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Adaptive-Critic-Based Optimal Neurocontrol
for Synchronous Generators in a Power System
Using MLP/RBF Neural Networks

Jung-Wook ParkMember, IEEE Ronald G. Harley Fellow, IEEE and
Ganesh Kumar Venayagamoorfl8enior Member, IEEE

Abstract—This paper presents a novel optimal neurocontroller safety are included in the generator maximum performance en-
that replaces the conventional controller (CONVC), which consists yelope in order to allow for degraded damping when transients
of the automatic voltage regulator and turbine governor, to control occur. Due to a synchronous generator’s wide operating range,

a synchronous generator in a power system using a multilayer . . . . .
perceptron neural network (MLPN) and a radial basis function 1tS complex dynamics [3], [4], its transient performance, its

neural network (RBFN). The heuristic dynamic programming honlinearities, and a changing system configuration, it cannot
(HDP) based on the adaptive critic design technique is used be accurately modeled as a linear device.
for the design of the neurocontroller. The performance of the  artificial neural networks (ANNSs) offer an alternative for the

MLPN-based HDP neurocontroller (MHDPC) is compared with . . .
the RBFN-based HDP neurocontroller (RHDPC) for small as well CONVC as nonlinear adaptive controllers. Researchers in the

as large disturbances to a power system, and they are in turn com- field of electrical power engineering have until now used two
pared with the CONVC. Simulation results are presented to show different types of neural networks, namely, a multilayer per-
that the proposed neurocontrollers provide stable convergence ceptron network (MLPN), or a radial basis function network
‘é"gth\(/’g”if‘t:‘;Srﬁé ‘g‘?g tsr:n?gaDnF;C' OUtpzrforme the MHDPC and - pgEN), both in single and multimachine power system studies
y ping and transient improvement. [3]-[7]. Proponents of each type of neural network have claimed

Index TQFmS;AD%aptiveltc_filtiC design (AtCD), hethiSLiC &{nsmc advantages for their choice of ANN, without comparing the per-

rogrammin multiplayer perceptron networ : .
gpti?nal neu?oéontrca)l]er, ragia?/bagis furl?ction network((RBFl\l)j, formancg of the other _type for the same St.Udy' The app!lcatlons
synchronous generator. of ANNs in the power industry are expanding, and at this stage
there is no authoritative fair comparison between the MLPN and
the RBFN [8], [9].
INTRODUCTION The authors’ earlier work comparing performance of the
SYNCHRONOUS generator in a power system is above two ANNs for theindirect adaptive controlof the

nonlinear fast-acting multiple-input—-multiple-outpuynchronous generator showed that the RBFN-based neurocon-
(MIMO) device [1], [2]. Conventional linear controllerstrollerimproves the system damping and transient performance

(CONVCs) for the synchronous generator consist of the autgiore effectively and adaptively than the MLPN-based neu-

matic voltage regulator (AVR) to maintain constant termindPcontroller [9]. Also, the different damping properties of

voltage and the turbine governor to maintain constant spelé@ above two neurocontrollers and the stability issue during
and power at some set point. They are designed to contié@nsients were analyzed and proven based on the Lyapunov

in some optimal fashion, the generator around one particuféirect method. However, one cannot avoid the possibility of
Operating p0|nt' and at any other point the generator’s damp“ﬁ@t&blllt}/ during Steady state at the various different Operating

performance is degraded. As a result, sufficient margins @pnditions when using the indirect adaptive control based
on the gradient descent algorithm. To overcome the issue of

instability and provide strong robustness for the controller,

L N
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for the MLPN/RBFN, are presented. Based on the heuristichereV, denotes partial derivatives with respect:tand V
dynamic programming (HDP), which is a class of ACD familydenotes am-dimensional vector of partial derivatives with re-
the two optimal neurocontrollers using the MLPN and RBFNpect tox. The HIB equation in (3) requirés, J to be known
(called MHDPC and RHDPC, respectively) are designed. ht all values ofk and¢. However, the value oV, J is possible
addition, their performances for the on-line control of syrto be known at only one value af for eacht given in (4), and
chronous generators in an electric power grid (multimachitieereforeV, J(¢,x*(t)) can be calculated more easily than the
power system as well as single machine connected to an infinitdB equation. This is known as thejoint equatiorfor the op-
bus (SMIB) system) are illustrated and compared with sevetihal state trajectory
case studies by time-domain simulation. )

