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Abstract

In this paper, an alternative Target Density Function
(TDF) is proposed to image the radar targets in a dense
target environment. It is obtained by considering a
novel range and scanning angle plane different from
the conventional methods. An alternative method is
briefly proposed for smoothing the target density func-
tion by taking advantage of Walsh functions. Although
the imaging is obtained via the phased array radars, the
problem associated with beamforming in linear phased
array radar system is bypassed in this new algorithm.

1. Introduction

Target density function(TDF) is the reflectivity of
spatially, continuously distributed targets and it is an
important characteristic of radar imaging. TDF is
known by different names such as ambiguity function,
density function, target density function, object(target),
object reflectivity function, doubly-spread reflectivity
function, and reflection coefficient [1–6].

If TDF is assumed to be a reflection coefficient,
then it is defined as the ratio of the received signal to
the transmitted signal. By this definition, the reflected
signals from the object space are amplitudes relevant to
the intensities of the points on the target or objects. If
the object geometric plane is considered, since the inte-
gration of these amplitudes or the illuminated intensities
reveal information related to the object shape, TDF will
have an important role in obtaining the radar images.

There are two well known approaches on TDF.
First one considers point scatterers reflected off the
target scatterer centers. Integration of all point scat-
terers is able to obtain the whole object. This radar
imaging technique is based on inverse Fourier trans-
form(IFT) and used mostly in inverse synthetic aperture
radar(SAR) studies [7–12].

Second method on TDF is a dense target environ-
ment approach by Fowle and Naparst [13, 14]. It is
based on the ambiguity functions with two variables as
range and velocity [15–17]. Especially, the advanced
function in the dense target environment by Naparst is
developed in a novel way. Rather than typical radar
imaging, this is an approach to measure the closeness
of the targets to each other in the dense target environ-
ment.

In this study, a new TDF is theoretically developed
by a new approach on a range-scanning angle plane dif-
ferent from the early approaches. This is obtained via a
phased array radar system, the problem associated with
beamforming [18] is bypassed [18]. Addition to well
known alternatives such as filtration or compressing, an
unconventional approaches, which is a Walsh function,
is proposed for the smoothing of the new TDF.

2. Walsh Functions

Walsh functions are orthogonal functions and com-
posed of square waves with (0-1) amplitudes. Unlike
the Rademacher functions, Walsh functions are com-
plete. Mathematical theory of Walsh functions corre-
sponds to Fourier analysis-based sine-cosine functions
[19–22].

Walsh functions are defined in a limited time in-
terval, T , known as the time-base. Like the sine-cosine
functions, two entities are required for a complete defin-
ition. These are a time period, t, which is normalized to
the time base as t/T , and an ordering number, n, which
is related to frequency. A Walsh basis function is rep-
resented by Wal(n, t). A general Walsh function with
pulse basis functions can be written as [19–22]

Wal(n, t) = sign[(sin2πt)b0
m

∏
k=1

(cos2kπt)bk ] (1)

where n and m are related to each other. If u is a binary
value of the decimal, n, and g(u) is a number of digits,

1-4244-0309-X/06/$20.00 ©2006 IEEE 589



then m is represented as

m = g(u)−1 (2)

b0 and bk in Equation 1 are either 0 or 1.
A set of Walsh functions derived from Equation 1

is given in Figure 1 [19–22]. These sets of Walsh func-

Wal(0,T)                                                                                                                                                          cal(0,T) 

Wal(1,T)                                                                                                                                                          sal(1,T)     

Wal(2,T)                                                                                                                                                          cal(1,T) 

Wal(3,T)                                                                                                                                                          sal(2,T) 

Wal(4,T)                                                                                                                                                          cal(2,T) 

Wal(5,T)                                                                                                                                                          sal(3,T) 

Wal(6,T)                                                                                                                                                          cal(3,T)

Wal(30,T)                                                                                                                                                        cal(15,T)

Wal(31,T)                                                                                                                                                        sal(16,T) 

Figure 1. A set of Walsh functions.

tions are in form of typical radar pulse train.
While behavior of both Fourier and Walsh series

are similar, basis functions have different forms. Walsh
function can be expressed as a time series similar to the
Fourier theory:

f (t) =
∞

∑
k=0

FkWal(k, t) (3)

If this is compared with Fourier series, p(t) =
∑∞

k=−∞ αk e jkω0t , their basis functions become important
separators. The basis functions are infinite in Fourier
series(−∞ ≤ k ≤ ∞), while finite in Walsh series(0 ≤
k ≤ ∞). The finite basis functions provide important
advantage in signal processing in terms of dimension
reduction.

