − (zh,∇ · r2)Th + 〈ẑoh, r2 · n〉∂Th\ε∂h = 0,

∂Lh

∂yh
w2 = −(∇ · ph, w2)Th + (β∇zh, w2)Th + (zh∇ · β, w2)Th

− 〈(h−1 + τ1)zh, w2〉∂Th + 〈(h−1 + τ1)ẑoh, w2〉∂Th\ε∂h + (yh − yd, w2)Th

= (ph − βzh,∇w2)Th − 〈ph · n+ (h−1 + τ1 − β · n)zh, w2〉∂Th
+ 〈(h−1 + τ1)ẑoh, w2〉∂Th\ε∂h + (yh − yd, w2)Th = 0,

∂Lh

∂ŷoh
µ2 = 〈ph · n− (β · n− h−1 − τ1)zh − (h−1 + τ1)ẑoh, µ2〉∂Th\ε∂h = 0,

Furthermore, we obtain the same optimality condition (10g) as in the OD approach.

∂Lh

∂uh
w3 = (γuh + zh, w3)Th = 0.

In the OD approach, if the stabilization functions τ1 and τ2 satisfy

τ2 = τ1 − β · n,(17)

then by comparing the above discrete adjoint equations with (10) we obtain identical
discrete systems; therefore, the two approaches coincide in this case, i.e., OD = DO.

2.4. Implementation of DO. In the DO approach, we need to deal with a large
optimization problem (11) and (12)-(14) since the EDG method generates three
variables: the flux qh, the scalar variable yh, and the numerical trace ŷh. Fortu-
nately, we can reduce the large scale problem into a smaller problem using the local
solver for the EDG method.

2.4.1. Matrix equations. Assume Vh = span{ϕi}N1
i=1, Wh = span{φi}N2

i=1, and

M̃h(o) = span{ψi}N3
i=1. Then

qh =

N1∑
j=1

αjϕj , yh =

N2∑
j=1

βjφj , ŷoh =

N3∑
j=1

γjψj , uh =

N2∑
j=1

ζjφj .(18)
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Substitute (18) into (11)-(14) to give the following finite dimensional optimization
problem:

min
ζ∈RN2

1

2
βTA6β − bT1 β +

1

2
ζTA6ζ(19a)

subject to A1 −A2 A3 0
AT

2 A4 A5 −A6

AT
3 A7 −A8 0



α
β
γ
ζ

 =

 −b2
b3 − b4

0

 ,(19b)

where α,β,γ, ζ are the coefficient vectors for qh, yh, ŷ
o
h, uh, respectively, and

A1 = [(ϕj ,ϕi)Th ], A2 = [(φj ,∇ ·ϕi)Th ], A3 = [〈ψj ,ϕi · n〉∂Th\ε∂h ],

A4 = −[(φj ,∇ · (β · φi))Th ] + [〈(h−1 + τ1)φj , φi〉∂Th ],

A5 = [〈(β · n− h−1 − τ1)ψj , φi〉∂Th\ε∂h ], A6 = [(φj , φi)Th ],

A7 = [〈(h−1 + τ1)φj , ψi〉∂Th\ε∂h ], A8 = [〈(h−1 + τ1)ψj , ψi〉∂Th\ε∂h ],

b1 = [(yd, φi)Th ], b2 = [〈Ihg, r1 · n〉ε∂h ], b3 = [(f, φi)Th ],

b4 = [〈(β · n− h−1 − τ1)g, φi〉ε∂h ].

Due to the discontinuous nature of the approximation spaces Vh and Wh, the
first two equations of (19b) can be used to eliminate both α and β in an element-
by-element fashion. As a consequence, we can write system (19b) as

α = G1γ +G2ζ +H1,

β = G3γ +G4ζ +H2,

G5γ +G6ζ = H3.

(20)

We provide details on the element-by-element construction of the coefficient matri-
ces G1, . . . , G6 and H1, H2, H3 in the appendix.

Substituting (20) into (19) gives the reduced optimization problem

min
ζ∈RN2

1

2

[
γT ζT

] [B1 B2

B3 B4

] [
γ
ζ

]
+
[
bT5 bT6

] [ γ
ζ

]
,(21a)

subject to [
G5 G6

] [ γ
ζ

]
= H3,(21b)

where

B1 = GT
3 A6G3, B2 = GT

3 A6G4, B3 = GT
4 A6G3, B4 = GT

4 A6G4 +A6,

b5 = GT
3 (A6H2 − b1), b6 = GT

4 (A6H2 − b1).

Remark 1. In the DO approach, we need to solve the optimization problem (21);
there are many existing optimization algorithms [14] that can efficiently solve this
problem.
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3. Error Analysis

Next, we provide a convergence analysis of the above EDG method for the opti-
mal control problem. Throughout this section, we assume β ∈ [W 1,∞(Ω)]d, Ω is a
bounded convex polyhedral domain, the solution is smooth enough, and h ≤ 1.

3.1. Main result. For our theoretical results, we require the stabilization func-
tions τ1 and τ2 are chosen to satisfy

(A1): τ2 = τ1 − β · n.
(A2): For any K ∈ Th, min (τ1 − 1

2β · n)|∂K > 0.

We note that (A1) and (A2) imply

(22) min (τ2 +
1

2
β · n)|∂K > 0 for any K ∈ Th.

Furthermore, (A1) implies the OD and DO approaches yield equivalent results;
therefore, all of our convergence analysis is for the OD approach.

Theorem 1. We have

‖q − qh‖Th . hk+1(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),

‖p− ph‖Th . hk+1(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),

‖y − yh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),

‖z − zh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),

‖u− uh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).

