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The ac susceptibilities of NdFe11Ti and NdFe11TiH, both of which crystallize with theI4/mmm
tetragonal ThMn12-type structure, have been measured between 20 and 300 K and the results reveal
spin reorientations at;185 K and at 10061 K, respectively. The Mo¨ssbauer spectra of NdFe11Ti
and NdFe11TiH have also been measured between 4.2 and 295 K and fits of the observed line shape
profiles indicate that the spin-reorientations in both compounds correspond to a rotation from an
axial orientation to a canted or basal orientation upon cooling. Both the low temperature canted or
basal magnetic structures and the lowering of the spin-reorientation temperature upon
hydrogenation result from the competing neodymium and iron magnetic anisotropies and differing
relative second-, fourth-, and sixth-order contributions as a function of temperature and hydrogen
content of the neodymium to the magnetic anisotropy energy. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1736333#

I. INTRODUCTION

TheRFe11Ti compounds, which crystallize in the tetrag-
onal ThMn12 structure with theI4/mmmspace group, have
two main advantages as hard magnetic materials:~1! a high
iron content which yields a high magnetization and~2! a
relatively high Curie temperature.1,2 In these compounds, the
rare earth is located on the 2a crystallographic site, whereas
the iron atoms are distributed over the 8i , 8j , and 8f sites.
The 8i site is randomly occupied by the iron and titanium
atoms whereas the 8j and 8f sites are fully occupied by
iron.2

Neutron diffraction investigations3,4 have indicated that,
upon hydrogenation of theRFe11Ti compounds to form
RFe11TiH, the hydrogen is located on the 2b site, an octa-
hedral site with two rare earth and four 8j iron near neigh-
bors; the maximum hydrogen content per formula unit is
one. The insertion of light interstitial atoms, such as hydro-
gen, carbon, or nitrogen, into theRFe11Ti structure has a
beneficial effect on the magnetic properties of the com-
pounds, increasing both their Curie temperatures and their
saturation magnetizations.5–7

Hydrogen absorption can also yield important changes in
the magnetic anisotropy of theRFe11Ti parent compounds
and, specifically, hydrogenation can induce the appearance or
disappearance of spin-reorientation transitions.5,8–11 These
spin reorientations have been studied extensively by mag-
netic and Mo¨ssbauer spectral measurements for the heavy
rare-earthRFe11Ti compounds.8–11 In this paper, the influ-
ence of hydrogenation on the spin reorientation in the pres-
ence of neodymium, a light rare-earth, is investigated5,12–15

in detail in NdFe11Ti.
NdFe11Ti is ferromagnetic with a Curie temperature be-

tween 550 and 600 K and exhibits5,12–16a spin reorientation
at ;200 K. Above this temperature, the magnetic moments
are aligned parallel to thec axis whereas, below this tem-
perature, they cant away from thec axis. From ac suscepti-
bility measurements, Kouet al.concluded14 that this second-
order spin reorientation takes place between a uniaxial and a
conical magnetic phase.

A type-I first-order magnetization process was observed
at 4.2 K and a critical field of 3.2 T when the applied field
was applied along thec axis of NdFe11Ti. Kou et al.14 have
developed a crystal field model in order to understand the
spin reorientation and first-order magnetization processes.
This model yielded a spin reorientation at 187 K and at a
critical field of 2.7 T, results that are in good agreement with
the experimental values. Further, the calculated canting
angle,uc , increases with decreasing temperature from 0° at
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University of Zaragoza, E-50009 Zaragoza, Spain.

b!Electronic mail: fgrandjean@ulg.ac.be
c!Electronic mail: isnard@grenoble.cnrs.fr
d!Electronic mail: glong@umr.edu

JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 11 1 JUNE 2004

63080021-8979/2004/95(11)/6308/9/$22.00 © 2004 American Institute of Physics

http://dx.doi.org/10.1063/1.1736333


;200 K to 55° at 0 K. Similar conclusions have been
reached13 by Hu et al.who, by extrapolation from their crys-
tal field model for DyFe11Ti, predicted that the magnetic
phase of NdFe11Ti is canted with a canting angle increasing
from 0° at 200 K to a maximum of;35° at 0 K. In contrast,
Guslienkoet al. have modeled15 the magnetic properties of
NdFe11Ti within the Asti and Bolzoni model17 and concluded
that the spin-reorientation transition observed at 189 K is a
first-order transition with a discontinuous jump in the mag-
netization angle.

Another unusual feature of the magnetic properties of
NdFe11Ti is the strong pressure dependence18 of its Curie
and spin-reorientation temperatures, temperatures that have
slopes of22.7 and22.6 K/kbar, respectively.

The hydrogenation of NdFe11Ti to form NdFe11TiH
expands16 the unit-cell volume by 0.6% and increases the
Curie temperature by 63 K, see Table I. This increase is
substantially larger than the 22 K increase reported earlier;19

the earlier smaller increase probably results from a hydrogen
content of less than one hydrogen per mole.

There have been two investigations20,21 of the iron-rich
portion of the Nd–Fe–Ti phase diagram and three different
phases have been identified, specifically, the Nd~Fe,Ti)12,
Nd2(Fe,Ti)17, and Nd3(Fe,Ti)29 solid solutions. All these
phases have a crystal structure derived from the CaCu5-type
structure22 but have different crystal symmetries. Namely,
the first two solid solutions crystallize with the ThMn12- and
Th2Zn17-type structures, structures which exhibit tetragonal
and rhombohedral unit cells, respectively. In contrast, the
Nd3(Fe,Ti)29 solid solution exhibts23,24 a much more com-
plex structure with a monoclinic unit cell.

