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Adaptive Power Control Protocol With Hardware
Implementation for Wireless Sensor and

RFID Reader Networks
Kainan Cha, S. Jagannathan, Senior Member, IEEE, and David Pommerenke

Abstract—The development and deployment of radio fre-
quency identification (RFID) systems render a novel distributed
sensor network which enhances visibility into manufacturing
processes. In RFID systems, the detection range and read rates
will suffer from interference among high-power reading devices.
This problem grows severely and degrades system performance
in dense RFID networks. Consequently, medium access protocols
(MAC) protocols are needed for such networks to assess and pro-
vide access to the channel so that tags can be read accurately. In
this paper, we investigate a suite of feasible power control schemes
to ensure overall coverage area of the system while maintaining a
desired read rate. The power control scheme and MAC protocol
dynamically adjust the RFID reader power output in response
to the interference level seen during tag reading and acceptable
signal-to-noise ratio (SNR). We present novel distributed adaptive
power control (DAPC) as a possible solution. A suitable back off
scheme is also added with DAPC to improve coverage. A generic
UHF wireless testbed is built using UMR/SLU GEN4-SSN for
implementing the protocol. Both the methodology and hardware
implementation of the schemes are presented, compared, and
discussed. The results of hardware implementation illustrate that
the protocol performs satisfactorily as expected.

Index Terms—Coverage optimization, distributed power
control, frequency interference, radio frequency identification
(RFID), reader collision, sensor networks.

I. INTRODUCTION

THE ADVENT of radio frequency identification (RFID)
technology has brought with it increased visibility into

manufacturing process and industry. From supply chain logis-
tics to enhanced shop floor control, this technology presents
many opportunities for process improvement or reengineering.
The underlying principle of RFID technology is to obtain infor-
mation from tags by using readers through radio frequency (RF)
links. Low cost and small RFID tags can be viewed as a type
of sensor since they provide identity and location information.
A cluster of readers working together can monitor the flow of
tags and obtain information about the distributed process or the
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supply chain. Consequently, the RFID network can be viewed
as a distributed sensor network. Other sensors with radio links
can be included as part of the RFID network as observed in a
real word scenario. The RFID technology basics and current
standards can be found in [1].

In passive RFID systems, tags harvest energy from the car-
rier signal which is obtained from the reader to power internal
circuits. Therefore, passive tags do not initiate any commu-
nication but they only decode modulated command signals
from the readers and respond accordingly through backscatter
communication [1]. The nature of RF backscatter [2] requires
high-power output at the reader and theoretically higher output
power offers farther detection range with a desirable bit error
rate (BER). For 915-MHz ISM bands, the output power is
limited to 1 W according to [3]. When multiple readers are
deployed in a working environment, signals from one reader
may reach others and cause interference, for instance, in a dock
door industrial environment. This interference problem was
explained in [4] as the Reader Collision.

The work in [4] suggested that RFID frequency interference
occurs when a signal transmitted from one reader reaches an-
other and jams its ongoing communication with tags in range.
Studies also show that, interrogation zones among readers need
not overlap for frequency interference to occur, the reason being
power radiated from one reader needs to be at the level of tag
backscatter signal ( W) [4] to cause interference when reaching
others. For a desired coverage area, readers must be placed rel-
atively close to one another forming a dense reader network.
Consequently, frequency interference normally occurs which re-
sults in limited read range, inaccurate reads, and long reading in-
tervals. Placement of readers to minimize the interference and
maximize the read range is an open problem.

To date, frequency interference has been described as “colli-
sion” as in a yes or no case where a reader in the same channel
at a certain distance causes another reader not to read any of
its tags in its range. In fact, higher interference only implies
that the read range is reduced significantly but not to zero. This
result is mathematically given in Section II. Previous attempts
[5], [6] to solve this channel access problem are based on either
spectral or temporal separation of readers. Colorwave [5] and
“listen before talk” [7] implemented as per European Confer-
ence of Postal and Telecommunications Administration (CEPT)
regulations [6] rely on time-based separation while frequency
hopping spread spectrum (FHSS) implemented as per the FCC
regulations [3] utilize multiple frequency channels. The former
strategy is inefficient in terms of reader time and average read
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range while the latter is not universally permitted by regulations.
The proposed work is targeted for RFID networks to overcome
these limitations.