Two new functions, sal and cal, which are ana-
logues of sine and cosine functions in Fourier series,
are defined by Walsh functions [19–22].

f (t) = a0Wal(0, t)+
∞

∑
k=1

[akcal(k, t)+bksal(k, t)] (4)

where

a0 =
∫ 1/2

−1/2
f (t)Wal(0, t)dt, ak =

∫ 1/2

−1/2
f (t)cal(k, t)dt

bk =
∫ 1/2

−1/2
f (t)sal(k, t)dt (5)

3. Preliminaries Of Target Density Func-
tions

The background of the target density functions con-
sists of the following main techniques;

• SAR-ISAR reflectivity functions

• Naparst’s target density functions

3.1. SAR - ISAR Reflectivity Functions

Coherent SAR imaging is an alternative approach
to remote sensing that provides contribution to the
imaging over visible/infrared sensing technology [10,
11, 23–26]. If the target is composed of continuum
point targets(scatterers), by the superposition principle,
the echo(reflected signal) e(t), from such a target at x,y
points is:

e(t) =
∫ ∞

−∞

∫ ∞

−∞
ρ(x,y) f (t − 2R(x,y)

c
)dxdy (6)

Here, f is the transmitted signal function, ρ is reflectiv-
ity function, R is the range, and c is the speed of light.
As stated in Equation 6, the returned signal x(t) is a de-
layed and time-scaled version of the transmitted signal,
f (t).

If Inverse Fourier Transform is applied to Equation
(6), the image ρ(x,y) is obtained as a 2-D form of 3-D
object [7, 10, 11].

ρ(x,y) =
∫ ∞

−∞

∫ ∞

−∞
E( fx, fy)e j2π(x fx−y fy)

2Rp(t)
c d fxd fy

(7)
where

fx =
2 f0

c
cosθ(t) fy =

2 f0

c
sinθ(t) (8)

See Ref [27] for the details.

3.2. Target Density Functions

First Density term related to the target density func-
tion is called by Fowle et all [13]. Fowle is focused on
the problem of the detection and resolution in two di-
mensions of a large number of targets in a fixed part of
the target space and, he is inspired of ambiguity func-
tions. Then, Dense target environment term is used
by Naparst’s paper [14] by taking advantage of Fowle
work. His new approach is based on ambiguity and
cross-ambiguity functions. In this work, the dense-
target environment is defined the closeness of a lot of
targets at a distance, which their velocities are so close
to each other.
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Definition by Naparst, density of targets at distance
x and velocity y is D(x,y). In this case, the echo or the
reflected signal from targets is

e(t) =
∫ ∞

0

∫ ∞

−∞
D(x,y)

√
ys(y(t − x))dxdy (9)

In this approach, it is assumed that all targets are illu-
minated equally. As stated, the target density function
is a function of the range and velocity variables similar
to the ambiguity functions.

Reconstruction of the target density function in Na-
parst algorithm is finalized as fallows(see Ref [14] for
the details);

D(x,y) =
∞

∑
n,m=0

< en,sm > Anm(x,y) (10)

where sm are signals sent out and en are their echoes.
The cross-ambiguity function of the signals sent out
(s1,s2, ...) is

Anm(x,y) =
∫ ∞

−∞
sn(y(t − x))s̄m(t)dt (11)

4. Development Of An Alternative Target
Density Function

In this paper, an alternative target density func-
tion(TDF) is obtained by a new algorithm. Rather than
the measurement of a high dense target environment,
this TDF is an effective tool for imaging of the radar
targets in the dense target environment. The target den-
sity algorithm related to the radar imaging is theorized
in a different way based on a linear phased array radar
system and the range-scanning angle.

New target density function, g(R,β ) is composed
of two variables, which are the range R, and the scan-
ning angle β . If the target density function was the ratio
of the received signal to the transmitted signal as stated
early, by taking advantage of this definition, we give the
following new definition utilized in our algorithm.

Definition: Target Density Function is the limit of
the ratio of the amplitude of the signal reflected from an
infinitesimally neighborhood about the point (R,β ) to
the amplitude of the incoming signal.

By this definition, the new target density function
g(R,β ) is;

g(R,β ) = lim
d(Ω)→0

Ar

At
(12)

where d(Ω) is the diameter of the disc about the point
(R,β )∈ Ω, Ar and At are the amplitudes of the reflected
and the transmitted signals, respectively.

In this definition, the target density function(TDF)
is relevant to the the reflectivity of spatially, continu-
ously distributed targets and emphasizes how much en-
ergy is reflected. This approach is different from the
conventional target density function definitions stated
early. Instead of ambiguity functions based on range-
velocity variables, the imaging in a high dense target
environment is taken by a new target density function
with the range and scanning angle.

Let us consider the target plane shown in Figure 2,
where β is cosθ and R is the range from the target to
the radar, and the sensor elements in the linear phased
array radar system are located equally.

                                               
Target Area y

(  = cos , R)                         

                                                                                 
The elements of phased array

x

x = xi                                                                  
Phase center 

1   i   N 

Figure 2. Phased array imaging.

As seen in Figure 2, the target density function is
a function of the spatial coordinates (R,β ) in the upper
semi-plane.