u*(t) = arg min [g (x*(t),u) + V. J (¢, x*())

ucU
|. BACKGROUND (;/INL,SEI/D;B?:N“? DESCRIPTION OF +V.J (t,x*(t))'f(x*(t),u)] 4)
How can the ANNs be applied to handle optimal contrgvhereu*(t) is the optimal control trajectory with corresponding
theory at the level of human intelligence? As one approach féi@ate trajectork™(t) for all ¢ € [0, 7. Then, the generalization
solution of this problem, this section describes the framewofk the calculus of variations known as tRentryagin's Min-
behind the adaptive critic neural network based design fpuUM Principleis summarized as follows:
solving optimal control problems such as in the design of an

optimal controller for the nonlinear synchronous generator in po(t) = VeI (X7 (1)), po(t) =0 (5)
a power system network. p(t) =V (t,x7(t)), p(T) = Vh(x*(T)) (6)
, P(t) = = Vi f (x7(8),u(2)) p(t) — Vg (X" (£),u*(£)X7)
A. Optimal Control Problem w(t) = arg min [ (x* (), w) + p(t)'f (x*(t), 0)],
The continuous-time dynamic systems to be considered in uey
finite state problem are as follows: forallz € [0,77. (8)

x(t) = f(x(t),u(t),t), 0<t<T @)
wherex(t) € R is the state vector at timg x(¢) € R is B. ACDs
the vector of first-order time derivatives of the states at time For constant coefficient systems of which the operating time
t,u(t) € U c R™ is the control vector at tim¢, U is the is very long, especially in real-time operation, it is often jus-
control constraint set, arifl is the terminal time. It is assumedtifiable to assume that the terminal time is infinitely far in the
that the system functiorf is continuously differentiable with future, which is callednfinite horizon problemThis approxi-
respect tax and is continuous with respectio Theadmissible mation may cause little or no degradation in optimality because
control functions, which are callezbntrol trajectories are the the optimal time-varying gains such as thestate equatiom
piecewise continuous functiofsi(t)|t € [0, 7]} with u(t) € (7) approach constant values in a few time stages. Thus, the op-
U for all t € [0, T]. The task to be performed is to transfer théimal gains are constant for most of the operating period.
state from a known initial state(0) to a specified final state  The continuous-time cost functighin (2) can be reformu-
x(T) in the target set of the state space. The task is implicitlted as the total cost-to-go function of the infinite horizon
specified by the performance critelddt, x), namely, optimal problem in (9) for the discrete-time dynamic system
cost-to-go function at timé and statex.

T Jo(x0) = > 7*g (x(k), u(k)) )
Jex) = (D) + [sxOu@)d @ o=t
_ 0 . _ ~wherek is a discrete-time index at each stdp,(x() denotes
where/, is the cost or penalty associated with the error in thgie cost associated with an initial statg, and a control policy
terminal state at tim@’, andyg is the cost function associated; — {u,, u,,...}, andy is the discount factof0 < v < 1).
with transient state errors and control effort. Then,apémal The Bellman equation using the DP in (10) is iteratively solved

control problemcan be considered as finding the € U to 4t each time step to find the optimal contrg! corresponding
minimize the total cost functiod in (2) subject to the dynamic tg the optimal cost-to-go functiodi* in (11)

system constraints in (1) and all initial and terminal boundary
conditions that maybe specified. Jk41(x) = min [g(x,u) + Ik (f(x,0))],
The Hamilton—Jacobi—-Bellman (HJB) equation in (3), which uey

is analogous with the DP algorithm, gives the solution to deter- k=0,1,...

mine optimal controls in offline by deriving a partial differential Jo(x) =0,  forallx (10)

equation satisfied by the functiahwith assumed differentia- J*(x) = lim (T*J)(x), foralxe S (11)
k—oo

bility as the sufficient condition
0 = min [g(x, 1) + V,J(£,%) + VoI (£, %) f(x, u)] where(7TJ)(x) is a DP mapping function defined in (12) on the

ueU state spacé for any functionJ : S — R
for all t,x .
J(T,x) =h(x), for boundary condition (3) (TI)(x) = S lg(x, w) +4J (f(x, W)l (12)
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Optimal control
theory

