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Adaptive-Critic-Based Optimal Neurocontrol
for Synchronous Generators in a Power System

Using MLP/RBF Neural Networks
Jung-Wook Park, Member, IEEE, Ronald G. Harley, Fellow, IEEE, and

Ganesh Kumar Venayagamoorthy, Senior Member, IEEE

Abstract—This paper presents a novel optimal neurocontroller
that replaces the conventional controller (CONVC), which consists
of the automatic voltage regulator and turbine governor, to control
a synchronous generator in a power system using a multilayer
perceptron neural network (MLPN) and a radial basis function
neural network (RBFN). The heuristic dynamic programming
(HDP) based on the adaptive critic design technique is used
for the design of the neurocontroller. The performance of the
MLPN-based HDP neurocontroller (MHDPC) is compared with
the RBFN-based HDP neurocontroller (RHDPC) for small as well
as large disturbances to a power system, and they are in turn com-
pared with the CONVC. Simulation results are presented to show
that the proposed neurocontrollers provide stable convergence
with robustness, and the RHDPC outperforms the MHDPC and
CONVC in terms of system damping and transient improvement.

Index Terms—Adaptive critic design (ACD), heuristic dynamic
programming (HDP), multiplayer perceptron network (MLPN),
optimal neurocontroller, radial basis function network (RBFN),
synchronous generator.

INTRODUCTION

A SYNCHRONOUS generator in a power system is a
nonlinear fast-acting multiple-input–multiple-output

(MIMO) device [1], [2]. Conventional linear controllers
(CONVCs) for the synchronous generator consist of the auto-
matic voltage regulator (AVR) to maintain constant terminal
voltage and the turbine governor to maintain constant speed
and power at some set point. They are designed to control,
in some optimal fashion, the generator around one particular
operating point; and at any other point the generator’s damping
performance is degraded. As a result, sufficient margins of
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safety are included in the generator maximum performance en-
velope in order to allow for degraded damping when transients
occur. Due to a synchronous generator’s wide operating range,
its complex dynamics [3], [4], its transient performance, its
nonlinearities, and a changing system configuration, it cannot
be accurately modeled as a linear device.

Artificial neural networks (ANNs) offer an alternative for the
CONVC as nonlinear adaptive controllers. Researchers in the
field of electrical power engineering have until now used two
different types of neural networks, namely, a multilayer per-
ceptron network (MLPN), or a radial basis function network
(RBFN), both in single and multimachine power system studies
[3]–[7]. Proponents of each type of neural network have claimed
advantages for their choice of ANN, without comparing the per-
formance of the other type for the same study. The applications
of ANNs in the power industry are expanding, and at this stage
there is no authoritative fair comparison between the MLPN and
the RBFN [8], [9].

The authors’ earlier work comparing performance of the
above two ANNs for theindirect adaptive controlof the
synchronous generator showed that the RBFN-based neurocon-
troller improves the system damping and transient performance
more effectively and adaptively than the MLPN-based neu-
rocontroller [9]. Also, the different damping properties of
the above two neurocontrollers and the stability issue during
transients were analyzed and proven based on the Lyapunov
direct method. However, one cannot avoid the possibility of
instability during steady state at the various different operating
conditions when using the indirect adaptive control based
on the gradient descent algorithm. To overcome the issue of
instability and provide strong robustness for the controller,
the adaptive critic design (ACD) technique [10]–[16] for the
optimal control has been recently developed where the ANNs
are used to identify and control the process. Without the highly
extensive computational efforts and difficult mathematical
analyzes required by using the dynamic programming (DP) in
classical optimal control theory [17]–[20], the ACD technique
provides an effective method to construct an optimal and
robust feedback controller by exploiting backpropagation for
the calculation of all the derivatives of a target quantity [10],
[21] in order to minimize/maximize the heuristic cost-to-go
approximation.