Now, let us obtain the target density function. Let
P(t) be any periodic function of time, such as a train of
pulses,where

p(t) =
∞

∑
k=−∞

αk e jkω0t (13)

ω0 = 2π ×PRF, (14)

where PRF is the pulse repetition frequency.

sc(t) = e jωct (15)

Where sc(t) is the carrier signal.

sm(t) = p(t)sc(t) (16)

Where sm(t) is the modulated signal. The reflectivity of
one point at g(R,β )

e(x, t) = sm(t −2R/c−βx/c)g(R,β ) (17)

Let us generalize (17) for the whole radar-target
semi upper plane by superpositioning principle consid-
ering all point scatterers related to the range-angle.
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If g(R,β ) is the reflectivity of the point (R,β ), and
R1 is the maximum range of interest target area; then

e(x, t) =
∫ 1

−1

∫ R1

0
sm(t −2R/c−βx/c)g(R,β )dRdβ

(18)
Then

e(x, t) =
∫ 1

−1

∫ R1

0
p(t −2R/c−βx/c)e− jωc(2R/c+βx/c)

×e jωctg(R,β )dRdβ (19)

where e(x, t) is the output of the sensor located at cen-
ter (the feature space), and c is the speed of light. The
algorithm is as follows,

e(x, t) =
∞

∑
k=−∞

αke j(ωc+kω0)t
∫ 1

−1

∫ R1

0
e− j(ωc+kω0)2R/c

×e− j(ωc+kω0)βx/cg(R,β )dRdβ (20)

Then, demodulation of (20) via (21)

sd(t) = e− j(ωc+kω0)t (21)

yields,

Ek(x) =
∫ 1

−1

∫ R1

0
e− j(ωc+kω0)2R/c

×e− j(ωc+kω0)βx/c g(R,β )dRdβ (22)

Let apply a zero or first holder to Yk(x) to reach the con-
tinuous form of the function as Y (k,x).

E(k,x) =
∫ 1

−1

∫ R1

0
e− j(ωc+kω0)(2R/c+βx/c)g(R,β )dRdβ

(23)
In case of −∞ < k < ∞ and for each β and R, let con-
sider (23) as the trigonometric Fourier series of g(R,β ).
Hence we estimate g(R,β )

g(R,β ) =
∞

∑
k,x=−∞

E(k,x)e j(ωc+kω0)(2R/c+βx/c) (24)

as a desired target density function(TDF) in range-
scanning angle plane. Thus, in a high dense target en-
vironment, radar targets can be imaged theoretically by
TDF g(R,β ). As realized that although a phased array
radar system is used during the producing of TDF, the
problem associated with beamforming is bypassed.

Infinity of k can be optimized by some filtration,
compressing or estimation methods. However, an alter-
native way may be proposed to reduce k dimension and
smooth the new TDF;

• Walsh Approach: While the new TDF is devel-
oped, at the beginning, the basis functions of the
modulating signal had infinite dimensions. In con-
trast to infinite basis functions(−∞ ≤ k ≤ ∞) in the
Equation 13, Walsh functions are expressed in fi-
nite pulse basis functions (3). They have an es-
sential advantage to the radar imaging in terms of
basis dimension reduction.

In case of using Walsh functions with pulse form, this
function in (3) will replace the Equation 13 in the new
algorithm as a modulating Walsh function with finite
dimensions. The Walsh function in question is a mod-
ulating signal in the form of a pulse train. After Walsh
function is chosen with respect to some parameters such
as PRF in (13), the new algorithm can resume the re-
maining steps after (14) in a similar manner.

5. Summary and Conclusion

In this paper, radar imaging is studied as an ac-
tive sensor. An alternative target density function(TDF)
is obtained by a new algorithm. The proposed target
density function is based on the range and angle infor-
mation different from conventional approaches. The
advantage of taking the angle-range plane is to pro-
vide both practical scanning and effective detection.
Then, an unconventional alternative is briefly proposed
for smoothing the TDF. Two main contributions of this
study are as follows;

• A proposed target density function algorithm: Tar-
get density function (TDF) is represented by an al-
gorithm that is capable of producing the radar im-
ages by desired scanning angle and range plane.
While developing this algorithm, the high dense
target environments with multiple targets are taken
into account.

• Bypassing the beam-forming problem: Second
contribution of this study is provided by the phased
array radar system. Although the new TDF is pro-
duced via the phased array radar, the problem as-
sociated with beamforming is bypassed.

The present TDF is generated partly by analogy to
Fowle-Naparst and SAR-ISAR approaches.

• Comparing to Fowle-Naparst: As an advanced
work of Fowle, Naparst target density function is
developed for a high dense target environment with
multiple targets, whose velocities are close to each
other. This TDF acts like a separator rather than
an imaging function for the targets at the distance
with a given velocity.
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TDF proposed here is obtained by a scanning angle and
range in a high dense target environment. The main dif-
ference is in the imaging approach, which is capable of
sensor imaging the targets in a dense target environment
via phased array radar system.

• Comparing to ISAR: While ISAR imaging is based
on multi-aperture principle, the present imaging
method is a multi-sensor image fusion technique
based on the phased array radar system. TDF in
this study is similar to the reflectivity function in
conventional ISAR imaging. However, ISAR re-
flectivity function is obtained by the integration of
the point scatterers on the target, while our target
density function is produced by the integration of
ranges and scanning angles.
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