Likewise in the adaptive critid © (k) can be derived using the
ADP. In other words, the critic network learns to approximate
the heuristic cost-to-go function in (13)

Optimal control Reinforcement

Performance criteria ) o
problem leirnmg .]C(k) — Z’YPUC(k +p) (13)

p=0

Iy =Y ¥ U (k+p)

p=0

T,(50) = Y v glx(),u(o)
k=0

L Pontryagin's

DP minimum principle

where~ is the discount factof0 < v < 1).

After minimizing theJC in (13) by the critic network, the
“action” network is trained with the estimated output backprop-
agated from the critic network to obtain the converged weight
for the optimal control*.

The design and training of the model, critic, and action net-

Costate equation Backpropagation works are described in Section Il together with their mathemat-
Y ¥ ical analyses.
Optimal control, u’ Action network
’ Infinite horizon u C. MLPN
y problem y In this paper, the MLPN consists of three layers of neurons

Constant feedback gain DR EEN Neuro-feedback gain [input, hidden, and output layer as shown in Fig. 2(a)] intercon-
nected by the weight vectord/ andV'.

The weights of the MLPN are adjusted/trained using the gra-
Fig. 1. Optimal controller design for infinite horizon problem: optimal controfjient-descent-based backpropagation algorithm. The activation
theory versus ACDs. function for neurons in the hidden layer is given by the following

sigmoidal function:

However, the above optimal control theory cannot readily be 1
applied to deal with a large number of control variables of a D(x)
nonlinear dynamic system such as synchronous generators in a
multimachine power system. Also, the classical DP algorithm The output layer neurons are formed by the inner products
requires extensive computations and memory, known as thetween the nonlinear regression vector from the hidden layer
so-called “curse of dimensionality.” To overcome this problenand the output weight matri¥/. Generally, the MLPN starts
several alternative methods have been proposed dependingvih random initial values for its weights, and then computes a
manner in which the cost-to-go approximation is selected, ande-pass backpropagation algorithm at each timelstaich
one of those approaches is the neuro-dynamic programmuuansists of a forward pass propagating the input vector through
(NDP) using some form of “least-squares fit” for the heuristithe network layer by layer, and a backward pass to update the
cost-to-go approximation [19]. ACDs technique can be classieights by the gradient descent rule. By trial and error, 14, 10,
fied as one of the NDP families using function approximatand 13 neurons in the hidden layer for the model, action, and
such as ANN architectures. In other words, this novel technigagtic network, respectively, are optimally chosen for this study.
provides an alternative approach to handle the optimal contfidiese values depend on a tradeoff between convergence speed
problem combining concepts of theinforcement learning and accuracy.
and the approximate dynamic programmingADP). The
illustration relating the optimal control theory to the ACD idD. RBFN
shown in Fig. 1. The ACD described in this paper uses three jke the MLPN, the RBFN also consist of three layers
different types of neural networks, namely, the critic, modefrig. 2(b)]. However, the input values are each assigned to
and action. In Fig. 1, the utility function or cost functi@® 5 node in the input layer and passed directly to the hidden
to be minimized is called “reinforcement” in the ACD. Injayer without weights. The hidden layer nodes are called RBF
applying the ANNs to reinforcement learning, there are tWgnits, determined by a parameter vector cakesterand a
major steps to account for the link betwegmeseniactions and gcalar calledvidth. The gaussian density function is used as an
futureconsequences for the ACD technique [10]. The first ste:tivation function for the hidden neurons in Fig. 2(b).

backpropagation to calculate the derivatives of future utilitys follows:

with respect to present actions through the model network. The )
second step is to adapt a “critic” network, a special network - IX — Cj||2
yi =b;i + Z’Uji exp | —
Jj=1

= Tt om(-a) (14)

that outputs an estimate of the total future valu@f, which (15)