3.2. Preliminary material. Next, we introduce the standard L2-orthogonal pro-
jection operators ΠV and ΠW as follows:

(ΠV q, r)K = (q, r)K ∀r ∈ [Pk(K)]d,(23a)

(ΠW y, w)K = (y, w)K ∀w ∈ Pk+1(K).(23b)

We use the following well-known bounds:

‖q −ΠV q‖Th ≤ Ch
k+1 ‖q‖k+1,Ω , ‖y −ΠW y‖Th ≤ Ch

k+2 ‖y‖k+2,Ω ,(24a)

‖y −ΠW y‖∂Th ≤ Ch
k+ 3

2 ‖y‖k+2,Ω , ‖q −ΠV q‖∂Th ≤ Ch
k+ 1

2 ‖q‖k+1,Ω ,(24b)

‖y − Ihy‖∂Th ≤ Ch
k+ 3

2 ‖y‖k+2,Ω , ‖w‖∂Th ≤ Ch
− 1

2 ‖w‖Th ,∀w ∈Wh,(24c)

where Ih is the continuous interpolation operator introduced earlier.
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We define the following EDG operators B1 and B2:

B1(qh, yh, ŷ
o
h; r1, w1, µ1)

= (qh, r1)Th − (yh,∇ · r1)Th + 〈ŷoh, r1 · n〉∂Th\ε∂h
− (qh + βyh,∇w1)Th − (∇ · βyh, w1)Th

+ 〈qh · n+ (h−1 + τ1)yh, w1〉∂Th + 〈(β · n− h−1 − τ1)ŷoh, w1〉∂Th\ε∂h
− 〈qh · n+ β · nŷoh + (h−1 + τ1)(yh − ŷoh), µ1〉∂Th\ε∂h ,(25)

B2(ph, zh, ẑ
o
h; r2, w2, µ2)

= (ph, r2)Th − (zh,∇ · r2)Th + 〈ẑoh, r2 · n〉∂Th\ε∂h − (ph − βzh,∇w2)Th

+ 〈ph · n+ (h−1 + τ2)zh, w2〉∂Th − 〈(β · n+ h−1 + τ2)ẑoh, w2〉∂Th\ε∂h
− 〈ph · n− β · nẑoh + (h−1 + τ2)(zh − ẑoh), µ2〉∂Th\ε∂h .(26)

By the definition of B1 and B2, we can rewrite the EDG formulation of the
optimality system (10) as follows: find (qh,ph, yh, zh, uh, ŷ

o
h, ẑ

o
h) ∈ Vh×Vh×Wh×

Wh ×Wh × M̃h(o)× M̃h(o) such that

B1(qh, yh, ŷ
o
h; r1, w1, µ1) = (f + uh, w1)Th

− 〈Ihg, (β · n− τ1 − h−1)w1 + r1 · n〉ε∂h ,(27a)

B2(ph, zh, ẑ
o
h; r2, w2, µ2) = (yh − yd, w2)Th ,(27b)

(zh + γuh, w3)Th = 0,(27c)

for all (r1, r2, w1, w2, w3, µ1, µ2) ∈ Vh × Vh ×Wh ×Wh ×Wh × M̃h(o)× M̃h(o).
Next, we present two fundamental properties of the operators B1 and B2, and

show the EDG equations (27) have a unique solution. The proofs of these results
are similar to proofs in [17, 18] and are omitted. We note that condition (A1) is
used in the proof of Lemma 2, which is fundamental to the error analysis in this
work. Furthermore, (A1) and (A2) are used in the proof of Proposition 1.

Lemma 1. For any (vh, wh, µh) ∈ Vh ×Wh × M̃h, we have

B1(vh, wh, µh;vh, wh, µh)

= (vh,vh)Th + 〈(h−1 + τ1 −
1

2
β · n)(wh − µh), wh − µh〉∂Th\ε∂h

− 1

2
(∇ · βwh, wh)Th + 〈(h−1 + τ1 −

1

2
β · n)wh, wh〉ε∂h ,

B2(vh, wh, µh;vh, wh, µh)

= (vh,vh)Th + 〈(h−1 + τ2 +
1

2
β · n)(wh − µh), wh − µh〉∂Th\ε∂h

− 1

2
(∇ · βwh, wh)Th + 〈(h−1 + τ2 +

1

2
β · n)wh, wh〉ε∂h .

Lemma 2. The EDG operators satisfy

B1(qh, yh, ŷ
o
h;ph,−zh,−ẑoh) + B2(ph, zh, ẑ

o
h;−qh, yh, ŷoh) = 0.

Proposition 1. There exists a unique solution of the EDG equations (27).
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3.3. Proof of Main Result. To prove the convergence result, we split the proof
into eight steps. We first consider the following auxiliary problem: find

(qh(u),ph(u), yh(u), zh(u), ŷoh(u), ẑoh(u)) ∈ Vh × Vh ×Wh ×Wh × M̃h(o)× M̃h(o)

such that

B1(qh(u), yh(u), ŷoh(u); r1, w1, µ1) = (f + u,w1)Th

− 〈Ihg, (β · n− τ1 − h−1)w1 + r1 · n〉ε∂h ,(28a)

B2(ph(u), zh(u), ẑoh(u); r2, w2, µ2) = (yh(u)− yd, w2)Th ,

(28b)

for all (r1, r2, w1, w2, µ1, µ2) ∈ Vh × Vh ×Wh ×Wh × M̃h(o)× M̃h(o).
In Steps 1-3, we focus on the primary variables, i.e., the state y and the flux q,

and we use the following notation:

δq = q −ΠV q, εqh = ΠV q − qh(u),

δy = y −ΠW y, εyh = ΠW y − yh(u),

δŷ = y − Ihy, εŷh = Ihy − ŷh(u),

δ̂1 = δq · n+ β · nδŷ + (τ1 + h−1)(δy − δŷ),

(29)

where ŷh(u) = ŷoh(u) on εoh and ŷh(u) = Ihg on ε∂h, which implies εŷh = 0 on ε∂h.

3.3.1. Step 1: The error equation for part 1 of the auxiliary problem
(28a).

Lemma 3. We have the following error equation

B1(εqh, ε
y
h, ε

ŷ
h; r1, w1, µ1) = −〈δŷ, r1 · n〉∂Th + (βδy,∇w1)Th + (∇ · βδy, w1)Th

− 〈δ̂1, w1〉∂Th + 〈δ̂1, µ1〉∂Th\ε∂h .(30)

Proof. By definition of the operator B1 in (25), we have

B1(ΠV q,ΠW y, Ihy; r1, w1, µ1)

= (ΠV q, r1)Th − (ΠW y,∇ · r1)Th + 〈Ihy, r1 · n〉∂Th\ε∂h
− (ΠV q + βΠW y,∇w1)Th − (∇ · βΠy, w1)Th

+ 〈ΠV q · n+ (τ1 + h−1)ΠW y, w1〉∂Th + 〈(β · n− τ1 − h−1)Ihy, w1〉∂Th\ε∂h
− 〈ΠV q · n+ β · nIhy + (τ1 + h−1)(ΠW y − Ihy), µ1〉∂Th\ε∂h .