In this paper, the background of adaptive critic designs with
relation to optimal control theory, and a general description

0093-9994/03$17.00 © 2003 IEEE
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for the MLPN/RBFN, are presented. Based on the heuristic
dynamic programming (HDP), which is a class of ACD family,
the two optimal neurocontrollers using the MLPN and RBFN
(called MHDPC and RHDPC, respectively) are designed. In
addition, their performances for the on-line control of syn-
chronous generators in an electric power grid (multimachine
power system as well as single machine connected to an infinite
bus (SMIB) system) are illustrated and compared with several
case studies by time-domain simulation.

I. BACKGROUND ON ACDS AND DESCRIPTION OF

MLPN/RBFN

How can the ANNs be applied to handle optimal control
theory at the level of human intelligence? As one approach for
solution of this problem, this section describes the framework
behind the adaptive critic neural network based design for
solving optimal control problems such as in the design of an
optimal controller for the nonlinear synchronous generator in
a power system network.

A. Optimal Control Problem

The continuous-time dynamic systems to be considered in
finite state problem are as follows:

(1)

where is the state vector at time, is
the vector of first-order time derivatives of the states at time
, is the control vector at time, is the

control constraint set, and is the terminal time. It is assumed
that the system function is continuously differentiable with
respect to and is continuous with respect to. Theadmissible
control functions, which are calledcontrol trajectories, are the
piecewise continuous functions with

for all . The task to be performed is to transfer the
state from a known initial state to a specified final state

in the target set of the state space. The task is implicitly
specified by the performance criteria , namely, optimal
cost-to-go function at timeand state .

(2)

where is the cost or penalty associated with the error in the
terminal state at time , and is the cost function associated
with transient state errors and control effort. Then, theoptimal
control problemcan be considered as finding the to
minimize the total cost function in (2) subject to the dynamic
system constraints in (1) and all initial and terminal boundary
conditions that maybe specified.

The Hamilton–Jacobi–Bellman (HJB) equation in (3), which
is analogous with the DP algorithm, gives the solution to deter-
mine optimal controls in offline by deriving a partial differential
equation satisfied by the functionwith assumed differentia-
bility as the sufficient condition

for all

for boundary condition (3)

where denotes partial derivatives with respect toand
denotes an -dimensional vector of partial derivatives with re-
spect to . The HJB equation in (3) requires to be known
at all values of and . However, the value of is possible
to be known at only one value of for each given in (4), and
therefore can be calculated more easily than the
HJB equation. This is known as theadjoint equationfor the op-
timal state trajectory

(4)

where is the optimal control trajectory with corresponding
state trajectory for all . Then, the generalization
of the calculus of variations known as thePontryagin’s Min-
imum Principleis summarized as follows:

(5)

(6)

(7)

for all (8)

B. ACDs

For constant coefficient systems of which the operating time
is very long, especially in real-time operation, it is often jus-
tifiable to assume that the terminal time is infinitely far in the
future, which is calledinfinite horizon problem. This approxi-
mation may cause little or no degradation in optimality because
the optimal time-varying gains such as thecostate equationin
(7) approach constant values in a few time stages. Thus, the op-
timal gains are constant for most of the operating period.

The continuous-time cost functionin (2) can be reformu-
lated as the total cost-to-go function of the infinite horizon
problem in (9) for the discrete-time dynamic system

(9)

where is a discrete-time index at each step, denotes
the cost associated with an initial state, and a control policy

, and is the discount factor .
The Bellman equation using the DP in (10) is iteratively solved
at each time step to find the optimal control corresponding
to the optimal cost-to-go function in (11)

for all (10)

for all (11)

where is a DP mapping function defined in (12) on the
state space for any function

(12)
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Fig. 1. Optimal controller design for infinite horizon problem: optimal control
theory versus ACDs.