B3
will arise from the present and past states and the control !
information. From the viewpoint of optimal control theorywhereX is the input vectorC; is the;jth center of RBF unitin
the backpropagation is the same as the first-order calculustiog hidden layer is the number of RBF unit$; andv;; are the
variations to calculate the costate equation in (7) by taking th&as term and the weight between the hidden and output layers,
derivatives. respectively, and; is thesth output. Once the centers of RBF
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oL > Plant > Yo
JE(k)
» Action || Ak -
\\ Netowork| ) Critic Netwqr_k- <« —-
\ <o 1
\ Y TDL y
\ TDL |
\ Y., (k |
\ (k) |
N
eA(k)=";'L (If) \ Model Network : 23° )
B v e o Crmmmmmnees <= 5V, (b

Fig. 3. Structure of the HDP configuration: action adaptation in HDP.

» batch mode clustering of centers and pattern mode gra-
dient descent for linear weights;

* pattern mode clustering of centers and pattern mode gra-
dient descent for linear weights;

(a) * pattern mode clustering of centers and batch mode gra-

] dient descent for linear weights.

To avoid the extensive computational complexity during
training, the batch modé-means clustering algorithm for
centers is initially calculated for the centers of the RBF unit.
Thereafter, the pattern mode least-mean-square (LMS) algo-
rithm is calculated to update the output linear weights [8], [9].
By trial and error, 12 neurons for the model network and six
neurons for the action and critic networks in the hidden layer
are optimally chosen for this study.

Input Layer Hidden Layer =~ Output Layer

II. HDP NEUROCONTROLLER

The structure of the HDP configuration is shown in Fig. 3.
The critic network is connected to the action network through
the model network, and is therefore called a model-dependent
critic design. All these three different ANNs are described in the
following sections.

In the literature so far, only the MLPN has been reported

: for the implementation of the ACD. In this paper, the perfor-
Input Layer Hidden Layer  Output Layer mance of an optimal neurocontroller based on the HDP using
(b) the MLPN and RBFN is compared. The HDP is the simplest of
the ACDs, and it provides a framework to compare the perfor-
Fig. 2. Feedforward ANNs. (a) MLPN. (b) RBEN. mance of two optimal neurocontrollers (MHDPC/RDHPC).

. . . ) , i A. Plant Modeling
units are established, the width of tft center in the hidden

layer is calculated by (16) The synchronous generator, turbine, exciter, and transmission
system connected to an infinite bus in Fig. 4 form the plant
A n 3 (dotted block in Fig. 4). that has to be controlled. Nonlinear

B; = 1 Z Z (leki — ex;ll) (16) equations are used to describe and simulate the dynamics of

h 1 k=1 the plant in order to generate the data for the optimal neuro-

controllers. On a physical plant, this data would be measured.
wherecy; andcy; are thekth value of the center ofth and The generatofG) with its damper windings is described by the
Jjth RBF units. In (15) and (16)} - || represents the Euclideanseventh ordeii—¢ axis set of equations with the generator cur-
norm. There are four different ways for input-output mappingnt, speed, and rotor angle as the state variables [1], [2]. In the
using the RBFN, depending on how the input data is fed to thgant, P, andQ, are the real and reactive power at the generator
network: [22]. terminal, respectivelyZ. is the transmission line impedance,
+ batch mode clustering of centers and batch mode gradigy is the mechanical input power to the generaigy; is the
descent for linear weights; exciter field voltageV, is the infinite bus voltageAw is the
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Fig. 4. Plant model used for the control of a synchronous generator connec 0 1 2 3 4 5 6
to an infinite bus. Time in seconds

Fig. 6. Input power deviation PRBS applied to the turbine.