The aim of this paper is to report on a detailed study of
the magnetic properties of highly pure NdFe11Ti and
NdFe11TiH through ac magnetic susceptibility, thermomag-
netic, magnetization, and iron-57 Mo¨ssbauer spectral studies
and, more specifically, to determine the influence of hydro-
genation on the spin-reorientation transition.

II. EXPERIMENT

Because all three of the Nd–Fe–Ti solid solutions men-
tioned earlier are structurally related, we have synthesized
several Nd–Fe–Ti compounds with different iron to titanium
stoichiometric ratios in order to ensure that only the pure
Nd~Fe,Ti)12 compound resulted. These compounds have
been synthesized in a water-cooled copper crucible by melt-
ing 99.95% pure neodymium and titanium and 99.99% pure
iron in a high frequency induction furnace. The resulting
ingots were wrapped in a tantalum foil, annealed for five
days at 1370 K in quartz tubes under an argon atmosphere,
and quenched in water. On the basis of x-ray diffraction and
thermomagnetic studies, a sample with an actual stoichiom-

etry of NdFe11.04Ti0.96 was selected for further study. Only
the tetragonal ThMn12 phase was observed in the x-ray dif-
fraction pattern and the sample was found to be single phase
with only a small trace ofa-iron. This sample will be re-
ferred to as NdFe11Ti throughout this paper.

The insertion of hydrogen into the NdFe11Ti crystal
structure has been carried out through a solid–gas reaction
described earlier and the hydrogen content was determined
to be 1.060.1 per formula unit by thermogravimetric
methods.16

X-ray diffraction patterns were recorded with a Guinier–
Hägg focusing camera with 1.9373 Å ironKa1 radiation;
silicon powder was used as an internal standard. The lattice
parameters and unit-cell volume are given in Table I.

The Curie temperatures were determined by magnetic
measurements on a Faraday balance at a heating and cooling
rate of 5°/min between 300 and 800 K. The samples were
sealed in an evacuated silica tube both to avoid oxidation
upon heating and to prevent hydrogen loss in the case of
NdFe11TiH. The magnetic properties were also measured be-
tween 4 and 300 K by using the extraction method in a field
of up to 9 T. During all of these magnetic studies the micro-
crystalline powder was free to rotate in the applied field. The
saturation magnetization,MS , has been obtained by extrapo-
lation of the isothermal magnetization to zero field. The re-
sulting Curie temperatures and saturation magnetization val-
ues are given in Table I.

The low temperature ac magnetic susceptibilities have
been obtained on a computer controlled mutual inductance
susceptometer at an exciting field of 1024 T and a frequency
of 1 kHz. A lock-in amplifier was used to measure the com-
plex susceptibility,xac5x82 j x9, wherex8 is the initial sus-
ceptibility, a quantity which is related to the variation in the
sample magnetization, andx9 is nonzero if magnetic energy
is absorbed by the sample. The temperature dependence of
the real component,x8, and the imaginary component,x9, of
the ac susceptibility have been measured in order to deter-
mine the temperatures of the magnetic phase transitions.
These measurements are very sensitive to the onset of the
magnetic phase transition caused by changes in the anisot-
ropy energy. The real portion of the ac susceptibility is de-
termined predominantly by the changes in both the magnetic
anisotropy energy and the domain wall energy.

The Mössbauer spectra have been measured between 4.2
and 295 K on a constant-acceleration spectrometer which
utilized a rhodium matrix cobalt-57 source and was cali-
brated at room temperature witha-iron foil. The Mössbauer
spectral absorbers contained 35 mg/cm2 of powdered sample
that had been sieved to a 0.045 mm or smaller diameter
particle size. The low temperature spectra were measured in
a Janis Super-Varitemp cryostat and the temperature was

TABLE I. Lattice parameters, Curie temperatures, and saturation magnetizations.

Compound a (Å) c (Å) c/a V (Å3) TC (K) Ms
5 K (mB) Ms

300 K (mB)

NdFe11Ti 8.574~2! 4.794~1! 0.5591~2! 352.4~1! 551~4! 21.9~2! 20.1~2!
NdFe11TiH 8.583~2! 4.815~1! 0.5610~2! 354.7~1! 614~4! 24.0~2! 21.6~2!
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controlled with a Lakeshore Cryogenics temperature control-
ler with an accuracy of better than 1% of the observed tem-
perature. The resulting spectra have been fit as discussed in
the following and the estimated errors are at most60.2 T for
the hyperfine fields and their incremental changes,60.01
mm/s for the isomer shifts and their incremental changes,
and 60.02 mm/s for the quadrupole shifts and their incre-
mental changes. The observed linewidths in the magnetic
spectra were typically 0.3860.02 and 0.3660.02 mm/s for
NdFe11Ti and NdFe11TiH, respectively.

III. MAGNETIC RESULTS

Both NdFe11Ti and NdFe11TiH order ferromagnetically
below Curie temperatures of 551 and 614 K, respectively.
Although the increase in unit cell volume upon hydrogena-
tion is smaller than in the analogousRFe11Ti compounds,16

the approximately 10% increase in the Curie temperature is
substantial. Further, the associated increase in the ordering
temperature upon hydrogenation is a common feature of the
RFe11Ti compounds.16

As may be seen in Table I, the saturation magnetization
of NdFe11Ti is significantly increased upon hydrogenation
both at 5 and 300 K. It is worth noting that, although an
increase in the iron sublattice magnetization has been
observed3,16 in otherRFe11Ti compounds, a reinforcement of
the neodymium sublattice magnetization upon hydrogenation
is also possible.