However, the above optimal control theory cannot readily be
applied to deal with a large number of control variables of a
nonlinear dynamic system such as synchronous generators in a
multimachine power system. Also, the classical DP algorithm
requires extensive computations and memory, known as the
so-called “curse of dimensionality.” To overcome this problem,
several alternative methods have been proposed depending on
manner in which the cost-to-go approximation is selected, and
one of those approaches is the neuro-dynamic programming
(NDP) using some form of “least-squares fit” for the heuristic
cost-to-go approximation [19]. ACDs technique can be classi-
fied as one of the NDP families using function approximator
such as ANN architectures. In other words, this novel technique
provides an alternative approach to handle the optimal control
problem combining concepts of thereinforcement learning
and the approximate dynamic programming(ADP). The
illustration relating the optimal control theory to the ACD is
shown in Fig. 1. The ACD described in this paper uses three
different types of neural networks, namely, the critic, model,
and action. In Fig. 1, the utility function or cost function
to be minimized is called “reinforcement” in the ACD. In
applying the ANNs to reinforcement learning, there are two
major steps to account for the link betweenpresentactions and
futureconsequences for the ACD technique [10]. The first step
is to build a “model” network for identifying the plant, and use
backpropagation to calculate the derivatives of future utility
with respect to present actions through the model network. The
second step is to adapt a “critic” network, a special network
that outputs an estimate of the total future value of, which
will arise from the present and past states and the control
information. From the viewpoint of optimal control theory,
the backpropagation is the same as the first-order calculus of
variations to calculate the costate equation in (7) by taking the
derivatives.

Likewise in the adaptive critic, can be derived using the
ADP. In other words, the critic network learns to approximate
the heuristic cost-to-go function in (13)

(13)

where is the discount factor .
After minimizing the in (13) by the critic network, the

“action” network is trained with the estimated output backprop-
agated from the critic network to obtain the converged weight
for the optimal control .

The design and training of the model, critic, and action net-
works are described in Section III together with their mathemat-
ical analyses.

C. MLPN

In this paper, the MLPN consists of three layers of neurons
[input, hidden, and output layer as shown in Fig. 2(a)] intercon-
nected by the weight vectors, and .

The weights of the MLPN are adjusted/trained using the gra-
dient-descent-based backpropagation algorithm. The activation
function for neurons in the hidden layer is given by the following
sigmoidal function:

(14)

The output layer neurons are formed by the inner products
between the nonlinear regression vector from the hidden layer
and the output weight matrix, . Generally, the MLPN starts
with random initial values for its weights, and then computes a
one-pass backpropagation algorithm at each time step, which
consists of a forward pass propagating the input vector through
the network layer by layer, and a backward pass to update the
weights by the gradient descent rule. By trial and error, 14, 10,
and 13 neurons in the hidden layer for the model, action, and
critic network, respectively, are optimally chosen for this study.
These values depend on a tradeoff between convergence speed
and accuracy.

D. RBFN

Like the MLPN, the RBFN also consist of three layers
[Fig. 2(b)]. However, the input values are each assigned to
a node in the input layer and passed directly to the hidden
layer without weights. The hidden layer nodes are called RBF
units, determined by a parameter vector calledcenter and a
scalar calledwidth. The gaussian density function is used as an
activation function for the hidden neurons in Fig. 2(b).

The overall input–output mapping equation of the RBFN is
as follows:

(15)

where is the input vector, is the th center of RBF unit in
the hidden layer, is the number of RBF units, and are the
bias term and the weight between the hidden and output layers,
respectively, and is the th output. Once the centers of RBF



1532 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 5, SEPTEMBER/OCTOBER 2003

Fig. 2. Feedforward ANNs. (a) MLPN. (b) RBFN.

units are established, the width of theth center in the hidden
layer is calculated by (16)

(16)

where and are the th value of the center ofth and
th RBF units. In (15) and (16), represents the Euclidean

norm. There are four different ways for input–output mapping
using the RBFN, depending on how the input data is fed to the
network: [22].

• batch mode clustering of centers and batch mode gradient
descent for linear weights;

Fig. 3. Structure of the HDP configuration: action adaptation in HDP.