Using properties of the L2-orthogonal projection operators (23) gives

B1(ΠV q,ΠW y, Ihy; r1, w1, µ1)

= (q, r1)Th − (y,∇ · r1)Th + 〈y, r1 · n〉∂Th\ε∂h − 〈δ
ŷ, r1 · n〉∂Th\ε∂h

− (q + βy,∇w1)Th + (βδy,∇w1)Th − (∇ · βy, w1)Th + (∇ · βδy, w1)Th

+ 〈q · n+ (τ1 + h−1)y, w1〉∂Th − 〈δq · n+ (τ1 + h−1)δy, w1〉∂Th
+ 〈(β · n− τ1 − h−1)y, w1〉∂Th\ε∂h − 〈(β · n− τ1 − h

−1)δŷ, w1〉∂Th\ε∂h
− 〈q · n+ β · ny, µ1〉∂Th\ε∂h
+ 〈δq · n+ β · nδŷ + (τ1 + h−1)(δy − δŷ), µ1〉∂Th\ε∂h .
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Note that the exact solution q and y satisfies

(q, r1)Th − (y,∇ · r1)Th + 〈y, r1 · n〉∂Th\ε∂h = −〈g, r1 · n〉ε∂h ,
−(q + βy,∇w1)Th − (∇ · βy, w1)Th + 〈q · n+ β · ny, w1〉∂Th = (f + u,w1)Th ,

−〈q · n+ β · ny, µ1〉∂Th\ε∂h = 0,

for all (r1, w1, µ1) ∈ Vh ×Wh × M̃h(o). Therefore, we have

B1(ΠV q,ΠW y, Ihy; r1, w1, µ1)

= −〈g, r1 · n〉ε∂h − 〈δ
ŷ, r1 · n〉∂Th\ε∂h + (βδy,∇w1)Th

+ (∇ · βδy, w1)Th + (f + u,w1)Th − 〈δq · n, w1〉∂Th
− 〈(β · n− τ1 − h−1)y, w1〉ε∂h − 〈(β · n− τ1 − h

−1)δŷ, w1〉∂Th\ε∂h
+ 〈δq · n+ β · nδŷ + (τ1 + h−1)(δy − δŷ), µ1〉∂Th\ε∂h .

Finally, subtracting (28a) from the above equation completes the proof. �

3.3.2. Step 2: Estimate for εqh by an energy argument. First, we give an
auxiliary result that is very similar to a result from [30]. The proof is also very
similar, and is omitted.

Lemma 4. We have

‖∇εyh‖Th . ‖ε
q
h‖Th + h−

1
2 ‖εyh − ε

ŷ
h‖∂Th .(31)

Lemma 5. We have

‖εqh‖Th + h−
1
2 ‖εyh − ε

ŷ
h‖∂Th . h

k+1(|q|k+1 + |y|k+2).(32)

Proof. Taking (r1, w1, µ1) = (εqh, ε
y
h, ε

ŷ
h) in (30) in Lemma 3 gives

B1(εqh, ε
y
h, ε

ŷ
h; εqh, ε

y
h, ε

ŷ
h) = −〈δŷ, εqh · n〉∂Th + (βδy,∇εyh)Th

+ (∇ · βδy, w1)Th − 〈δ̂1, ε
y
h − ε

ŷ
h〉∂Th

=: T1 + T2 + T3 + T4,

where we used εŷh = 0 on ε∂h. We estimate Ti, for i = 1, 2, 3, 4, as follows. First,

T1 ≤ Ch−1‖δŷ‖2∂Th +
1

4
‖εqh‖

2
Th ,

where we used trace and inverse inequalities. For the second term T2, by Lemma 4,
we have

T2 ≤ C‖δy‖2Th +
1

4
‖εqh‖

2
Th +

1

4h
‖εyh − ε

ŷ
h‖

2
∂Th .

For the third term T3, we have

T3 ≤ C‖δy‖2Th +
1

2
‖(−∇ · β)

1
2 εyh‖

2
Th .

For the last term T4,

T4 ≤ Ch‖δ̂1‖2∂Th +
1

4h
‖εyh − ε

ŷ
h‖∂Th .
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Sum all the estimates for {Ti}4i=1 to obtain

‖εqh‖
2
Th + h−1‖εyh − ε

ŷ
h‖

2
∂Th . h

−1‖δŷ‖2∂Th + ‖δy‖2Th + h‖δ̂1‖2∂Th
. h2(k+1)(|q|2k+1 + |y|2k+2).

�

3.3.3. Step 3: Estimate for εyh by a duality argument. Next, we introduce
the dual problem for any given Θ in L2(Ω):

Φ +∇Ψ = 0 in Ω,

∇ · (Φ− βΨ) = Θ in Ω,

Ψ = 0 on ∂Ω.

(33)

Since the domain Ω is convex, we have the following regularity estimate

‖Φ‖1,Ω + ‖Ψ‖2,Ω ≤ Creg ‖Θ‖Ω .(34)

We use the following notation below:

δΦ = Φ−ΠV Φ, δΨ = Ψ−ΠW Ψ, δΨ̂ = Ψ− IhΨ.(35)

Lemma 6. We have

‖εyh‖Th . h
k+2(|q|k+1 + |y|k+2).(36)

Proof. First we take (r1, w1, µ1) = (ΠV Φ,−ΠW Ψ,−IhΨ) in equation (30) to get

B1(εqh, ε
y
h, ε

ŷ
h; ΠV Φ,−ΠW Ψ,−IhΨ)

= (εqh,ΠV Φ)Th − (εyh,∇ ·ΠV Φ)Th + 〈εŷh,ΠV Φ · n〉∂Th\ε∂h
+ (εqh + βεyh,∇ΠW Ψ)Th + (∇ · βεyh,ΠW Ψ)Th

− 〈εqh · n+ (h−1 + τ1)εyh,ΠW Ψ〉∂Th
− 〈(β · n− h−1 − τ1)εŷh,ΠW Ψ〉∂Th\ε∂h
+ 〈εqh · n+ β · nεŷh + (h−1 + τ1)(εyh − ε

ŷ
h), IhΨ〉∂Th\ε∂h .