The ac susceptibility of NdFe11Ti, see Fig. 1~a!, exhibits
a peak inx8 at aTSR of ;185 K, a peak that corresponds to
a spin reorientation. Similar results have been reported
earlier12,14and attributed to a second-order spin reorientation
arising from the competition between the neodymium and
iron sublattice anisotropies. However, this reorientation was
later reinterpreted15 as corresponding to a first-order spin re-
orientation. AboveTSR and below the Curie temperature, the
uniaxial magnetic anisotropy of the iron sublattice is domi-
nant, whereas belowTSR the neodymium magnetocrystalline
anisotropy becomes more important and promotes a reorien-
tation of the magnetization. The shoulder inx8 that appears
between 230 and 250 K is associated with domain-wall mo-
tion that is excited by the ac field. Similar behavior has been
observed earlier14 both in NdFe11Ti and in other rare-earth
iron compounds,25–27 such as R2Fe14B, R2Fe17Hx , and
CeFe2 . At this point, it is uncertain why thex9 exhibits only
a small shoulder at 185 K and a major peak at 105 K but this
behavior, which was also observed14 earlier, may be associ-
ated, as will be discussed in the following, with the nature of
the spin reorientation.

The ac susceptibility of NdFe11TiH, see Fig. 1~b!, exhib-
its a sharp peak inx8 at a TSR of 10061 K, a peak that
clearly corresponds to a spin reorientation. Further, a pro-
nounced step beginning at;200 K, a step that is similar to
the shoulder observed in NdFe11Ti, see Fig. 1~a!, results
from domain-wall motion. The spin reorientation observed in
NdFe11TiH at 100 K is associated with an energy absorption
which manifests itself as a sharp peak in the temperature
dependence ofx9 at the inflexion point in the temperature
dependence ofx8, see Fig. 1~c!.

Hence, in going from NdFe11Ti to NdFe11TiH, the hy-
drogen insertion decreases the spin-reorientation temperature
as a result of the influence of hydrogen upon the magneto-
crystalline anisotropy. Indeed, previous investigations of the
RFe11TiH compounds have shown3,16 that the inserted hy-
drogen is a near neighbor of the rare earth and induces a
significant change in the crystalline electric field gradient at
the rare-earth site, a change that modifies the magnetic an-
isotropy. For example, an increase in the crystalline electric
field gradient at the gadolinium site in GdFe11Ti has been
observed28 by Gd-155 Mössbauer spectroscopy.

FIG. 1. The temperature dependence of the ac susceptibility of NdFe11Ti ~a!
and NdFe11TiH ~b!. The temperature dependence ofx9 and of the negative
temperature derivative ofx8 observed for NdFe11TiH ~c!.
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IV. MÖSSBAUER SPECTRAL MEASUREMENTS

The Mössbauer spectra of NdFe11Ti and NdFe11TiH, ob-
tained between 4.2 and 295 K, are shown in Figs. 2 and 3,
respectively. A visual inspection of these figures indicates
that the line shape profile of the spectra of NdFe11Ti changes
between 155 and 225 K and that of NdFe11TiH between 85
and 155 K. These changes reflect the presence of a spin-
reorientation transition within these temperature ranges,
changes that are in good agreement with the spin-
reorientation temperatures observed in Sec. III.

In RFe11Ti the iron and titanium atoms are randomly
distributed over the 8i sites, whereas the 8j and 8f sites are
fully occupied by iron atoms and, as a consequence, the iron
atoms on the 8f , 8i , and 8j sites have a random distribution
of near-neighbor environments, distributions that are as-
sumed to be binomial in nature. Thus the 8i sextet is subdi-
vided into three sextets with 6.47%, 10.79%, and 9.58% ar-
eas, and each of the 8f and 8j sextets are subdivided into
three sextets with 11.51%, 15.34%, and 9.38% areas, sextets
that represent spectral contributions from iron atoms with

zero, one, and two or more titanium near neighbors, respec-
tively.

Depending upon the magnetic structure, a further subdi-
vision of these nine spectral components may be necessary.
The point symmetry of the three iron sites in the ThMn12

structure indicates that the principal axis of the electric field
gradient,Vzz, is along the@100#direction for one half of the
8i and 8j sites, and along the@010# direction for the other
half. For one half of the 8f sites, Vzz is along the@110#
direction and for the other halfVzz is along the@1–10# di-
rection. In theRFe11Ti compounds, the magnetization and,
hence, the hyperfine field is along@001# in axial magnetic
compounds, or along@100#, @010#, @110#, or @1–10# in basal
magnetic compounds. As a consequence, multiple relative
orientations of the principal axis of the electric field gradient
and of the hyperfine field result in different angles,u, be-
tween these two directions and different quadrupole shifts
and hyperfine fields can result.

If the RFe11Ti compound exhibits a uniaxial magnetic
anisotropy, i.e., the easy magnetization direction is along the
crystallographicc axis, thenu is 90° for the 8f , 8i , and 8j
sites and no additional splitting of the nine spectral compo-

FIG. 2. The Mössbauer spectra of NdFe11Ti obtained between 4.2 and
295 K.