• batch mode clustering of centers and pattern mode gra-
dient descent for linear weights;

• pattern mode clustering of centers and pattern mode gra-
dient descent for linear weights;

• pattern mode clustering of centers and batch mode gra-
dient descent for linear weights.

To avoid the extensive computational complexity during
training, the batch mode -means clustering algorithm for
centers is initially calculated for the centers of the RBF unit.
Thereafter, the pattern mode least-mean-square (LMS) algo-
rithm is calculated to update the output linear weights [8], [9].
By trial and error, 12 neurons for the model network and six
neurons for the action and critic networks in the hidden layer
are optimally chosen for this study.

II. HDP NEUROCONTROLLER

The structure of the HDP configuration is shown in Fig. 3.
The critic network is connected to the action network through
the model network, and is therefore called a model-dependent
critic design. All these three different ANNs are described in the
following sections.

In the literature so far, only the MLPN has been reported
for the implementation of the ACD. In this paper, the perfor-
mance of an optimal neurocontroller based on the HDP using
the MLPN and RBFN is compared. The HDP is the simplest of
the ACDs, and it provides a framework to compare the perfor-
mance of two optimal neurocontrollers (MHDPC/RDHPC).

A. Plant Modeling

The synchronous generator, turbine, exciter, and transmission
system connected to an infinite bus in Fig. 4 form the plant
(dotted block in Fig. 4). that has to be controlled. Nonlinear
equations are used to describe and simulate the dynamics of
the plant in order to generate the data for the optimal neuro-
controllers. On a physical plant, this data would be measured.
The generator with its damper windings is described by the
seventh order– axis set of equations with the generator cur-
rent, speed, and rotor angle as the state variables [1], [2]. In the
plant, and are the real and reactive power at the generator
terminal, respectively, is the transmission line impedance,

is the mechanical input power to the generator, is the
exciter field voltage, is the infinite bus voltage, is the



PARK et al.: ADAPTIVE-CRITIC-BASED OPTIMAL NEUROCONTROL FOR SYNCHRONOUS GENERATORS 1533

Fig. 4. Plant model used for the control of a synchronous generator connected
to an infinite bus.

Fig. 5. Training of the model network using the backpropagation algorithm.

speed deviation, is the terminal voltage deviation, is the
terminal voltage, is the reference voltage deviation,
is the reference voltage, is the input power deviation, and

is the turbine input power.
The positions 1 and 2 of switches and in Fig. 4

determine whether the optimal neurocontroller (MHDPC or
RHDPC), or the CONVC consisting of governor and AVR, is
controlling the plant. Block diagrams and data for the CONVC
as well as the mathematical expression of transmission system
appear in the Appendix [5].

B. Design and Training of the Model Network

Fig. 5 illustrates how the model network (identifier) is trained
online to identify the dynamics of the plant in Fig. 4. At this
stage, there is no action network or critic network or CONVC
present. Switches and in Fig. 4 are in position 3. The
nonlinear autoregressive moving average with exogenous inputs
(NARMAX) model is used as the benchmark model for online
identification [8].

The input vector consists of the turbine input power
deviation and exciter input voltage deviation ,
that is, , and is fed into the plant
with the vector, . The input sig-
nals of are 5-Hz pseudorandom binary signals (PRBSs)

Fig. 6. Input power deviation PRBS applied to the turbine.

within 10% of the magnitude of the reference values of the
turbine input power and exciter input voltage at a
particular plant operating point. As an example, the PRBS of

is shown in Fig. 6.
The output vector of the plant consists of the speed

deviation and terminal voltage deviation , that
is, . The model network output

, where is the input vector to the
model network consisting of three time lags of system input
and output, respectively,

(17)
The residual vector given in (18) is used for updating

the model network’s weights during training by the
backpropagation algorithm

(18)

This training is carried out at several different operating
conditions within the stability limit of the synchronous gen-
erator until the training error has converged to a small value
so that if training were to stop, and the weights fixed, then
the neural network would continue to identify the plant cor-
rectly after changing the operating conditions. At this point,
the model network has reachedglobal convergence, and its
weights are held fixed during the training of the critic and
action networks. The steps of training for the critic and action
networks are described in Section III-E below. The result for
online identification of , after the weights have been fixed at

s, in Fig. 7, shows that both the MLPN- and RBFN-based
model networks are able to correctly identify the dynamics of
the plant.