Moreover, we have

−(εyh,∇ ·ΠV Φ)∂Th = (∇εyh,Φ)Th − 〈ε
y
h,ΠV Φ · n〉∂Th

= −(εyh,∇ ·Φ)Th + 〈εyh, δ
Φ · n〉∂Th ,

(εqh,∇ΠW Ψ)Th = −(∇ · εqh,Ψ)Th + 〈εqh · n,ΠW Ψ〉∂Th
= (εqh,∇Ψ)Th − 〈ε

q
h · n, δ

Ψ〉∂Th ,
(βεyh,∇ΠW Ψ)Th + (∇ · βεyh,ΠW Ψ)Th = (εyh,∇ · (βΠW Ψ))Th

= (εyh,∇ · (βΨ))Th − (εyh,∇ · (βδ
Ψ))Th

= (εyh,∇ · (βΨ))Th + (β · (∇εyh), δΨ)Th

− 〈β · nεyh, δ
Ψ〉∂Th .
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Together with the dual problem (33), using Θ = −εyh, we have

B(εqh, ε
y
h, ε

ŷ
h; ΠV Φ,−ΠW Ψ,−IhΨ)

= (εqh,Φ)Th − (εyh,∇ ·Φ)Th + 〈εyh − ε
ŷ
h, δ

Φ · n〉∂Th
+ (εqh,∇Ψ)Th − 〈ε

q
h · n, δ

Ψ〉∂Th + (εyh,∇ · (βΨ))Th

+ (β · (∇εyh), δΨ)Th − 〈β · nε
y
h, δ

Ψ〉∂Th
− 〈(τ1 + h−1)(εyh − ε

ŷ
h) + β · nεŷh,ΠW Ψ〉∂Th

+ 〈εqh · n+ (τ1 + h−1)(εyh − ε
ŷ
h) + β · nεŷh, IhΨ〉∂Th

= (εyh, ε
y
h)Th + 〈εyh − ε

ŷ
h, δ

Φ · n〉∂Th − 〈ε
q
h · n, δ

Ψ̂〉∂Th
+ (β · ∇εyh, δ

Ψ)Th − 〈β · n(εyh − ε
ŷ
h), δΨ〉∂Th

+ 〈(τ1 + h−1)(εyh − ε
ŷ
h), δΨ − δΨ̂〉∂Th .

Here, we used that 〈εŷh,Φ · n〉∂Th\ε∂h = 0, Ψ = εŷh = 0 on ε∂h, and

〈β · nεŷh, δ
Ψ̂〉∂Th = 0,

since εŷh is single-valued on interior faces and εŷh = 0 on boundary faces. On the
other hand, from equation (30),

B(εqh, ε
y
h, ε

ŷ
h; ΠV Φ,−ΠW Ψ,−IhΨ)

= −〈δŷ,ΠV Φ · n〉∂Th − (βδy,∇ΠW Ψ)Th − (∇ · βδy,ΠW Ψ)Th

+ 〈δ̂1,ΠW Ψ− IhΨ〉∂Th .

Comparing the two equations above, we have

‖εyh‖
2
Th = 〈δŷ, δΦ · n〉∂Th − 〈δ̂1, δ

Ψ − δΨ̂〉∂Th − (βδy,∇ΠW Ψ)Th

− (∇ · βδy,ΠW Ψ)Th − 〈ε
y
h − ε

ŷ
h, δ

Φ · n〉∂Th + 〈εqh · n, δ
Ψ̂〉∂Th

− 〈(τ1 + h−1)(εyh − ε
ŷ
h), δΨ − δΨ̂〉∂Th + (β · (∇εyh), δΨ)Th

− 〈β · n(εyh − ε
ŷ
h), δΨ〉∂Th

=:

9∑
i=1

Ti.

We estimate each term separately. For the first term,

T1 ≤ ‖δŷ‖∂Th‖δΦ‖∂Th . h
1
2 ‖δŷ‖∂Th‖Φ‖1,Ω . h

1
2 ‖δŷ‖∂Th‖ε

y
h‖Ω.

For the second term,

T2 . h
3
2 ‖δ̂1‖∂Th‖Ψ‖2,Ω . h

3
2 ‖δ̂1‖∂Th‖ε

y
h‖Th .

For the third term T3,

T3 ≤ ‖β‖0,∞,Ω‖δy‖Th(‖∇δΨ‖Th + ‖∇Ψ‖Ω)

. ‖δy‖Th(‖Ψ‖2,Ω + ‖Ψ‖1,Ω)

. ‖δy‖Th‖ε
y
h‖Th .
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For T4,

T4 . ‖β‖1,∞,Ω‖δy‖Th‖ΠW Ψ‖Th . ‖δy‖Th‖ε
y
h‖Th .

For T5,

T5 ≤ ‖εyh − ε
ŷ
h‖∂Th‖δ

Φ‖∂Th
. h

1
2 ‖εyh − ε

ŷ
h‖∂Th‖Φ‖1,Ω

. h
1
2 ‖εyh − ε

ŷ
h‖∂Th‖ε

y
h‖Th .

For T6, T7, and T9, following the same idea for T5, we have

T6 . h‖εqh‖Th‖ε
y
h‖Th ,

T7 . h
1
2 ‖εyh − ε

ŷ
h‖∂Th‖ε

y
h‖Th ,

T9 . ‖β‖0,∞,Ωh
1
2 ‖εyh − ε

ŷ
h‖∂Th‖ε

y
h‖Th .

And by Lemma 4, we have

T8 . ‖β‖0,∞,Ωh‖∇εyh‖Th‖Ψ‖1
. h(‖εqh‖Th + h−

1
2 ‖εyh − ε

ŷ
h‖Th)‖εyh‖Th .

Therefore, summing the estimates and using the bounds (24) and Lemma 5 gives
the result. �

The triangle inequality yields optimal convergence rates for ‖q − qh(u)‖Th and
‖y − yh(u)‖Th :

Lemma 7. We have

‖q − qh(u)‖Th ≤ ‖δq‖Th + ‖εqh‖Th . h
k+1(|q|k+1 + |y|k+2),(37a)

‖y − yh(u)‖Th ≤ ‖δy‖Th + ‖εyh‖Th . h
k+2(|q|k+1 + |y|k+2).(37b)

3.3.4. Step 4: The error equation for part 2 of the auxiliary problem
(28b). Next, we bound the error between the solution of the dual convection diffu-
sion equation (8c)-(8d) for z and the auxiliary HDG equation (28b).