FIG. 3. The Mössbauer spectra of NdFe11TiH obtained between 4.2 and
295 K.
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nents described earlier is required. In contrast, if the com-
pound exhibits basal or canted magnetic anisotropy and the
magnetization lies in the@100# direction of the basal plane,
or in the plane defined by thec axis and the@100# direction,
there is a subdivision of the sextets representing the 8i and
8 j sites but no subdivision for the 8f site. In such a case,
each sextet assigned to the 8i and 8j sites has been subdi-
vided into two sextets of equal relative areas, 8i 1 and 8i 2 ,
and 8j 1 and 8j 2 , with identical isomer shifts but different
quadrupole shifts and, in some cases, slightly different hy-
perfine fields. When the easy magnetic direction is along
@110# or in the plane defined by the@110# direction and thec
axis, the situation is reversed and the 8f sextet is subdivided
into two, 8f 1 and 8f 2 , sextets of equal relative areas with
identical isomer shifts but different quadrupole shifts and
slightly different hyperfine fields; there is no further subdivi-
sion of the 8i and 8j sextets. This sextet subdivision is well
established for theR2Fe17 compounds, and it has been suc-
cessfully applied in the analysis of the Mo¨ssbauer spectra of
otherRFe11TiHx compounds.8–11

A given sextet is defined by three hyperfine parameters,
the hyperfine field,H, the isomer shift,d, and the quadrupole
shift, e. In order to build constraints into the model and to
reduce the number of adjustable parameters, we have as-
sumed that the three hyperfine parameters for each crystallo-
graphically inequivalent iron site change linearly with the
number of titanium near neighbors,n, such thatHn5H0

1nDH, dn5d01nDd, and en5e01nDe, whereH0 , d0 ,
ande0 are the hyperfine parameters with zero titanium near
neighbors andDH, Dd, andDe, are the changes in the hy-
perfine parameters for one additional titanium near neighbor.
A similar linear dependence of the hyperfine field on the
number of substitutional near-neighbor atoms has been suc-
cessfully used8–11,29–31 in the analysis of the Mo¨ssbauer
spectra of both theR2Fe172xMx solid solutions and
RFe11TiHx compounds.

Consequently, according to the above-presented model,
for an axial magnetic phase the Mo¨ssbauer spectra have been
fit with nine sextets, which have 18 hyperfine parameters,

one line width, and one total absorption area. In contrast, for
a nonaxial magnetic phase with the magnetization along
@100# the Mössbauer spectra have been fit with 15 sextets,
which have 26 hyperfine parameters, one line width, and one
total absorption area. If the magnetization is along@110# the
Mössbauer spectra have been fit with 12 sextets, which have
22 hyperfine parameters, one line width, and one total ab-
sorption area.

Herein, for both NdFe11Ti and NdFe11TiH below the
spin-reorientation temperature, the further subdivision of the
8i and 8j sextets is essential for obtaining acceptable fits of
the Mössbauer spectra as a function of temperature. As may
be seen in Figs. 2 and 3, the fits are very good to excellent;
the resulting hyperfine parameters are given in Tables II and
III. Alternative fits with a subdivision of the 8f sextets were
unsatisfactory. Consequently, we conclude that the Mo¨ss-
bauer spectra of NdFe11TiH observed below the spin-
reorientation temperature are consistent either with the iron
magnetic moments aligned along@100# within the basal
plane of the tetragonal unit cell or contained within the plane
defined by the@100#direction and thec axis of the unit cell.

In contrast to the present analysis, the earlier analyses of
the Mössbauer spectra of NdFe11Ti were too simple. Indeed,
the earlier Mo¨ssbauer spectra12 of NdFe11Ti have been fit
with two sextets for both the 8i and 8j sites, and one sextet
for the 8f site at all temperatures, without any justification
for the spectral deconvolution model. The hyperfine fields
reported12 at 80 and 295 K are smaller by 2 to 3 T than those
given in Table II. The origin of this difference may be in the
presence of some Nd2Fe17 impurity in the earlier sample.
The influence of the spin reorientation at 185 K on the Mo¨ss-
bauer spectra was not studied and the room temperature
Mössbauer spectrum of NdFe11Ti was fit7 with three sextets
which were assigned to the three iron sites with no attempt to
account for the titanium distribution or the orientation of the
iron magnetic moments. The assignment of these three sex-
tets to the three iron sites is compared with our assignments
in Sec. V.

TABLE II. Mössbauer spectral hyperfine parametersa for NdFe11Ti.

Parameter T (K) 8f 8i 1 8i 2 8 j 1 8 j 2 Wt Av

H0(DH), T 295 25.9~22.8! 31.0~21.8! ¯ 27.1~22.4! ¯ 25.4
225 27.5~22.8! 33.7~21.9! ¯ 29.0~22.7! ¯ 27.2
155 28.6~22.9! 37.0~22.4! 35.4~22.0! 29.6~21.7! 30.8~22.5! 28.8
85 29.1~22.9! 37.7~22.4! 35.8~22.0! 30.0~21.7! 31.4~22.5! 29.4
4.2 29.3~22.9! 38.3~22.8! 36.2~22.0! 30.5~21.8! 31.6~22.5! 29.6

d0
b ~Dd!, mm/s 295 20.161~0.005! 20.002~20.007! ¯ 20.134~0.000! ¯ 20.108

225 20.111~20.002! 0.059~20.006! ¯ 20.077~20.002! ¯ 20.055
155 20.046~20.024! 0.204~20.076! ¯ 20.007~20.006! ¯ 0.003
85 20.028~2.022! 0.228~20.071! ¯ 0.015~20.006! ¯ 0.025
4.2 20.022~20.024! 0.228~20.070! ¯ 0.019~20.009! ¯ 0.028