The details of the training time and computational complexity
to process the data by the MLPN- and RBFN-based identifiers,
are shown in [8] and [9].

C. Critic Network

The critic network in the HDP approximates the function
itself in (13). The configuration for training the critic network is



1534 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 5, SEPTEMBER/OCTOBER 2003

Fig. 7. Online training of the model network: speed deviation response.

Fig. 8. Critic adaptation in HDP: the same critic network is shown for two
consecutive times,k + 1 andk. The critic’s outputJ (R(k + 1)) at time
k+1 is necessary for the ADP to generate a target signal
J (R(k+1))+
U (R(k)) for training the critic network.

shown in Fig. 8. The Bellman equation in DP in (10) is imple-
mented by the ADP using two critic networks. From (10), we
get the following:

(19)

Note that the time indexing in (19) needs to be reversed for
the problem discussed in this paper. In other words, the ini-
tial cost-to-function at time zero has a positive valuebe-
cause the initial weights of critic network are randomly
chosen and the value of is kept minimizing as the time goes
to an infinite. Therefore, the following error equation for the
adaptation of critic network can be obtained:

(20)

where and is a vector of observables of the plant,
which are the output vectors from the model network in Fig. 5
at present and two consecutive past time stages.

Then, the critic network’s weights are updated as fol-
lows:

(21)

(22)

where is the positive learning rate.
The training for critic network by the backpropagation algo-

rithm is carried out until the value of is minimized as small

as possible, which is almost zero. This adaptation process is
considered as thevalue iterationin (12) to reach the optimal
cost-to-go function in (11) by the ADP provided from two
critic neural networks.

D. Action Network

The input of the action network in Fig. 3 is the output vector
of the plant, and its two time-delayed values. The output of
the action network is .

The objective of the action network shown in Fig. 3 is to find
the optimal control , as in (8), to minimize in the imme-
diate future, thereby optimizing the overall cost expressed as a
sum of all over the horizon of the problem in (13). This
is achieved by training the action network with an error vector

in (23).

(23)

The derivative of the cost function with respect to
in (23) is obtained by backpropagating (recall

that the HDP approximates the function itself.) through
the critic network and then through the pretrained model
network to the action network. This gives
and in Fig. 3 for the weights and the
output vector of the action network. The expression for
the weights’ update in the action network is given in (24)

(24)

where is the positive learning rate. The mathematical closed
forms of and are given in
(25) and (26) for the MLPN and RBFN, respectively, as shown
at the bottom of the next page, where definitions are as follows.

• is target value.
• is the number of neurons in the hidden layer.
• is the output of the activation function for a neuron.
• is the regression vector as the activity of a neuron.
• and denote the output and hidden layer, respectively.
• The subscripts M and C forcenter andwidth of the

RBFN denote the model and critic network, respectively.
• The function is the sigmoidal function in (14).
• The function is the Gaussian density function defined

in the right-hand side in (15) as an exponential form.

E. Training Procedure for the Critic and Action Networks

The online training procedure for the critic and action net-
works (with the model network’s weights fixed) is explained in
more detail in [10] and [12]. It consists of two training cycles:
one for the critic network and the other for the action network.

The critic network’s training is carried out first with the
switches and in position 3 (with initial weights of the
action network that ensure stabilizing control at an operating
point) until convergence is reached as illustrated in Fig. 9.

The critic network’s weights are initialized with small
random values, and in its training cycle, the incremental
optimization is carried out by (20)–(22). The critic network’s
weights are now fixed, and training of the action network
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Fig. 9. Training procedure for the critic and action networks.

continues by using (23) and (24) until convergence of the action
network’s weights are achieved.