First, we define

δp = p−ΠV p, εph = ΠV p− ph(u),

δz = z −ΠW z, εzh = ΠW z − zh(u),

δẑ = z − Ihz, εẑh = Ihz − ẑh(u),

δ̂2 = δp · n− β · nδẑ + (τ2 + h−1)(δz − δẑ),

(38)

where ẑh(u) = ẑoh(u) on εoh and ẑh(u) = 0 on ε∂h. This gives εẑh = 0 on ε∂h.
Following the same idea with Lemma 3, we have the following error equation:

Lemma 8. We have

B2(εph, ε
z
h, ε

ẑ
h; r2, w2, µ2)

= −〈δẑ, r2 · n〉∂Th − (βδz,∇w2)Th

− 〈δ̂2, w2〉∂Th + 〈δ̂2, µ2〉∂Th\ε∂h + (yh(u)− y, w2)Th .(39)
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3.3.5. Step 5: Estimates for εph and εzh by an energy and duality argument.

First, it is easy to see that Lemma 4 still holds for εzh, εẑh, and εph.

Lemma 9. We have

‖∇εzh‖Th ≤ C(‖εqh‖Th + h−
1
2 ‖εzh − εẑh‖∂Th).(40)

Also, to estimate εph we need the following discrete Poincaré inequality that is
very similar to a result from [30]. The proof is essentially the same, and is omitted.

Lemma 10. We have

‖εzh‖Th ≤ C(‖∇εzh‖Th + h−
1
2 ‖εzh − εẑh‖∂Th).(41)

Lemma 11. We have

‖εph‖Th + h−
1
2 ‖εzh − εẑh‖∂Th . hk+1(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),(42)

‖εzh‖Th . hk+1(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).(43)

Proof. Since εẑh = 0 on ε∂h, the energy identity for B2 in Lemma 1 gives

B2(εph, ε
z
h, ε

ẑ
h, ε

p
h, ε

z
h, ε

ẑ
h)

= ‖εph‖
2
Th + ‖(h−1 + τ2 +

1

2
β · n)

1
2 (εzh − εẑh)‖2∂Th +

1

2
‖(−∇ · β)

1
2 εzh‖2Th .

Take (r2, w2, µ2) = (εph, ε
z
h, ε

ẑ
h) in the error equation (39) to obtain

‖εph‖
2
Th + ‖(h−1 + τ2 +

1

2
β · n)

1
2 (εzh − εẑh)‖2∂Th +

1

2
‖(−∇ · β)

1
2 εzh‖2Th

= −〈δẑ, εph · n〉∂Th − (βδz,∇εzh)Th

− 〈δ̂2, ε
z
h − εẑh〉∂Th + (yh(u)− y, εzh)Th

=: T1 + T2 + T3 + T4.

By the same argument as in the proof of Lemma 5, apply (40) and (41) to get

T1 . h
− 1

2 ‖δẑ‖∂Th‖ε
p
h‖Th ,

T2 . ‖β‖0,∞,Ω‖δz‖Th‖∇εzh‖Th
. ‖β‖0,∞,Ω‖δz‖Th(‖εph‖Th + h−

1
2 ‖εzh − εẑh‖∂Th),

T3 . h
1
2 ‖δ̂2‖∂Thh−

1
2 ‖εzh − εẑh‖∂Th ,

T4 . ‖y − yh(u)‖Th‖εzh‖Th
. ‖y − yh(u)‖Th(‖εph‖Th + h−

1
2 ‖εzh − εẑh‖∂Th).

Finally, applying (24) and Lemma 7 yields (42). Together with (42) and (41), we
can obtain (43). �

3.3.6. Step 6: Estimate for εzh by a duality argument. Next, we introduce
the dual problem for any given Θ in L2(Ω):

Φ +∇Ψ = 0 in Ω,

∇ ·Φ− β · ∇Ψ = Θ in Ω,

Ψ = 0 on ∂Ω.

(44)

Since the domain Ω is convex, we have the following regularity estimate

‖Φ‖1,Ω + ‖Ψ‖2,Ω ≤ Creg ‖Θ‖Ω .(45)
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Lemma 12. We have

‖εzh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).(46a)

Proof. Consider the dual problem (44), and let Θ = εzh. Take (r2, w2, µ2) =
(ΠV Φ,−ΠW Ψ,−IhΨ) in (39) in Lemma 8. Since Ψ = 0 on ε∂h we have

B2(εph, ε
z
h, ε

ẑ
h; ΠV Φ,−ΠW Ψ,−IhΨ)

= (εph,ΠV Φ)Th − (εzh,∇ ·ΠV Φ)Th + 〈εẑh,ΠV Φ · n〉∂Th
+ (εph − βε

z
h,∇ΠW Ψ)Th − 〈ε

p
h · n− β · nε

ẑ
h + τ2(εzh − εẑh),ΠW Ψ− IhΨ〉∂Th .

Moreover, we have

−(εzh,∇ ·ΠV Φ)∂Th = (∇εzh,Φ)Th − 〈εzh,ΠV Φ · n〉∂Th
= −(εzh,∇ ·Φ)Th + 〈εzh, δΦ · n〉∂Th ,

(εph,∇ΠW Ψ)Th = −(∇ · εph,Ψ)Th + 〈εph · n,ΠW Ψ〉∂Th
= (εph,∇Ψ)Th − 〈ε

p
h · n, δ

Ψ〉∂Th ,

−(βεzh,∇ΠW Ψ)Th = −(βεzh,∇δΨ)Th + (βεzh,∇Ψ)Th

= −〈β · nεzh, δΨ〉∂Th + (∇ · βεzh, δΨ)Th

+ (β · ∇εzh, δΨ)Th + (βεzh,∇Ψ)Th .

Then we have

B2(εph, ε
z
h, ε

ẑ
h; ΠV Φ,−ΠW Ψ,−IhΨ)

= (εph,Φ)Th − (εzh,∇ ·Φ)Th + 〈εzh, δΦ · n〉∂Th + 〈εẑh,ΠV Φ · n〉∂Th
+ (εph,∇Ψ)Th − 〈ε

p
h · n, δ

Ψ̂〉∂Th − 〈β · nεzh, δΨ〉∂Th
+ (∇ · βεzh, δΨ)Th + (β · ∇εzh, δΨ)Th + (εzh,β · ∇Ψ)Th

+ 〈β · nεẑh, δΨ〉∂Th + 〈τ2(εzh − εẑh), δΨ − δΨ̂〉∂Th
= (εzh, ε

z
h)Th + 〈εzh − εẑh, δΦ · n〉∂Th − 〈ε

p
h · n, δ

Ψ̂〉∂Th + (∇ · βεzh, δΨ)Th

+ (β · ∇εzh, δΨ)Th − 〈β · n(εzh − εẑh), δΨ〉∂Th
+ 〈(τ2 + h−1)(εzh − εẑh), δΨ − δΨ̂〉∂Th .