e0(De), mm/s 295 0.077~0.047! 0.132~20.005! ¯ 20.010~0.010! ¯ 0.078
225 0.098~0.019! 0.112~0.010! ¯ 20.042~0.001! ¯ 0.060
155 20.308~0.214! 0.015~20.027! 0.004~20.044! 0.245~20.084! 0.025~0.134! 0.011
85 20.314~0.191! 0.032~20.008! 0.012~20.061! 0.313~20.114! 20.066~0.169! 0.001
4.2 20.335~0.207! 0.053~20.053! 20.039~20.053! 0.337~20.127! 20.072~0.183! 0.002

aThe numbers in parentheses are the incremental hyperfine parameters observed for one titanium near neighbor.
bRelative to room temperaturea-iron foil.
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Because of the large number of parameters involved in
the above-given fits, one would anticipate that it would be
easy to obtain good spectral fits but that the resulting fits
might be far from unique. Hence, in Sec. V we discuss the
temperature dependencies of the hyperfine parameters and
indicate how the temperature dependence helps to instill con-
fidence in the spectral analysis, its physical applicability, and
the extent to which it is unique. Extensive past experience of
the authors indicates that it is not nearly as easy to obtain
good fits of the observed spectra as might be anticipated
especially when, as must be the case, physically acceptable
changes in the hyperfine parameters with temperature are
imposed upon the fits.

V. DISCUSSION

The assignment and temperature dependence of the three
hyperfine fields with zero titanium near neighbors, and their
weighted average, for NdFe11Ti and NdFe11TiH are shown in
Figs. 4~a! and 4~b!, respectively. A Wigner–Seitz cell
analysis32 of the three inequivalent iron sites inRFe11Ti and
RFe11TiH indicates that the 8i site has 11.75 iron near neigh-
bors, the largest average number of iron near neighbors,
whereas the 8f and 8j iron sites both have nine iron near

neighbors. Consequently, the sextets with the largest hyper-
fine field,H0 , have been assigned to the 8i site on the basis
of both its relative contribution to the spectral absorption
area and its iron near-neighbor environment. This assignment
is further supported by the isomer shifts observed for the
different sites, see the following. Because of both their iden-
tical constrained percentage spectral areas and their iron
near-neighbor environments, it is not possible to unequivo-
cally assign the 8f and 8j sextets on the basis of their fields
and their assignment is based on their isomer shifts, see the
following.

The solid lines in Fig. 4 are the result of a least-squares
fit with33

H5H0@12B3/2~T/TC!3/22C5/2~T/TC!5/2#,

whereH0 and TC are the saturation field and magnetic or-
dering temperature, respectively. TheT3/2 term in this equa-
tion has its origin in the excitation of long-wavelength spin
waves.34 For NdFe11Ti B3/2 and C5/2 are between 0.02 and
0.06 and for NdFe11TiH they are between 0.4 and 0.9, re-
spectively. It should be noted that the good fits obtained with

TABLE III. Mö ssbauer spectral hyperfine parametersa for NdFe11TiH.

Parameter T (K) 8f 8i 1 8i 2 8 j 1 8 j 2 Wt Av

H0(DH), T 295 27.7~22.7! 31.5~21.5! ¯ 28.9~22.9! ¯ 26.8
225 29.1~22.8! 33.5~21.7! ¯ 30.6~23.3! ¯ 28.2
155 30.3~23.2! 35.6~22.1! ¯ 31.5~23.1! ¯ 29.3
85 30.6~22.8! 38.5~22.3! 35.5~22.9! 33.9~23.7! 31.1~21.9! 30.2
4.2 30.8~22.9! 38.9~22.5! 35.3~22.9! 33.8~23.7! 31.6~21.9! 30.5

d0
b ~Dd!, mm/s 295 20.110~0.016! 20.032~0.020! ¯ 20.070~20.004! ¯ 20.064

225 20.058~0.011! 0.024~0.017! ¯ 20.020~20.002! ¯ 20.013
155 20.016~20.002! 0.134~20.010! ¯ 0.038~0.000! ¯ 0.041
85 0.008~20.013! 0.230~20.054! ¯ 0.031~0.013! ¯ 0.060
4.2 0.026~20.013! 0.234~20.054! ¯ 0.043~0.013! ¯ 0.072

e0(De), mm/s 295 0.001~0.161! 0.127~20.034! ¯ 0.078~20.066! ¯ 0.085
225 0.038~0.148! 0.122~20.034! ¯ 0.143~20.128! ¯ 0.095
155 0.034~0.149! 0.216~20.051! ¯ 0.112~20.059! ¯ 0.129
85 20.278~0.180! 20.109~0.023! 0.117~20.074! 0.409~20.096! 20.028~0.024! 20.085
4.2 20.304~20.188! 20.022~0.002! 0.034~20.040! 0.346~20.080! 0.004~0.040! 20.096

aThe numbers in parentheses are the incremental hyperfine parameters observed for one titanium near neighbor.
bRelative to room temperaturea-iron foil.

FIG. 4. The temperature dependence
of the maximum hyperfine fields,H0 ,
at the three iron sites, and their
weighted average, in NdFe11Ti ~a! and
in NdFe11TiH ~b!.
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the above-noted equation do not show any significant
changes at the respective spin-reorientation temperatures of
these compounds, see Fig. 4.