Ref() Y.
U(k) — within £10% of the magnitude of the reference values of the
(PRBS) + turbine input powex P,,,) and exciter input voltagéV,.¢) at a
A @‘-— particular plant operating point. As an example, the PRBS of
TDL ) L
\ U EK) AP, is shown in Fig. 6.
TDL : The output vector of the plaf¥ p(k) consists of the speed
:“ deviation (Aw) and terminal voltage deviatiofAV;), that
I is, Yp(k) = [Aw(k), AVi(k)]. The model network output
: Yu(k) = f(Xm(k)), whereXy (k) is the input vector to the
Y Model : ¥, (k) model network consisting of three time lags of system input
X,,(K) Network | and output, respectively,
4 (Identifier) >
. [ @ X (k) = [Yp(O)Un()] 16 = {k— 1,k =2,k = 3}]".
b (17)

Fia 5. Training of the model network using the back ion aldorith The residual vectaEy; (k) given in (18) is used for updating
9.5 Training otthe model network using fhe backpropagation &lgontiiMyna model network’s weight®V (k) during training by the

backpropagation algorithm
speed deviationAV; is the terminal voltage deviatiol; is the

terminal voltage AV, is the reference voltage deviatior,. Enm(k) =Y, (k) — YM(k). (18)
is the reference voltagé\ P,,, is the input power deviation, and
Py, is the turbine input power. This training is carried out at several different operating

The positions 1 and 2 of switcheSl and S2 in Fig. 4 conditions within the stability limit of the synchronous gen-
determine whether the optimal neurocontroller (MHDPC arator until the training error has converged to a small value
RHDPC), or the CONVC consisting of governor and AVR, iso that if training were to stop, and the weights fixed, then
controlling the plant. Block diagrams and data for the CONV@e neural network would continue to identify the plant cor-
as well as the mathematical expression of transmission systeetly after changing the operating conditions. At this point,

appear in the Appendix [5]. the model network has reachegbbal convergenceand its
weightsWy are held fixed during the training of the critic and
B. Design and Training of the Model Network action networks. The steps of training for the critic and action

Fig. 5 illustrates how the model network (identifier) is traine@etWorks are described in Section 1II-E below. The result for
online to identify the dynamics of the plant in Fig. 4. At thisonlme identification ofAw, after the weights have been fixed at

stage, there is no action network or critic network or CONVE= 0's,inFig. 7, shows that both the MLPN_' and RBFN-pased
present. Switches'1 and 2 in Fig. 4 are in position 3. The model networks are able to correctly identify the dynamics of

nonlinear autoregressive moving average with exogenous inptur}% plant. , L ) ,

(NARMAX) model is used as the benchmark model for online The details of the training time and computational cgmpl@qty

identification [8]. to process 'Fhe data by the MLPN- and RBFN-based identifiers,
The input vectoiU (k) consists of the turbine input powerare shown in [8] and [9)].

deviation(AP,,) and exciter input voltage deviatid\ V), »

thatis,Uni(k) = [APu(k), AVie(k)], andis fed into the plant C: Critic Network

with the vector,Ref(t) = [Pin(k), Viet(k)]. The input sig-  The critic network in the HDP approximates the functin

nals of Uy (k) are 5-Hz pseudorandom binary signals (PRBS#5self in (13). The configuration for training the critic network is
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ootk ' ] as possible, which is almost zero. This adaptation process is

N i considered as thealue iterationin (12) to reach the optimal
cost-to-go functiond* in (11) by the ADP provided from two
critic neural networks.

0.008

0.006 |-

0.004

0.002+

A o [rad/s]

D. Action Network

The input of the action network in Fig. 3 is the output vector
of the plant,Yp and its two time-delayed values. The output of
the action network i\ (k) = [APw,(k), AV,e(k)].

The objective of the action network shown in Fig. 3 is to find

=)

-0.002 -

-0.004

-0.006

-0.008 H

—— RBFN identifier the optimal controir*, as in (8), to minimizeJ in the imme-
-0.01 1 === MLPN identifier 7oA . N,
g ; L L - L L diate future, thereby optimizing the overall cost expressed as a
Time [s] sum of allU® over the horizon of the problem in (13). This

is achieved by training the action network with an error vector
Fig. 7. Online training of the model network: speed deviation response. eg(k) in (23)