Here, we used 〈εẑh,Φ · n〉∂Th = 0, which holds since εẑh is single-valued function on

interior edges and εẑh = 0 on ε∂h. We also used 〈β ·nεẑh, δΨ̂〉∂Th = 0, which is derived
similarly.

On the other hand, by Lemma 8

B2(εph, ε
z
h, ε

ẑ
h; ΠV Φ,−ΠV Ψ,−IhΨ)

= −〈δẑ,ΠV Φ · n〉∂Th + (βδz,∇ΠV Ψ)Th

+ 〈δ̂2,ΠV Ψ− IhΨ〉∂Th − (yh(u)− y,ΠV Ψ)Th .(47)
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Comparing the above two equalities gives

‖εzh‖2Th = −〈εzh − εẑh, δΦ · n+ (τ2 + h−1)(δΨ − δΨ̂)− β · nδΨ〉∂Th
+ 〈εph · n, δ

Ψ̂〉∂Th + (β · ∇εzh, δΨ)Th + (∇ · βεzh, δΨ)Th

− 〈δẑ, δΦ · n〉∂Th + (βδz,∇ΠV Ψ)Th

+ 〈δ̂2,ΠV Ψ− IhΨ〉∂Th − (yh(u)− y,ΠV Ψ)Th

=:

8∑
i=1

Ri.

For the terms R1-R4, Lemma 11 gives

R1 = −〈εzh − εẑh, δΦ · n− β · nδΨ + (τ2 + h−1)(δΨ − δΨ̂)〉∂Th
. h

1
2 ‖(τ2 + h−1 + β · n)

1
2 (εzh − εẑh)‖∂Th(‖Φ‖1,Ω + ‖Ψ‖1,Ω)

. h
1
2 ‖(τ2 + h−1 + β · n)

1
2 (εzh − εẑh)‖∂Th‖εzh‖Th ,

R2 . h
3
2 ‖εph‖∂Th‖Ψ‖2,Ω . h

3
2 ‖εph‖∂Th‖ε

z
h‖Th ,

R3 . ‖β‖0,∞,Ωh‖∇εzh‖Th‖Ψ‖1,Ω,

R4 . h‖(−∇ · β)
1
2 εzh‖Th‖Ψ‖1,Ω . h‖(−∇ · β)

1
2 εzh‖Th‖εzh‖Th .

For R5, we have

R5 . h
1
2 ‖δẑ‖∂Th‖εzh‖Th .

For the terms R6 and R8, we use the triangle inequality, the regularity estimate
(34), and the assumption h ≤ 1 to give

R6 . ‖β‖0,∞,Ω‖δz‖Th(‖∇δΨ‖Th + ‖Ψ‖Th) . ‖β‖0,∞,Ω‖δz‖Th‖εzh‖Th ,
R8 . ‖yh(u)− y‖Th‖εzh‖Th .

For the term R7,

R7 . h
3
2 ‖δp · n+ (τ1 + h−1)(δz − δẑ)‖∂Th‖Ψ‖2,Ω

. h
3
2 (‖δp‖∂Th + ‖δz‖Th + ‖δẑ‖∂Th)‖εzh‖Th .

Summing R1 to R8, together with (24), (40), (42), and (43) gives

‖εzh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).

�

The triangle inequality gives optimal convergence rates for ‖p − ph(u)‖Th and
‖z − zh(u)‖Th :

Lemma 13.

‖p− ph(u)‖Th ≤ ‖δp‖Th + ‖εph‖Th
. hk+1(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),(48a)

‖z − zh(u)‖Th ≤ ‖δz‖Th + ‖εzh‖Th
. hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).(48b)
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3.3.7. Step 7: Estimates for ‖u − uh‖Th , ‖y − yh‖Th , and ‖z − zh‖Th . Next,
we bound the error between the solutions of the auxiliary problem and the EDG
discretization of the optimality system (27). We use these error bounds and the
error bounds in Lemma 7 and Lemma 13 to obtain the main result.

The proofs in Steps 7 and 8 are similar to proofs in our earlier work [18]; we
include the proofs here to make the final steps self-contained.

For the remaining steps, we denote

ζq = qh(u)− qh, ζy = yh(u)− yh, ζŷ = ŷoh(u)− ŷoh,
ζp = ph(u)− ph, ζz = zh(u)− zh, ζẑ = ẑoh(u)− ẑoh.

Subtracting the auxiliary problem and the EDG problem gives the following error
equations

B1(ζq, ζy, ζŷ; r1, w1, µ1) = (u− uh, w1)Th ,(49a)

B2(ζp, ζz, ζẑ; r2, w2, µ2) = −(ζy, w2)Th .(49b)

Lemma 14. We have

γ‖u− uh‖2Th + ‖yh(u)− yh‖2Th
= (zh + γuh, u− uh)Th − (zh(u) + γu, u− uh)Th .(50)

Proof. First, we have

(zh + γuh, u− uh)Th − (zh(u) + γu, u− uh)Th

= −(ζz, u− uh)Th + γ‖u− uh‖2Th .

Next, Lemma 2 gives

B1(ζq, ζy, ζŷ; ζp,−ζz,−ζẑ) + B2(ζp, ζz, ζẑ;−ζq, ζy, ζŷ) = 0.

On the other hand, using the definition of B1 and B2 gives

B1(ζq, ζy, ζŷ; ζp,−ζz,−ζẑ) + B2(ζp, ζz, ζẑ;−ζq, ζy, ζŷ)

= −(u− uh, ζz)Th − ‖ζy‖2Th .

Comparing the above two equalities gives

−(u− uh, ζz)Th = ‖ζy‖2Th .

This completes the proof. �

Theorem 2. We have

‖u− uh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),(51a)

‖y − yh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),(51b)

‖z − zh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).(51c)
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Proof. Recalling the continuous and discretized optimality conditions (8e) and (27c)
gives

γ‖u− uh‖2Th + ‖ζy‖2Th
= (zh + γuh, u− uh)Th − (zh(u) + γu, u− uh)Th

= −(zh(u)− z, u− uh)Th

≤ ‖zh(u)− z‖Th‖u− uh‖Th

≤ 1

2γ
‖zh(u)− z‖2Th +

γ

2
‖u− uh‖2Th .