The changes in the hyperfine field per titanium near
neighbor are between22.960.1 T and22.560.5 T for
NdFe11Ti and 23.460.4 T and22.060.5 T for NdFe11TiH,
where the errors reflect the variations in the changes with
temperature between 4.2 and 295 K. The observed decreases
in the hyperfine fields upon the replacement of one iron by
one titanium near neighbor are similar to those
observed8–11,35 in the otherRFe11Ti compounds and their
hydrides, and are within the range of21.1 to 26 T
observed36,37 in a spinel oxide and in Nd2Fe16Ti, respec-
tively.

The 4.2 K maximum hyperfine fields of the 8f and 8j
iron sites in NdFe11Ti increase by;2 T upon hydrogenation,
whereas the 8i hyperfine field decreases by 0.3 T. At 295 K,
the changes in hyperfine field upon hydrogenation are
slightly different because of the concomitant increase in Cu-
rie temperature. The increase in the weighted average hyper-
fine field upon hydrogenation ranges between 0.5 and 1.5 T.
Similar changes were observed in relatedRFe11TiHx

compounds.8–11,35

Below the spin-reorientation temperatures, the difference
between the maximum hyperfine fields assigned to the pair
of magnetically inequivalent sites, 8i 1 and 8i 2 , ranges be-
tween 1.6 and 2.1 T for NdFe11Ti and is ;3 T for
NdFe11TiH. The differences between the maximum hyper-
fine fields assigned to the 8j 1 and 8j 2 sites are slightly
smaller at 1.260.2 T for NdFe11Ti and 2.560.3 T for
NdFe11TiH. The larger difference between the 8i hyperfine
fields is also observed8,10,11 in other RFe11TiHx compounds
with basal magnetization. The only exception is HoFe11Ti,
whose 8i hyperfine field shows9 a peculiar temperature be-
havior as a result of the increase in the 8i iron magnetic
moment below the spin-reorientation temperature. The sex-
tets associated with a pair of magnetically inequivalent sites
have different hyperfine fields because of the differing orbital
contributions to the field, as a consequence of the incomplete
quenching38,39 of the orbital moment, a quenching which re-
sults from the anisotropy in the spin–orbit coupling. Conse-

quently, the stronger anisotropy observed in the 8i hyperfine
field indicates that the orbital contribution to the 8i magnetic
moment is larger than that of the 8j magnetic moment.

The assignment and the temperature dependence of the
three site average isomer shifts, and their weighted average,
are shown in Figs. 5~a!and 5~b!, respectively. The site aver-
age isomer shifts have been calculated from thedn values
weighted by the percent contribution given by the binomial
distribution. In agreement with the Wigner–Seitz cell
analysis32 of the three inequivalent iron sites, the sequence of
isomer shifts, 8i .8 j .8 f , follows the sequence of Wigner–
Seitz cell volumes. A similar correlation between the isomer
shifts and the Wigner–Seitz cell volumes has been
observed8–11,30,31,35,40,41in many RFe11Ti, R6Fe13X, and
R2Fe17 compounds. In contrast, the sequence of isomer
shifts, 8j .8 f .8i , reported earlier7 doesnot correspond to
the sequence of Wigner–Seitz cell volumes.

The increase in the weighted average isomer shift upon
hydrogenation is;0.05 mm/s. A smaller increase in the 8i
isomer shift than in the other two isomer shifts is
observed8–11,31for all RFe11TiHx compounds, except whenR
is Tb. From the pressure dependence18 of the Curie tempera-
ture, a ‘‘negative’’ pressure of223 kbar was estimated16

from the increase in Curie temperature upon hydrogenation
of NdFe11Ti. The increase in isomer shift upon hydrogena-
tion may be compared with the pressure dependence of the
isomer shift ina-iron42 and in Gd2Fe17.23 Changes in isomer
shift of ;0.03 and;0.04 mm/s are observed for a positive
pressure of 25 kbar ina-iron and in Gd2Fe17, respectively.
Hence, by extrapolation to a ‘‘negative’’ pressure these
changes are very similar to the increase of;0.05 mm/s ob-
served herein.

The temperature dependence of the weighted average
isomer shifts shown in Figs. 5~a!and 5~b!has been fit with
the Debye model for the second-order Doppler shift.43,44 For
both compounds the resulting effective vibrating mass43 is,
as expected, 57 g/mol and the effective Mo¨ssbauer tempera-
ture is 350610 K. This temperature is typical of an interme-
tallic compound45,46 and is very similar to that found for
otherRFe11TiHx compounds.8–11,31,35

The quadrupole shifts for the three inequivalent iron

FIG. 5. The temperature dependence
of the three site average isomer shifts,
and their weighted average, in
NdFe11Ti ~a! and in NdFe11TiH ~b!.
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sites observed in the Mo¨ssbauer spectra of NdFe11Ti and
NdFe11TiH are relatively small and range between20.2 and
0.4 mm/s. Such small quadrupole shifts are expected because
Mössbauer spectral studies11,47 at 295 K of some related
paramagneticRFe11Ti and RFe11Mo compounds yield quad-
rupole splittings of, at most, 0.7 mm/s.