In this paper, we propose a novel power control scheme which
employs reader transmission power as the system control vari-
able to achieve a desired read range and read rates. The degree of
interference measured at each reader is used as a local feedback
parameter to dynamically adjust its transmission power. With
the same underlying concept, decentralized adaptive power con-
trol uses signal-to-noise ratio (SNR) to adapt power at discrete-
time steps while probabilistic power control adapts the trans-
mission power based on certain probability distribution. A Lya-
punov-based approach is used to show the convergence of the
proposed adaptive power control (DAPC) scheme. Simulation
results demonstrate theoretical conclusions.

In terms of organization, the paper discusses the problem
formulation in Section II. Then the decentralized power con-
trol algorithm is presented in Section III. Section IV details
the simulation setup, whereas Section V presents hardware im-
plementation including hardware and software architecture. In
Section VI, results obtained from simulation and hardware im-
plementation are discussed. Subsequently, the conclusions are
presented.

II. PROBLEM FORMULATION

The frequency interference problem needs to be fully un-
derstood before a solution can be evolved. In this section, we
present analysis of this problem and assumptions made.

A. Mathematical Relations

In a backscatter communication system such as the case of
a passive RFID system, SNR must meet a required threshold

, which can be expressed as

(1)

where is the energy/bit of the received signal in watts, is
the noise power in watts per hertz, is the bit rate in bits per
second, and is the radio channel bandwidth in Hertz. For a
known modulation method and bit-error rate (BER), can
be calculated. Hence, can be selected based on desired
read rate and BER.

For any reader , the following must hold for successful tag
detection:

(2)

where is the backscatter power from a tag, is the inter-
ference at the tag backscatter frequency, and is the SNR at a
given reader “ .”

In general, can be evaluated in terms of the reader trans-
mission power and tag distance . Other variables such as
reader and tag antenna gains, modulation indexing and wave-
length, derived in [7], can be considered as constants and sim-
plified in (3) as . Then

(3)

where is environment dependent variable considering path
loss and represents the channel loss from reader to tag and
back. Communication channel between the reader and inter-
rogated tag should be in relatively short range, for this reason
Rayleigh fading and Shadowing effects are not considered for
the reader-tag link. Channel uncertainties such as path loss
can be considered as a part of assuming the environment is
relatively stable. Hence, can be evaluated using path loss
alone and by ignoring other channel uncertainties. However,
other channel uncertainties such as Rayleigh fading and Shad-
owing are considered during the calculation of interference
since reader locations are relatively farther away compared to a
reader and a tag and since readers are power sources.

Interference caused by reader at reader is given as

(4)

where is the transmission power of reader , is the dis-
tance between the two readers, represents all other constant
properties, 10 corresponds to the effect of shadowing, and

is a random variable with Rayleigh distribution [8] to ac-
count for Rayleigh fading loss in the channel between reader

and reader . After simplification, represents the channel
loss from reader to reader . It is important to notice that since
the interference actually occurs at the tag backscatter sideband,
only power at that particular frequency needs to be considered.
This factor is also accounted for in and .

Cumulative interference at any given reader is essentially
the sum of interference introduced by all other readers plus the
variance of the noise

(5)

Given the transmission power and interference, the actual de-
tection range of a reader is given by

(6)

Received SNR for a tag at a desired range can be calculated
as

(7)

Merging (6) and (7), we can calculate the actual detection
range in terms of as

(8)

For analysis purposes, we assume any tag within such a range to
be successfully detected by the reader due to BER specification.
If a reader is completely isolated, meaning no interference, a
maximum range can be achieved by using the maximum
power of a given reader. In a practical application, it is
not possible to expect this maximum range due to interference
even though maximum power is used. It is important to note
from (8) that the detection range and SNR are interchangeable
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Fig. 1. Two-reader model.

and, therefore, our proposed algorithms attain the target SNR.
By viable power control, both read rate and coverage can be
achieved.

By substituting (3) and (4) into (2), the SNR expressed as a
time-varying function for a particular reader is given by

(9)
Notice that is considered to be a constant for a particular
reader-tag link by assuming that the tag is stationary. If the de-
sired range for the reader is defined as which is less than ,
then we can define the SNR for the backscatter signal from a tag
placed at a distance to a reader as

(10)

where

(11)

Equation (10) provides the basic relationship among the SNR,
output power of a particular reader under consideration and the
output power of all readers through interference experienced in
the network. This relationship is used throughout this paper to
derive the power control algorithms.