The action network’s weights are now fixed, the plant op-
erating condition is changed, and training of the critic network
starts again. In this way, the training alternates between the critic
and action networks while from time to time changing the plant
operating point.

The convergence of the action network’s weights means that
the training procedure has found weights that yield optimal con-
trol like the in (8) for the plant under consideration. The re-

sult of critic network’s training using the MLPN and RBFN is
illustrated in the Appendix. The discount factorof 0.5 and the
utility function given in (27) are used for the heuristic cost-to-go
function in (13)

(27)

After the above training procedure has been carried out,
switches and are moved to position 1, and training
continues for large disturbances applied to the plant.

(25)

(26)
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Fig. 10. �5% step changes in reference voltage of exciter: rotor angle.

Fig. 11. �5% step changes in reference voltage of exciter: terminal voltage.

Fig. 12. Three-phase short-circuit test: rotor angle.

III. CASE STUDIES IN AN SMIB SYSTEM

After training the critic and action network on-line with
the acceptable performance, the MHDPC and RHDPC with
fixed weights are ready to control the plant for the real-time
operation. The performances of the optimal neurocontrollers,
which are the MHDPC and RHDPC trained with deviation
signals, are compared with CONVC for the improvement of

Fig. 13. Three-phase short-circuit test: terminal voltage.

Fig. 14. Three-phase short-circuit test: rotor angle response atP = 1:1 pu
andQ = 0:19 pu operating point.

Fig. 15. Three-phase short-circuit test: terminal voltage response at
P = 1:1 pu andQ = 0:19 pu operating point.

system damping and transient stability. Two different types
of disturbances, namely, a5% step change in the reference
voltage of exciter and a three phase short circuit at the infi-
nite bus, are carried out to evaluate the performance of the
controllers.
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Fig. 16. Multimachine power system with two ACD neurocontrollers connected to generators G1 and G2.

Fig. 17. Terminal voltage of G1 for a 4% step change in reference voltage
V of exciter.

A. 5% Step Changes in the Reference Voltage of Exciter

The plant is operating at a steady-state condition ( ,
, and ). At , a 5%

step increase in the reference voltage of the exciter is applied.
At , the 5% step increase is removed, and the system
returns to its initial operating point. The results in Figs. 10 and
11 show that the optimal neurocontrollers improve the transient
system damping compared to the CONVC, and that the RHDPC
outperforms the MHDPC, i.e., the RHDPC has the faster tran-
sient response than the MHDPC.

B. Three-Phase Short-Circuit Test to Represent a
Large-Impulse-Type Disturbance

A severe test is now carried out to evaluate the performances
of the controllers under a large disturbance. At s, a tem-
porary three-phase short circuit is applied at the infinite bus for
100 ms from s to 0.4 s for the plant operating at the
same steady state condition as previous test. The results com-
paring the performance of the MHDPC, RHDPC, and CONVC,

Fig. 18. Speed deviation of G1 for a 4% step change in reference voltageV

of exciter.

Fig. 19. Output of the critic networkJ versus training time using the MLPN
and RBFN.
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Fig. 20. Multimachine power system with the CONVCs.

Fig. 21. Block diagram of the AVR and exciter combination.

are shown in Figs. 12 and 13. They show that the optimal neuro-
controllers (MHDPC/RHDPC) damp out the low frequency os-
cillations for the rotor angle and terminal voltage more
effectively than the CONVC.

C. Three-Phase Short-Circuit Test Close to the Stability Limit

In order to test the robustness of the proposed neurocon-
trollers, the plant pre-fault operating point is now changed
to a different steady state condition from the previous tests.
The active power from the generator is increased by 10% to

, and pu , which is closer to the
stability limit of the generator. At s, the same 100 ms
three phase short circuit is again applied at the infinite bus.
The same controller parameters for the MHDPC, RDHPC, and
CONVC, used in previous tests, are again used.