TS p— oJ°(k
o Critic IE,(RGE+1) US(RGK) ea(k) = 3 A(( k; (23)
‘f”(k) Network
WD ’ The derivative of the cost functiod(k) with respect to
Target = A(k) in (23) is obtained by backpropag_atifigc/c’)JC (recall
» 30, (R +1)) + USR(R)) that th_e_ HDP approximates the functid¥’ itself.) _through
) AN the critic network and then through the pretrained model
(k) —>Critic "\ SR ¢ network to the action network. This givesI©(k)/0Y (k)
Sl PN ok s k—:@ andaJ<(k)/0A (k) in Fig. 3 for the weightsW , (k) and the
L2 —— N S output vectorA (k) of the action network. The expression for
N e the weights’ update in the action network is given in (24)
Fig. 8. Critic adaptation in HDP: the same critic network is shown for two AWA(k) — - eA(k) ) 8eA(k‘) (24)

consecutive times; + 1 andk. The critic’s output {, , (R(k + 1)) at time OW 4 (k)
k+1is necessary for the ADP to generate a target sigigl, , (R(k+1)) +
U (R(k)) for training the critic network. wheren, is the positive learning rate. The mathematical closed
forms of 9JC(k)/0Y (k) and dIC(k)/OA (k) are given in
shown in Fig. 8. The Bellman equation in DP in (10) is implef25) and (26) for the MLPN and RBFN, respectively, as shown
mented by the ADP using two critic networks. From (10), wat the bottom of the next page, where definitions are as follows.
get the following: « tis target value.
_ . » my is the number of neurons in the hidden layer.
eop = [9(0cu) +9T5 (FO )] = i (). (29) * pis the output of the activation function for a neuron.
Note that the time indexing in (19) needs to be reversed for « g is the regression vector as the activity of a neuron.
the problem discussed in this paper. In other words, the ini- « I and/ denote the output and hidden layer, respectively.
tial cost-to-functionJ© at time zero has a positive valuebe- » The subscripts M and C farenterC andwidth 3 of the
cause the initial weight$V ¢ (0) of critic network are randomly RBFN denote the model and critic network, respectively.
chosen and the value df is kept minimizing as the time goes  « The functionf; is the sigmoidal function in (14).
to an infinite. Therefore, the following error equation for the « The functionf, is the Gaussian density function defined
adaptation of critic network can be obtained: in the right-hand side in (15) as an exponential form.

ec(k) = ¢ (R(K)) =T (R(k + 1)) = UY (R(k)) (20)

E. Training Procedure for the Critic and Action Networks

whereR (k+1) andR (k) is a vector of observables of the plant, The online training procedure for the critic and action net-
which are the output vectors from the model network in Fig. @works (with the model network’s weights fixed) is explained in

at present and two consecutive past time stages. more detail in [10] and [12]. It consists of two training cycles:
Then, the critic network’s weight$V ¢ are updated as fol- one for the critic network and the other for the action network.
lows: The critic network’s training is carried out first with the
Wolk +1) = Wa(k) + AW (k) 21) swi_tchesSl and S2 in position 3_(yvjth initial weights of the_
dec(k) act_lon nerork that ensure stabilizing .control at.an _operatlng
AWce(k) = —nc -ec(k) ==+~ (22) point) until convergence is reached as illustrated in Fig. 9.
IWc(k) The critic network’s weight3V ¢ are initialized with small
wherer is the positive learning rate. random values, and in its training cycle, the incremental

The training for critic network by the backpropagation algosptimization is carried out by (20)—(22). The critic network’s
rithm is carried out until the value & is minimized as small weights are now fixed, and training of the action network
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1 Compute JC(k+1) j | Compute A®) |
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R Has Critic Yes— |

converged ?

Fig. 9. Training procedure for the critic and action networks.

continues by using (23) and (24) until convergence of the actisalt of critic network’s training using the MLPN and RBFN is
network’s weights are achieved. illustrated in the Appendix. The discount factpof 0.5 and the
The action network’s weights are now fixed, the plant op,lti"ty function givenin (27) are used for the heuristic cost-to-go
erating condition is changed, and training of the critic networfkinction in (13)
starts again. In this Way,_thetraini_ng alter_nates betvyeen the criﬂ'@(k) — [4AV,(k) + 4AVi(k — 1) + 16AV, (k — 2)]2
and action networks while from time to time changing the plant
operating point.
The convergence of the action network’s weights means thatAfter the above training procedure has been carried out,
the training procedure has found weights that yield optimal coswitches S1 and S2 are moved to position 1, and training
trol like theu™ in (8) for the plant under consideration. The reeontinues for large disturbances applied to the plant.