The temperature dependence of the average quadrupole
shift in NdFe11Ti and NdFe11TiH, see Tables II and III and
Fig. 6, reflects the spin reorientations occurring in both com-
pounds. Below the spin-reorientation temperatures, the aver-
age quadrupole shift is zero in NdFe11Ti and negative in
NdFe11TiH, and increases with increasing temperature up to
a value of;0.07 mm/s in the axial magnetic phase. Similar
changes in the average value of the quadrupole splitting at
the spin-reorientation temperature have also been observed
in the Mössbauer spectra of theRFe11TiHx compounds, com-
pounds which undergo spin-reorientation transitions.9–11

More specifically, in the axial magnetic phase, the average
quadrupole shift is positive at;0.10 mm/s whereas in the
planar magnetic phase, it is negative at;20.05 mm/s.9–11,31

Further, in a canted magnetic phase with a relatively large
canting angle, as in HoFe11TiH,9 the average quadrupole
shift is nearly zero. These results indicate that the average
quadrupole shift directly reflects the magnetic anisotropy. By
extrapolation of these observations to NdFe11Ti and
NdFe11TiH, the nearly zero value of the average quadrupole
shift observed in NdFe11Ti below its spin-reorientation tem-
perature indicates a canted magnetic phase with a canting
angle close to 54.7°, a value that is in good agreement with
the 60° value reported by Hu.48 In a similar fashion, the
average quadrupole shift of;20.07 mm/s observed in
NdFe11TiH below its spin-reorientation temperature indicates
a canting angle of between 60° and 90° or even a planar
magnetic phase.

In the RFe11Ti compounds, and more generally in the
RFe122xMx solid solutions, the occurrence of a spin reorien-
tation transition has also been found14,15,48to result from the
importance of the fourth- and sixth-order anisotropy terms,
terms which are the products of the rare-earth Stevens coef-
ficient and of the crystal field parameters. There have been
several attempts to determine the crystal field parameters in

the RFe11Ti compounds.12,14,15,28,48–51These parameters de-
pend upon the nature of the rare earth, but for a given rare
earth they will also vary because of the different approxima-
tions used by different authors. Even though the actual val-
ues must be accepted with care, they indicate that the inclu-
sion of the fourth- and sixth-order crystal field parameters,
together with the usually dominant second-order parameter,
is necessary to explain the magnetic properties and more
specifically the changes in the magnetic anisotropy of the
RFe11Ti compounds. For instance, the spin reorientation ob-
served in ErFe11Ti results from the importance of the sixth-
order term in the anisotropy energy.52,53

In the case of NdFe11Ti, large values of the fourth- and
sixth-order crystal-field parameters,A4

m and A6
0 have been

reported.14,15 In addition, neodymium is characterized by the
second-, fourth-, and sixth-order Stevens coefficients,aJ , of
20.64331022, bJ , of 22.91131024, andgJ , of 237.99
31026. Hence, the fourth- and sixth-order contributions to
the magnetic anisotropy energy, which are the products of
the crystal field parameters and the Stevens coefficients, can-
not be neglected and are particularly important in determin-
ing the canted magnetic structure at low temperature. Hydro-
gen insertion is known28 to increase the second order,A2

0,
crystal-field parameter but, to date, its influence upon the
higher order crystal-field parameters is unknown. So, hydro-
gen insertion in NdFe11Ti to form NdFe11TiH is expected to
reinforce the planar magnetic anisotropy of neodymium in
agreement with the increase in canting angle deduced from
the Mössbauer spectral results. Further, if hydrogen insertion
changes the importance of the higher order terms relative to
the second-order term in the magnetic anisotropy energy, the
hydrogen insertion may also change the spin-reorientation
temperature and the nature of the transition. Indeed, Hu has
shown48 that the energy surface in NdFe11Ti, as a function of
canting angle, exhibits two minima at 0 and 60° with an
energy minima difference of 10 K separated by a barrier of
;20 K. At 4.2 K, the minimum at 60° is lower in energy and
hence favored. In view of the small difference in minima
energies and the small intervening energy barrier, it is not
surprising that hydrogen insertion is capable of both chang-
ing the canting angle corresponding to the minima and the
height of the energy barrier. On the basis of the Mo¨ssbauer
spectral analysis, we believe that hydrogen insertion moves
the lowest minimum at 4.2 K to a canting angle of;90° and,
as is indicated by the lowering ofTSR, decreases the height
of the energy barrier.

VI. CONCLUSIONS

The magnetic properties of NdFe11Ti and NdFe11TiH
have been determined through combined ac magnetic sus-
ceptibility, thermomagnetic, and iron-57 Mo¨ssbauer spectral
studies. A significant increase in both the Curie temperature
and the saturation magnetization is obtained upon hydroge-
nation of NdFe11Ti to form NdFe11TiH. The results indicate
that NdFe11Ti and NdFe11TiH undergo a spin-reorientation
transition at;185 K and at 10061 K, respectively, from an
axial magnetic phase at higher temperatures to a canted or
basal magnetic phase at lower temperatures. The canted

FIG. 6. The temperature dependence of the weighted average quadrupole
shift in NdFe11Ti, closed symbols, and in NdFe11TiH, open symbols.
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magnetic structure of NdFe11Ti and NdFe11TiH and the low-
ering of the spin-reorientation temperature upon hydrogena-
tion result from an interplay of the second-, fourth-, and
sixth-order terms to the magnetic anisotropy energy.