By Lemma 13, we have

‖u− uh‖Th + ‖ζy‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).(52)

Then, by the triangle inequality and Lemma 7 we obtain

‖y − yh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).

Finally, since z = γu and zh = γuh we have

‖z − zh‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).

�

3.3.8. Step 8: Estimate for ‖q − qh‖Th and ‖p− ph‖Th .

Lemma 15. We have

‖ζq‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),(53a)

‖ζp‖Th . hk+2(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).(53b)

Proof. By Lemma 1, the error equation (49a), and the estimate (52) we have

‖ζq‖2Th . B1(ζq, ζy, ζŷ; ζq, ζy, ζŷ)

= (u− uh, ζy)Th

≤ ‖u− uh‖Th‖ζy‖Th
. h2k+4(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2)2.

Similarly, by Lemma 1, the error equation (49b), Lemma 13, and Theorem 2 we
have

‖ζp‖2Th . B2(ζp, ζz, ζẑ; ζp, ζz, ζẑ)

= −(ζy, ζz)Th

≤ ‖ζy‖Th‖ζz‖Th
≤ ‖ζy‖Th(‖zh(u)− z‖Th + ‖z − zh‖Th)

. h2k+4(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2)2.

�

The above lemma along with the triangle inequality, Lemma 7, and Lemma 13
complete the proof of the main result:
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Table 1. Example 1: Errors for the state y, adjoint state z, and
the fluxes q and p when k = 0 with the OD approach.

h/
√

2 1/8 1/16 1/32 1/64 1/128
‖q − qh‖0,Ω 2.8775E-01 1.4501E-01 7.2649E-02 3.6342E-02 1.8173E-02

order - 0.98861 0.99716 0.99929 0.99982
‖p− ph‖0,Ω 2.1036E-01 1.0341E-01 5.1480E-02 2.5712E-02 1.2852E-02

order - 1.0244 1.0063 1.0016 1.0004
‖y − yh‖0,Ω 1.1842E-02 3.2095E-03 8.4824E-04 2.1887E-04 5.5641E-05

order - 1.8834 1.9198 1.9544 1.9759
‖z − zh‖0,Ω 1.8304E-02 5.3420E-03 1.4422E-03 3.7460E-04 9.5451E-05

order - 1.7767 1.8891 1.9449 1.9725

Theorem 3. We have

‖q − qh‖Th . hk+1(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2),(54a)

‖p− ph‖Th . hk+1(|q|k+1 + |y|k+2 + |p|k+1 + |z|k+2).(54b)

4. Numerical Experiments

In this section, we present three numerical examples to confirm our theoretical
results. We consider the problems on a square domain Ω = [0, 1] × [0, 1] ⊂ R2.
For the first two examples, we take γ = 1, τ1 = 1, β = [x2, x1], and the exact
state y(x1, x2) = sin(πx1). We used the optimize-then-discretize (OD) approach in
Example 1 and the discretize-then-optimize (DO) approach in Example 2. In the
third example, we take γ = 1, τ1 = 5, β = [cos(x1) exp(x2), x1 cos(x2)], and the
same exact state y(x1, x2) = sin(πx1). In these examples, the data f , g, and yd
is generated from the optimality system (8) after we specified the exact dual state
z(x1, x2) = sin(πx1) sin(πx2).

Numerical results for k = 0 and k = 1 for the two approaches are shown in
Table 1–Table 4 for the first two examples. The observed convergence rates and
numerical results exactly match the theoretical results.

Example 1. For the OD approach, we set the stabilization parameter τ2 using
(A1); hence, conditions (A1)-(A2) are satisfied. We obtain optimal convergence
rates for all variables for k = 0 and k = 1 in Table 1 and Table 2, respectively. This
matches our theoretical results.

Example 2. For the DO approach, we used the same data as in Example 1. From
the tables we can see that the numerical results are exactly the same with the OD
approach, which confirms our theoretical results.

Example 3. In this example, we give a brief comparison of the EDG method with
an HDG method. Specifically, we use the HDG method for the optimal control of
convection diffusion PDEs from [18]. This HDG method uses discontinuous poly-
nomials of equal degree for all variables. There is no doubt that the degrees of
freedom for the EDG method is much smaller than the HDG method if we use
the same polynomial degree for the numerical trace in both methods. However, in
this case the convergence rates of the HDG method (with an element-by-element
postprocessing for the state variables) are one order higher than the EDG method.
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Table 2. Example 1: Errors for the state y, adjoint state z, and
the fluxes q and p when k = 1 with the OD approach.

h/
√

2 1/8 1/16 1/32 1/64 1/128
‖q − qh‖0,Ω 1.8365E-02 4.9165E-03 1.2726E-03 3.2189E-04 8.0742E-05

order - 1.9012 1.9498 1.9831 1.9952
‖p− ph‖0,Ω 1.6649E-02 5.6050E-03 1.5952E-03 4.1463E-04 1.0475E-04

order - 1.5707 1.8129 1.9439 1.9848
‖y − yh‖0,Ω 1.3524E-03 1.8347E-04 2.3956E-05 3.0691E-06 3.8882E-07

order - 2.8819 2.9371 2.9645 2.9807
‖z − zh‖0,Ω 3.2125E-03 4.2489E-04 5.4721E-05 6.9745E-06 8.8190E-07

order - 2.9186 2.9569 2.9719 2.9834

Table 3. Example 2: Errors for the state y, adjoint state z, and
the fluxes q and p when k = 0 with the DO approach.

h/
√

2 1/8 1/16 1/32 1/64 1/128
‖q − qh‖0,Ω 2.8775E-01 1.4501E-01 7.2649E-02 3.6342E-02 1.8173E-02

order - 0.98861 0.99716 0.99929 0.99982
‖p− ph‖0,Ω 2.1036E-01 1.0341E-01 5.1480E-02 2.5712E-02 1.2852E-02

order - 1.0244 1.0063 1.0016 1.0004
‖y − yh‖0,Ω 1.1842E-02 3.2095E-03 8.4824E-04 2.1887E-04 5.5641E-05

order - 1.8834 1.9198 1.9544 1.9759
‖z − zh‖0,Ω 1.8304E-02 5.3420E-03 1.4422E-03 3.7460E-04 9.5451E-05

order - 1.7767 1.8891 1.9449 1.9725

Table 4. Example 2: Errors for the state y, adjoint state z, and
the fluxes q and p when k = 1 with the DO approach.