B. Simple Two-Reader Model

To better understand the problem, a simple two-reader model
is considered first. Given two readers and spaced
apart, each with the desired range and , respectively,
are shown in Fig. 1. Readers must provide transmission powers

and to achieve their respective desired range without con-
sidering interference. However, due to the interference intro-
duced by each other, the actual detection range in fact decreases
to and , respectively.

As a result of not achieving the SNR at a desired detection
range due to interference, readers must attempt to increase
their transmission power. If both readers increase their powers
greedily, they will eventually reach the maximum power
without achieving the desired range due to increased interfer-
ence with output power. Further, the SNR target is not met and
as a result the tags are not read even those that are in range. One
could solve this problem by operating them in mutually exclu-
sive time slots. However, as the number of readers increase,
this strategy severely degrades each reader’s average read time
and detection range and eventually increases reading intervals.

A more appropriate solution is to balance the transmission
power between the two readers in order to reach the equilibrium
where multiple readers can achieve their respective read range.
In the previous model, if reader transmits at and reader
is off, a read range greater than the targeted value of can be
achieved. On the other hand, there exists a power level at which
reader can transmit and still allow to achieve read range

. This process can be applied in reverse to enable reader
to achieve its targeted range. Under such circumstances, the

average read range of both readers is improved over the typical
on and off cycle. Such a yielding strategy is required in dense
reader networks where desired range may not be achieved by all
the readers simultaneously. The effect of this improvement will
be significant in dense networks due to the strategy. Section II-C
details such a decentralized strategy.

C. Distributed Solution

In this paper, distributed power control scheme is intro-
duced—adaptive power control (DAPC) and its implemen-
tation. DAPC involves systematic power updates based on
local interference measurements at each reader. It also uses
embedded channel prediction to account for the time-varying
fading channel state for the next cycle. In Section III, we ana-
lytically show that the proposed DAPC scheme will converge to
any target SNR value in the presence of channel uncertainties.
For dense networks where the target SNR cannot be reached
by all readers simultaneously, an addition selective back-off
method is incorporated besides power updates introducing
a degree of yielding to ensure that all readers achieve their
desired range.

D. Standards

Implementing FHSS on readers has been explored in the past
as a solution to the interference problem. While FHSS reduces
the probability of interference, it is not a universal solution be-
cause of the differing spectral regulations over the world. In pro-
posed work, frequency hopping is not considered. New stan-
dards [9] have been designed in dense reader networks by spec-
trally separating reader and tag modulation frequencies. How-
ever, subject to the transmit mask specifications and hardware
implementations, substantial interference will still exist at the
sideband frequencies of a tag in a highly dense reader network.
The proposed work is not dependent upon any existing RFID
standards or implementations and can be easily adapted to im-
prove the performances of RFID reader networks.



148 IEEE SYSTEMS JOURNAL, VOL. 1, NO. 2, DECEMBER 2007

III. DAPC

Distributed power control (DPC) protocols have been exten-
sively studied in the field of wireless communication, including
in ad hoc networks [13] and cellular networks [12]. Conceptu-
ally, power control in an RFID reader network is similar to these
protocols. However, there are several fundamental differences
between them due to the unique nature of the communication
interface and RFID application. Moreover, a tag is not smart
compared to a cell phone or a sensor node and, therefore, such
schemes have to be modified for RFID applications.

First, the main goal of DPC in wireless communication is
to conserve energy while maintaining desired quality of ser-
vice (QoS) requirements. In [10]–[13], the authors propose dif-
ferent power updating schemes in order to maintain a target SNR
threshold for successful communication. By contrast, the work
proposed for RFID systems is to reduce interference introduced
by others while maintaining read range requirements at each
reader thereby achieving an optimal coverage for all readers and
read rates. Second, DPC for ad hoc and cellular networks re-
quires feedback signal between the transmitter and receiver.

In RFID reader networks, the reader acts both as a trans-
mitter and receiver. Hence, the feedback is internal to the reader
and does not result in any communication overhead. Third, in
contrast to low-power wireless networks run on battery power,
RFID readers in dense networks may not achieve the target SNR
even at maximum power owing to the high levels of interference.
Finally, in contrast with a connection oriented network where
each node transmits only when it is needed, most RFID readers
are required to be always on and transmitting in order to read the
tags. Therefore, it is more difficult in distributing the channel ac-
cess among all readers.