The Mössbauer spectral study of NdFe11Ti supports the
existence of a canted magnetic phase at low temperature and
an axial phase at high temperature. The corresponding analy-
ses of the spectra are consistent with the iron moments
aligned parallel within the plane defined by the@100# direc-
tion and thec axis below the spin reorientation and with the
iron moments parallel to thec axis above the spin reorienta-
tion. The Mössbauer spectral study of NdFe11TiH and the
resulting hyperfine parameters indicate that it has a planar
magnetic structure below its spin-reorientation temperature
with the magnetic moments aligned along the@100#direction
and an axial magnetic structure above its spin-reorientation
temperature with the magnetic moments aligned along the
@001# direction. Finally, the temperature dependence of the
average quadrupole shift reveals itself as an excellent tool to
detect the presence of a spin reorientation in theRFe11TiHx

compounds.
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25E. H. Büchler, M. Hirsher, and H. Kronmu¨ller, in Interstitial Intermetallic

Alloys, edited by G. J. Long, F. Grandjean, and K. H. J. Buschow~Kluwer,
Dordrecht, 1994!, p. 521.

26L. M. Garcia, J. Bartolome´, F. J. Lazaro, C. De Francisco, J. M. Munoz,
and D. Fruchart, J. Magn. Magn. Mater.140–144, 1049~1995!.

27F. Grandjean, O. Isnard, D. Hautot, and G. J. Long, Phys. Rev. B63,
014406~2000!.

28O. Isnard, P. Vulliet, J. P. Sanchez, and D. Fruchart, J. Magn. Magn.
Mater.189, 47 ~1998!.

29G. J. Long, G. K. Marasinghe, S. Mishra, O. A. Pringle, Z. Hu, W. B.
Yelon, D. P. Middleton, K. H. J. Buschow, and F. Grandjean, J. Appl.
Phys.76, 6731~1994!.

30D. Hautot, G. J. Long, P. C. Ezekwenna, F. Grandjean, D. P. Middleton,
and K. H. J. Buschow, J. Appl. Phys.83, 6736~1998!.

31C. Piquer, O. Isnard, F. Grandjean, and G. J. Long, J. Magn. Magn. Mater.
263, 235~2003!.

32L. Gelato, J. Appl. Crystallogr.14, 141~1981!.
33H. N. Ok, K. S. Baek, and C. S. Kim, Phys. Rev. B24, 6600~1981!.
34C. Herring and C. Kittel, Phys. Rev.81, 869~1951!.
35G. J. Long, D. Hautot, F. Grandjean, O. Isnard, and S. Miraglia, J. Magn.

Magn. Mater.202, 100~1999!.
36J. L. Dormann, Rev. Phys. Appl.15, 1113~1980!.
37F. Grandjean, P. C. Ezekwenna, G. J. Long, O. A. Pringle, Ph. L’He´ritier,

M. Ellouze, H. P. Luo, and W. B. Yelon, J. Appl. Phys.84, 1893~1998!.
38M. T. Averbuch-Pouchot, R. Chevalier, J. Deportes, B. Kebe, and R. Le-

maire, J. Magn. Magn. Mater.68, 190~1987!.
39M. Kawakami, T. Hihara, Y. Koi, and T. Wakiyama, J. Phys. Soc. Jpn.33,

1591 ~1972!.
40D. Hautot, G. J. Long, F. Grandjean, O. Isnard, and S. Miraglia, J. Appl.

Phys.86, 2200~1999!.
41O. Isnard, G. J. Long, D. Hautot, K. H. J. Buschow, and F. Grandjean, J.

Phys.: Condens. Matter14, 12391~2002!.
42D. L. Williamson, S. Bukshpan, and R. Ingalls, Phys. Rev. B6, 4194

~1972!.
43R. H. Herber, inChemical Mo¨ssbauer Spectroscopy, edited by R. H. Her-

ber ~Plenum, New York, 1984!, p. 199.
44G. J. Long, D. Hautot, F. Grandjean, D. T. Morelli, and G. P. Meisner,

Phys. Rev. B60, 7410~1999!;62, 6829 ~2000!.
45F. Grandjean, O. Isnard, and G. J. Long, Phys. Rev. B65, 064429~2002!.
46G. J. Long, O. Isnard, and F. Grandjean, J. Appl. Phys.91, 1423~2002!.
47F. Grandjean, R. P. Hermann, and G. J. Long~unpublished!.
48B. P. Hu, Ph.D. thesis, University of Dublin, 1990.
49C. Abadia, P. A. Algarabel, B. Garcia-Landa, M. R. Ibarra, A. del Moral,

N. V. Kudrevatykh, and P. E. Markin, J. Phys.: Condens. Matter10, 349
~1998!.

50M. D. Kuzmin, J. Appl. Phys.88, 7217~2000!.
51O. Isnard, M. Guillot, S. Miraglia, and D. Fruchart, J. Appl. Phys.79,

5542 ~1996!.
52A. V. Andreev, V. Sechovsky, N. V. Kudrevatykh, S. S. Sigaev, and E. N.

Tarasov, J. Less-Common Met.144, L21~1988!.
53I. S. Tereshina, S. A. Nikitin, V. N. Nikiforov, L. A. Ponomarenko, V. N.

Verbetsky, A. A. Salamova, and K. P. Skokov, J. Alloys Compd.345, 16
~2002!.

6316 J. Appl. Phys., Vol. 95, No. 11, 1 June 2004 Piquer et al.


	A Magnetic and Mössbauer Spectral Study of the Spin Reorientation in NdFe₁₁Ti and NdFe₁₁TH
	Recommended Citation

	A magnetic and Mössbauer spectral study of the spin reorientation in NdFe11Ti and NdFe11TiH