h/
√

2 1/8 1/16 1/32 1/64 1/128
‖q − qh‖0,Ω 1.8365E-02 4.9165E-03 1.2726E-03 3.2189E-04 8.0742E-05

order - 1.9012 1.9498 1.9831 1.9952
‖p− ph‖0,Ω 1.6649E-02 5.6050E-03 1.5952E-03 4.1463E-04 1.0475E-04

order - 1.5707 1.8129 1.9439 1.9848
‖y − yh‖0,Ω 1.3524E-03 1.8347E-04 2.3956E-05 3.0691E-06 3.8882E-07

order - 2.8819 2.9371 2.9645 2.9807
‖z − zh‖0,Ω 3.2125E-03 4.2489E-04 5.4721E-05 6.9745E-06 8.8190E-07

order - 2.9186 2.9569 2.9719 2.9834

Hence, to make a more fair comparison, for the numerical traces we take discontin-
uous piecewise linear basis functions for the HDG method and continuous piecewise
quadratic basis functions for the EDG method; in this case, the convergence rates
for all variables are the same for both methods (using postprocessing for the HDG
method). From Table 5 and Table 6, we can see that the EDG method is competi-
tive both in terms of accuracy and globally coupled degrees of freedom.
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Table 5. Example 3: Errors for the state y, adjoint state z, and
the fluxes q and p for the EDG method with continuous piecewise
quadratic basis functions for the numerical trace. Here, DoF is the
number of globally coupled degrees of freedom.

h/
√

2 1/8 1/16 1/32 1/64 1/128
‖q − qh‖0,Ω 1.8432E-02 4.9222E-03 1.2730E-03 3.2192E-04 8.0743E-05

order - 1.9048 1.9511 1.9835 1.9953
‖p− ph‖0,Ω 1.6809E-02 5.6229E-03 1.5966E-03 4.1473E-04 1.0476E-04

order - 1.5798 1.8163 1.9448 1.9851
‖y − yh‖0,Ω 1.3561E-03 1.8358E-04 2.3959E-05 3.0692E-06 3.8882E-07

order - 2.8851 2.9378 2.9646 2.9807
‖z − zh‖0,Ω 3.2125E-03 4.2475E-04 5.4714E-05 6.9743E-06 8.8190E-07

order - 2.9190 2.9566 2.9718 2.9834
DoF 226 962 3970 16130 65026

Table 6. Example 3: Errors for the state y, adjoint state z, and
the fluxes q and p for the HDG method (with postprocessing)
from [18] with discontinuous piecewise linear basis functions for
the numerical trace. Here, DoF is the number of globally coupled
degrees of freedom, and the superscript ? denotes the postprocessed
approximations.

h/
√

2 1/8 1/16 1/32 1/64 1/128
‖q − qh‖0,Ω 1.8427E-02 4.7138E-03 1.1891E-03 2.9831E-04 7.4684E-05

order - 1.9668 1.9870 1.9950 1.9979
‖p− ph‖0,Ω 3.5193E-02 8.9732E-03 2.2614E-03 5.6736E-04 1.4208E-04

order - 1.9716 1.9884 1.9949 1.9976
‖y − yh‖0,Ω 1.2751E-02 3.2022E-03 8.0021E-04 1.9989E-04 4.9944E-05

order - 1.9935 2.0006 2.0012 2.0008
‖z − zh‖0,Ω 2.3555E-02 5.9284E-03 1.4837E-03 3.7092E-04 9.2716E-05

order - 1.9903 1.9984 2.0000 2.0002
‖y − y?h‖0,Ω 8.2590E-04 1.0219E-04 1.2658E-05 1.5731E-06 1.9600E-07

order - 3.0147 3.0132 3.0083 3.0047
‖z − z?h‖0,Ω 1.3013E-03 1.6247E-04 2.0306E-05 2.5383E-06 3.1729E-07

order - 3.0017 3.0002 3.0000 3.0000
DoF 352 1472 6016 24320 97792

5. Conclusions

We considered a recently proposed EDG method to approximate the solution of
an optimal distributed control problem for an elliptic convection diffusion equation.
We showed the optimize-then-discretize and discretize-then-optimize approaches
coincide, and proved optimal a priori error estimates for the control, state, dual
state, and their fluxes. EDG methods are known to be competitive for convection
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dominated problems; therefore, this new EDG method has potential for optimal
control problems involving such PDEs.
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Appendix

By simple algebraic operations in equation (19b), we obtain the following for-
mulas for G1, G2, G3, G4, H1, and H2 in (20):

G1 = −A−1
1 A2(A4 +AT

2 A
−1
1 A2)−1(A5 −AT

2 A
−1
1 A3)−A−1

1 A3,

G2 = A−1
1 A2(A4 +AT

2 A
−1
1 A2)−1A6,

G3 = −(A4 +AT
2 A
−1
1 A2)−1(A5 −AT

2 A
−1
1 A3),

G4 = (A4 +AT
2 A
−1
1 A2)−1A6,

H1 = A−1
1 A2(A4 +AT

2 A
−1
1 A2)−1(b3 − b4 +AT

2 A
−1
1 b2)−A−1

1 b2,

H2 = (A4 +AT
2 A
−1
1 A2)−1(b3 − b4 +AT

2 A
−1
1 b2).

In general, forming these quantities is impractical; however, for the EDG method
described in this work these matrices can be easily computed. We briefly sketch
this process below.

Since the spaces Vh and Wh consist of discontinuous polynomials, some of the
system matrices are block diagonal and each block is small and symmetric positive
definite (SSPD). The inverse of such a matrix is another matrix of the same type,
and the inverse is easily computed by inverting each small block. Furthermore, the
inverse of each small block can be computed in parallel.

It can be checked that A1 is a SSPD block diagonal matrix, and therefore A−1
1

is easily computed and is also a SSPD block diagonal matrix. Therefore, G1, G2,
G3, G4, H1, and H2 are easily computed since A4 +AT

2 A
−1
1 A2 is also a SSPD block

diagonal matrix. Also, once these quantities are computed, G5, G6, and H3 in (20)
are also easy to compute using (19b).
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