The proposed DAPC algorithm consists of two building
blocks—adaptive power update and selective back-off. The
goal of the adaptive power update is to achieve required SNR
with an appropriate output power by correctly estimating the
interference and any channel uncertainties. In dense networks,
selective back-off forces high power readers to yield so that
other readers can achieve required SNR. We now discuss these
two building blocks of DAPC in depth.

A. Power Update Scheme

The development and the performance of DAPC are now
demonstrated analytically. Differentiating the SNR (10) since
the channel interference follows the time-varying nature of the
channel, we get

(12)

where , , and are the derivatives of
, , and , respectively.

Applying Euler’s formula, (12) can be transformed into dis-
crete time domain as

(13)

After the transformation, (13) can be expressed as

(14)

where

(15)

(16)

and

(17)

with the inclusion of noise, (14) is written as

(18)

where is the zero mean stationary stochastic channel noise
with is its coefficient.

From (18), we can obtain the SNR at time instant as a
function of channel variation from time instant to . The
difficulty in designing the DAPC is that channel variation is not
known beforehand. Therefore, must be estimated for calcu-
lating the feedback control. Now define, ,
then (18) can be expressed as

(19)

Since and are unknown, (19) can be transformed into

(20)

where is a vector of unknown parameters
and is the regression vector. Now selecting feed-
back control for DAPC as

(21)

where is the estimate of , then the SNR error system
is expressed as

(22)
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where is the error in estimation.
From (22), it is clear that the closed-loop SNR error system is

driven by channel estimation error. If the channel uncertainties
are properly estimated, then SNR estimation error tends to be
zero, therefore, the actual SNR approaches the target value. In
the presence of error in estimation, only boundedness of error
in SNR can be shown. Given the closed-loop feedback control
and error system, we can now advance to the channel estimation
algorithms.

Consider now the closed-loop SNR error system with channel
estimation error as

(23)

where is the error in estimation which is considered
bounded above , with a known constant.

Theorem 1: Given the previous DPC scheme with channel
uncertainties, if the feedback from the DPC scheme is selected
as (21), then the mean channel estimation error along with the
mean SNR error converges to zero asymptotically, if the param-
eter updates are taken as

(24)
Then the mean error in SNR and the estimated parameters are
bounded

(25)

(26)

(27)

where

(28)

and is the adaptation gain.
Note: The parameters , , and are dependent upon the

desired SNR value with time.
Proof sketch: In the proof, a Lyapunov function candidate

is selected and is shown to have stability in the mean sense of
Lyapunov provided the conditions (25) and (27) hold. Hence,
according to a standard Lyapunov extension [16], the SIR error

is bounded for all and the upper bound on the
mean SIR error is given by

(29)

where

(30)

It is also shown that

(31)

where

(32)

and

(33)

In general, as long as (25) and (27) are satisfied and either
(29) or (30) holds, according to the standard Lyapunov exten-
sion theorem [16], this demonstrates that the tracking error and
the error in weight estimates are bounded without the need for
any PE condition on the inputs. The proof is detailed in [16].

Remarks:
1) Note that for practical purposes, (29) and (30) can be con-

sidered as bounds for and .
2) Note that the parameter reconstruction error bound and

the bounded channel disturbances increase the bounds
on and in a very interesting way.

B. Selective Back-Off

In a dense reader environment where multiple readers are de-
ployed for coverage, it is inconceivable that all readers are able
to achieve their target SNR together due to severe congestion
which affects both read rates and coverage. These readers will
eventually reach maximum power as a result of the adaptive
power update. This demands a time-based yielding strategy of
some readers to allow others to achieve their target SNR.

Whenever the reader finds the target SNR is not achievable at
the maximum power, meaning the interference level is too high
in the network, it should back-off to a low output power for a pe-
riod of time. Since interference is a locally experienced phenom-
enon, multiple readers will face this situation and they will all
be forced to back off. The rapid reduction of power will result in
significant improvement of SNR at other readers. After waiting
for the back-off period, a reader will return to normal operation
and attempt to achieve the target SNR. The process is repeated
for every reader in the network. To fairly distribute the channel
access among all congested readers, certain quality measure-
ments must be made for all readers in the back-off scheme. The
selective back-off scheme uses the percentage of time a reader
has achieved its desired range with respect to the quality control
parameter to ensure fairness.