+[0.4Aw(k) 4+ 0.4Aw(k — 1) + 0.16Aw(k — 2)]*.  (27)

{file) 1 = frl@)) Wea} % 1-We r| [muen

BAN B 03¢ ot dpr aqL% o J=1 (25)
oYy Ot 9pr dqr Opr g Yy my _ m
" M 23 % fala) p 22 1-We | [rBrN
p=1 p =1

1- Wil 3 25w, :
03°  93° 0t Ops 04s Op Our [{fl(QI)( fi(q)) M,l}];l v M,L] IMLPN o6

DA Ot OpL dqr Op Oq OA my
2 Z CMP L) fola) (?{I(M Wz | |[RBFN
=

NIp
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Fig. 15. Three-phase short-circuit test: terminal voltage response at
P = 1.1 puand@ = 0.19 pu operating point.

After training the critic and action network on-line with
the acceptable performance, the MHDPC and RHDPC witlystem damping and transient stability. Two different types
fixed weights are ready to control the plant for the real-timef disturbances, namely, £#5% step change in the reference
operation. The performances of the optimal neurocontrollekgltage of exciter and a three phase short circuit at the infi-
which are the MHDPC and RHDPC trained with deviatiomite bus, are carried out to evaluate the performance of the

signals, are compared with CONVC for the improvement afontrollers.
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A. £5% Step Changes in the Reference Voltage of Exciter

The plantis operating at a steady-state conditign=£ 1[pu],
Q+ = 0.234 [pu], andZ. = 0.02 + j0.4 [pu]). Att = 1s,a5%
step increase in the reference voltage of the exciter is appli
At t = 12 s, the 5% step increase is removed, and the syste
returns to its initial operating point. The results in Figs. 10 ar
11 show that the optimal neurocontrollers improve the transie
system damping compared to the CONVC, and that the RHDI
outperforms the MHDPC, i.e., the RHDPC has the faster tra
sient response than the MHDPC.

JC, Output of critic network

B. Three-Phase Short-Circuit Test to Represent a
Large-Impulse-Type Disturbance

A severe test is now carried out to evaluate the performanc
of the controllers under a large disturbancet At 0.3 s, a tem-
porary three-phase short circuit is applied at the infinite bus f
100 ms fromt = 0.3 s to 0.4 s for the plant operating at the

0.6

0.5

o
EN

150

200 250 300
Training time [s]

350 450 500

Same steady state condition as previous test. The results CQ@.'lQ. Output of the critic network® versus training time using the MLPN
paring the performance of the MHDPC, RHDPC, and CONVGnd RBFN.
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are shown in Figs. 12 and 13. They show that the optimal neuro-
controllers (MHDPC/RHDPC) damp out the low frequency os-

4
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TIME CONSTANTS AND GAINS OF AVR-EXCITER/TURBINE-GOVERNOR

S . SYSTEMS

cillations for the rotor angl¢d) and terminal voltagéV;) more
effect|vely than the CONVC. Time constants | Actual values | Time constants | Actual values
C. Three-Phase Short-Circuit Test Close to the Stability Limit T, 0.616s Ty 0.594 s

In order to test the robustness of the proposed neuroco T, 2266 s Tys 2.662 s
trollers, the plant pre-fault operating point is now changet

. " ; Tus 0.189 s
to a different steady state condition from the previous test:
The active power from the generator is increased by 10% | Ty 0.039s Gains Actual values
P, = 1.1 [pu], and@: = 0.19 [pu], which is closer to the . 0.0235 © )
stability limit of the generator. At = 0.3 s, the same 100 ms i i ° hid
three phase short circuit is again applied at the infinite bu T, 0.47 s Via 19.59
The same controller parameters for the MHDPC, RDHPC, an
. . | Ty 0.264 s Vini -14.51

CONVC, used in previous tests, are again used.