The performances of the CONVC, MHDPC, and RHDPC in
Figs. 14 and 15 show that the synchronous generator controlled
by the CONVC goes unstable and loses synchronism after the
disturbance. In contrast, the two neurocontrollers damp out the
oscillations and restore the generator to a stable mode. This
means that a generator equipped with neurocontrollers based
on the HDP algorithm can be operated at 110% power and still
remain stable after such a severe fault. This has major implica-
tions on being able to produce more power per dollar of invested
capital.

TABLE I
TIME CONSTANTS AND GAINS OF AVR-EXCITER/TURBINE–GOVERNOR

SYSTEMS

Also, these results prove the robustness of the neurocon-
trollers, which provides a good damping performance under
the different operating conditions (close to stability limit of
the synchronous generator) with feedback loop parameters
determined from the infinite horizon optimal control problem.
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Fig. 22. Block diagram of the turbine and governor combination.

IV. CASE STUDY IN A MULTIMACHINE POWER SYSTEM

The feasibility of the adaptive critic based neurocontroller
on the multimachine power system shown in Fig. 16 is now
evaluated. Two generators (G1 and G2) are equipped with the
CONVC and then with an adaptive-critic-based neurocontroller.
The neurocontoller, which has the model, critic, and action net-
works, as before, is trained for each generator as described for
the SMIB system earlier in this paper, at different operating
points. The multimachine power system with the conventional
controllers is shown in Section B of the Appendix, and their
parameters are identical to those in Sections D and E of the Ap-
pendix.

To evaluate the dynamic performances of the controllers, the
two generators are operated at an operating condition (

, and ,
), and a 4% step increase in the reference voltage

of the exciter connected to the G1 occurs at . The
results of this change appear in Figs. 17 and 18. This shows that
the proposed neurocontroller ensures superior transient (for the
terminal voltage change) and damping (for the low-frequency
oscillation of speed deviation) responses of the system com-
pared to the CONVC.

V. CONCLUSION

This paper has shown the adaptive critic neural network de-
sign as an alternative to the classical optimal control method.
The MLPN- and RBFN-based HDP optimal neurocontrollers
(MHDPC/RHDPC) have been designed for the control of a syn-
chronous generator in a single machine connected to an infinite
bus (SMIB) system and on two generators in a multimachine
power system.

The results show that not only do the optimal neurocontrollers
improve the system damping and dynamic transient stability
more effectively than the CONVC for the large disturbance such
as a three phase short circuit, but also the RHDPC has a faster
transient response than the MHDPC for a small disturbance
like 5% step changes in the reference voltage of the exciter
in a SMIB system. Moreover, the performance of the proposed
ACD-based neurocontroller also demonstrates the usefulness of
this technique on a practical multimachine power system.

APPENDIX

A. Results of Critic Network’s Training

The results of the critic network’s on-line training using the
MLPN and RBFN are shown in Fig. 19. With respect to the
output of the critic network , it can be observed that the critic

network based on the RBFN has a faster convergence capability
than the critic network using the MLPN.

B. Multimachine Power System With CONVCs

See Fig. 20.

C. Transmission Line

The transmission line system in Fig. 4 is modeled with the
- equations given in (A.1) and (A.2)

(A.1)

(A.2)

D. AVR and Exciter System

The conventional AVR and exciter combination transfer func-
tion block diagram is shown in Fig. 21. The time constants/gains
are given in Table I. The exciter saturation factoris given by
(A.3). , , , and are the time constants of the PID
voltage regulator compensator; is the input filter time con-
stant; is the exciter time constant; is the AVR gain;
and are AVR maximum and minimum ceilings

(A.3)

E. Turbine and Governor System

The turbine and governor combination transfer function block
diagram is shown in Fig. 22, and the time constants/gain are also
given in Table I. The output power of the turbine is limited be-
tween zero and 120%. and are the time constants for
phase advance compensation, is the servo motor time con-
stant, is the entrained steam delay, is the steam reheat
time constant, is the pu shaft output ahead of reheater, and

is the governor gain.
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