After backing off, each reader must wait for a time duration
. In order to illustrate the effect of back off, is defined

as a logarithm function of the percentage of time a reader has
attained the required SNR. A neglected reader will exit back-off
mode quickly and attain the required SNR while other readers
in the vicinity fall back. The calculation of is given by

(34)

Using the previous equation, a reader with equals 10% will
wait for ten time intervals while the waiting time for of 100%
equals 20. A plot of waiting time versus is presented in
Fig. 2.

The back-off policy will cause negative changes in interfer-
ence, and hence does not adversely affect the performance of
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Fig. 2. Selective back-off function plot.

TABLE I
SELECTIVE BACK-OFF PSEUDOCODE

the adaptive power update. A detailed pseudocode for imple-
menting selective back-off is given in Table I.

C. DAPC Implementation

DAPC can be easily implemented at the MAC layer of the
RFID reader and MAC implementation is not covered in de-
tail in this paper. The algorithm requires two parameters to be
known initially. These are the desired range , and target SNR

.
Proposed DAPC can be seen as a feedback between the trans-

mitter and receiver units of a reader. A block diagram of the im-
plementation is shown in Fig. 3. The detailed description of the
algorithm implementation is presented as follows.

1) Power update block at the receiver unit of a reader obtains
sensed interference .

2) In the power update block, based on , , and cur-
rent power , the current SNR is calculated.

3) is compared to , and percentage of time
achieving required SNR, is calculated and recorded.

4) Based on (24), the channel is estimated for the next time
step , and the power for is also calculated
using the feedback control (21).

5) is then limited to maximum power , if the
greater than , the selective back-off scheme

is triggered, otherwise, is used as the output power
for the next cycle.

Fig. 3. Block diagram for DAPC implementation.

6) The selective back-off block follows the algorithm pro-
vided in Section III-C and restricts the final output power
for the next cycle.

IV. SIMULATION SETUP

The simulation environment is set up in MATLAB. The full
model of DAPC is implemented for comparison and compared
with probabilistic scheme.

A. Reader Design

Reader power is implemented as a floating point number
varying from 0 to 30 dBm (1 W) as per FCC regulation. For
error-free detection, the reader should maintain a target SNR
of 14 ( 11 dB). Other system constants are designed so that
the maximum read range of a reader in isolated environment
is 3 m. Interference experienced at any reader is calculated
based on a matrix consisting of power and positions of all other
readers plus the channel variation . A desired range of 2 m
is specified based on the worst case analysis.

For proposed DAPC, power update parameters and are
both set to 0.001. The results are compared with another scheme
referred to as probabilistic power control (PPC) method [15].
Recall that the read range of a particular reader is dependent on
its transmission power and the interference experienced which
is a function of powers of all other readers. If reader powers
follow certain probability distribution, the distribution of read
ranges for each reader is a function of these power distributions

(35)

where is the cumulative density function of read range of
reader , and is the cumulative power density function of
reader . Performance metrics including mean read range and
percentage of time achieving desired range characterized
the read range distribution

(36)

To achieve targeted characteristics on the read range distribu-
tion, we need to modify the power distribution freely. Beta dis-
tribution, demonstrated is specifically chosen for this reason; by
specifying the shape variables and , one can change the cu-
mulative density function in the domain from 0 to 1 (0% to 100%
power). By changing these two parameters, we can control the
power distribution and thus attempt to achieve desired targets
on the read range distribution in (35). For proposed PPC, both
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Fig. 4. Cumulative density functions of the read range.

and distributed are implemented in
simulation.

B. Simulation Parameters

For both models, random topologies are generated in order
to emulate a denser network with a suitable number of readers.
The RFID network with a suitable density for a given scenario
is created by placing the readers with the minimum distance be-
tween them and the maximum area under test. The minimum
distance between any two readers is varied from 4 to 14 m and
the maximum size of the coordinate is adjusted accordingly. The
number of readers is changed from 5 to 60 for creating denser
network and to test the scalability of the proposed schemes.
Each simulation scenario is executed for 10 000 iterations.

C. Evaluation Metrics

To demonstrate the typical performance of the reader net-
work, the cumulative range distribution of a reader can be
plotted. In Fig. 4, the cumulative density function of read
range for a reader using DAPC is plotted. From this plot, we
can observe the minimum and maximum detection range as
well as the percentile of attaining certain ranges. To evaluate
the performances of the proposed algorithms, the following
metrics: average read range, percentage of time attaining de-
sired range, average output power, and average interference
experienced are evaluated across all readers for each scenario
and simulation results are given.