The performances of the CONVC, MHDPC, and RHDPC ir Ter 0.0264 s F 0.322
Figs. 14 and 15 show that the synchronous generator controll T, 0.15s K, 0.05

by the CONVC goes unstable and loses synchronism after tl—

disturbance. In contrast, the two neurocontrollers damp out the
oscillations and restore the generator to a stable mode. Thi%\
means that a generator equipped with neurocontrollers ba recli|
on the HDP algorithm can be operated at 110% power and s&ﬁ)
remain stable after such a severe fault. This has major impli(fﬁ-
tions on being able to produce more power per dollar of investg
capital.

Iso, these results prove the robustness of the neurocon-
ers, which provides a good damping performance under
e different operating conditions (close to stability limit of
synchronous generator) with feedback loop parameters
etermined from the infinite horizon optimal control problem.
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Fig. 22. Block diagram of the turbine and governor combination.

IV. CASE STUDY IN A MULTIMACHINE POWER SYSTEM network based on the RBFN has a faster convergence capability

The feasibility of the adaptive critic based neurocontrolletpan the critic network using the MLPN.

on the multimachine power system shown in Fig. 16 is noy Muyltimachine Power System With CONVCs

evaluated. Two generators (G1 and G2) are equipped with theS Fig. 20

CONVC and then with an adaptive-critic-based neurocontroller. ee rg. 2.

The neurocontolle_r, Wh!Ch has the model, critic, and act|(_)n Nt Transmission Line

works, as before, is trained for each generator as described for o o ) )

the SMIB system earlier in this paper, at different operatin The tra_nsmls_5|on _Ilne system in Fig. 4 is modeled with the
points. The multimachine power system with the conventiond1¢ €duations given in (A.1) and (A.2)

controllers is shown in Section B of the Appendix, and their T P dig p
parameters are identical to those in Sections D and E of the Ap- via = Vo siné — Reiq - LEE +wheiq (A1)
pendix. di

Vpqg = V€050 — Reig — L.—LX —wL.iy. (A.2)

To evaluate the dynamic performances of the controllers, the dt
two generators are operated at an operating conditin £

0.2 [pu], @y = —0.02 [pu] and P, = 0.2 [pu], Q2 = D. AVR and Exciter System

—0.02 [pu]), and a 4% step increase in the reference voltageThe conventional AVR and exciter combination transfer func-
Vien Of the exciter connected to the G1 occurs at 1s. The  tion block diagram is shown in Fig. 21. The time constants/gains
results of this change appear in Figs. 17 and 18. This shows that given in Table I. The exciter saturation facforis given by

the proposed neurocontroller ensures superior transient (for taes). 1., T,,, .3, andT,, are the time constants of the PID
terminal voltage change) and damping (for the low-frequengyitage regulator compensatd;; is the input filter time con-
oscillation of speed deviation) responses of the system cogant;7, is the exciter time constank,, is the AVR gainV,..
pared to the CONVC. andV,,; are AVR maximum and minimum ceilings

S. = 0.6093 exp(0.2165V,). A.3
V. CONCLUSION p( fd) (A3)

This paper has shown the adaptive critic neural network de: Turbine and Governor System

sign as an alternative to the classical optimal control methOd'Theturbine and governor combination transfer function block

The MLPN- and RBFN-based HDP optimal neurocontrollers. : S . :
(MHDPC/RHDPC) have been designed for the control of a Sy(r?!_agram is shown in Fig. 22, and the time constants/gain are also

chronous generator in a single machine connected to an infi jyen in Table 1. The output power of the turbine is limited be-
9 g een zero and 1209, and7,, are the time constants for

bus (SMIB) system and on two generators in a multimachirig)(?Iase advance compensatidp, is the servo motor time con-

power system. stant, 1, is the entrained steam deldy,; is the steam reheat

. Theresults show that not.only dothe optlmal neurpcontrollg e constant}’ is the pu shaft output ahead of reheater, and
improve the system damping and dynamic transient stabili is the governor gain

more effectively than the CONVC for the large disturbance suc
as a three phase short circuit, but also the RHDPC has a faster
transient response than the MHDPC for a small disturbance

like £5% step changes in the reference voltage of the excitet!] E‘i“t'\;/': Aﬁg\?vrf(%rr‘kf‘lnglzé'P’?és';?tl'aggzo_wer System Control and Sta-
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