V. DAPC HARDWARE IMPLEMENTATION

The DAPC hardware implementation is made generic and ap-
plicable to any ad hoc wireless networking scenario and does
not restrict it to RFID alone. It is only intended to demonstrate
the working principles of the DAPC on a generic wireless test
platform. Here, instead of using RFID reader antennas, we have
used UMR Mote hardware. The objective is to show that the de-
sired SNR can be obtained in the presence of channel uncertain-
ties. Moreover, this paper discusses in detail about the design

TABLE II
DAPC PSEUDOCODE

Fig. 5. Hardware block diagram.

specifications and requirements. The results of the implemen-
tation of DAPC tested as an RFID platform are presented as a
specific application.

The proposed DAPC should be implemented at the medium
access control (MAC) layer since it is specific to the connec-
tion and requires physical access to certain baseband param-
eters, such as RSSI reading and output power. A detailed de-
scription of the DAPC MAC is discussed in Section V-B. We
will now discuss the implementation in terms of hardware and
software issues. DAPC pseudocode is given in Table II.

A. Hardware Architecture

In this section, an overview on the hardware implementa-
tion of the DAPC protocol is given. First, a customized wireless
communication test platform for evaluating wireless networking
protocols is presented. A detailed description of capabilities and
limitations of the test platform is discussed.

1) Wireless Networking Test Platform: In order to evaluate
various networking protocols, a UHF wireless test platform is
designed based on the UMR/SLU Generation-4 Smart Sensor
Node (G4-SSN). Silicon Laboratories 8051 variant micropro-
cessors was selected for its ability to provide fast 8-bit pro-
cessing, low-power consumption, and ease of interfacing to pe-
ripheral components. ADF7020 ISM Band transceiver was em-
ployed as the underlying physical radio for its ability to provide
precise control in frequency, modulation, power, and data rate.
A Zigbee compliant Maxstream XBee RF module was also em-
ployed as a secondary radio unit providing alternative wireless
solutions. The former is suitable for low level protocol develop-
ment at the MAC or baseband level, whereas the latter is great
for implementing high level routing and scheduling protocols.
Using either the ADF7020 or the Zigbee radio interface, wire-
less networks can be formed and various networking protocols
can be implemented for evaluation. A block diagram of the hard-
ware setup is shown in Fig. 5.

a) Generation-4 Smart Sensor Node (G4-SSN): The
G4-SSN, was originally developed at UMR and subsequently
updated at St. Louis University. The G4-SSN has various abili-
ties in sensing and processing. The former include strain gauges,
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Fig. 6. Gen-4 SSN with (left) Zigbee layer (right) ADF7020 layer.

TABLE III
G4-SSN CAPABILITIES

TABLE IV
ADF7020 CAPABILITIES

accelerometers, thermocouples, and general A/D sensing. The
latter includes analog filtering, CF memory interfacing, and
8-bit data processing at a maximum of 100 MIPS. These
features provide a solid application level variability and have
been utilized in pervious works [17]. Moreover, the stackable
connection easily allows for new hardware development. As
seen in Fig. 6, the Zigbee radio and ADF7020 radio stack can
be used together, therefore, allowing multiple radio interfaces.

As shown in Table III, the G4-SSN provides powerful 8-bit
processing, a suitable amount of RAM, and a low-power small
form-factor.

b) ADF7020 ISM band transceiver: ADF7020 ISM band
transceiver is used as the physical layer for the implementa-
tion for DAPC protocol. The major advantage given by the
ADF7020 is the freedom in controlling various physical layer
properties, including operating frequency, output power, data
rate, and modulation scheme as given in Table IV. These fea-
tures are essential in evaluating new wireless protocols which
require physical level access. In the DAPC implementation,
direct access RSSI reading and output power are used. In addi-
tion, the low power consumption of this transceiver is suitable
for embedded sensor network applications.

2) Limitations: Hardware implementation of any algorithm
is constrained by the limitations of the hardware. With a
single-chip software layered architecture, the microprocessor

must simultaneously handle data communication with radio
transceivers, internal processing, and applications. Therefore,
the 8-bit processing power limits the data rate at which the radio
transceivers can operate at. Currently, a maximum data rate
of 48 kb/s is successfully tested. Quantization is another issue
faced in hardware and cannot be avoided. Quantization means
that the hardware does not provide enough precision as desired
by the algorithm, such as in calculation, analog-to-digital or
digital-to-analog converter. In the implementation of DAPC,
signal strength reading is only accurate up to 0.5 dB and power
control is limited to 0.3-mW steps. These limitations must be
treated to reduce the effects on the algorithm.

3) RF Setup: The wireless channel for the DAPC implemen-
tation is chosen to be similar to the case in RFID systems. The
nodes will operate at the central frequency of 915 MHz with
20 kHz channel bandwidth. In order to test the performance
of only DAPC, no other medium access control is used. The
data rate is setup at 12 kb/s using FSK modulation with no en-
coding method. The output power at the transmitter can vary
from 16 dBm to 13 dBm at 0.3 dB increment.

B. Software Architecture

A layered networking architecture is considered for the
G4-SSN wireless test platform. This would allow easier future
implementations and protocol evaluations. A block diagram
of the layered software architecture is shown in Fig. 7. In this
section, a detailed description of the baseband controller and
DAPC MAC design is given.

1) Frame Format: Frame format used for DAPC implemen-
tation is shown in Fig. 8. The physical layer header is composed
by a series of SYNC bytes and a preamble sequence. The SYNC
bytes which are used to synchronize the transmitter and receiver
clock should be a dc-free pattern such as 10101010 pattern.
The preamble sequence is a unique pattern indicating the be-
ginning of a packet and must be universal to all nodes in the
network. The ADF7020 provides hardware preamble detection
and interrupt source to the microprocessor.

The preamble is followed by the MAC header. The length
of the MAC header can be programmable using its first byte,
therefore, allowing multiple extensions for the future. For
DAPC, only transmission power field is required. After the
MAC header, data and CRC are transmitted.

2) Baseband Controller: A baseband controller is imple-
mented to interface with the physical layer as shown in Fig. 9. It
also provides an API for higher layers to access all functionali-
ties offered by radio transceiver. In the implementation of DAPC
MAC, only RSSI read back and power control are used. Other
options are available and can be utilized easily for future imple-
mentations of different protocols.

a) Operation modes: The baseband controls the radio in
three operation modes, Transmit, Receive and Idle, which is han-
dled by the Tx/Rx state machine. The radio should always op-
erate in idle mode unless a packet is ready for transmission or
a preamble is detected indicating the beginning of a packet re-
ception.

i) Idle mode: In Idle mode, the radio is still listening to the
channel, however, any incoming data from the radio is
ignored.
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Fig. 7. Software architecture.

Fig. 8. Protocol frame format.

Fig. 9. Baseband flow chart.

ii) Receive mode: During Idle mode, when a preamble is de-
tected by the radio, an interrupt is sent to the micropro-
cessor. Upon interrupt, the baseband switches to Receive
mode and begins buffering incoming bytes; the length
of the packet is prefixed between the transmitter and re-
ceiver.

iii) Transmit mode: When a packet is ready for transmission,
the baseband switches to Transmit mode, appends the pre-
amble, and sends out the entire packet with no interrup-
tions.

b) RSSI reading: The implementation of DAPC requires
RSSI readings to calculate the SNR for every packet. In order

Fig. 10. DAPC in control loop.

to provide accurate SNR values, RSSI readings are taken
at the reception of every byte. When radio is in Idle mode,
any incoming data is discarded, however, RSSI value is still
recorded every 8-bits. To separate preamble from noise, a small
rssi_buffer stores the past values of RSSI, where equals
to the length of preamble bytes. Any reading beyond is
averaged as the noise_power. After the radio enters the Receive
mode, RSSI is recorded and averaged along with the values in
rssi_buffer to provide signal_power. A flow chart diagram of
the mode switching and RSSI reading is shown in Fig. 10.

3) DAPC MAC Controller: Fig. 10 illustrates the block dia-
gram representation of the proposed DAPC control loop inside
a transmitter and receiver.

At the receiver side, signal strength and noise level , and,
therefore, the SNR , are measured at the reception. Output
power at the transmitter, is known from the previous cal-
culation. Given and , the channel attenuation for the
previous transmission can be calculated. Now, update using
(24), and calculate using (21). is then embedded into the
MAC header of the next outgoing packet to the corresponding
transmitter. At the reception of the next packet, the cycle begins
again.

At the transmitter side, DAPC must extract the power in-
formation from the MAC header and inform the baseband to
transmit for the next outgoing packet to the corresponding
receiver. In hardware implementation, especially in digital sys-
tems, a quantization factor should be introduced since the hard-
ware may not provide the precision for output power which
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Fig. 11. Output power, interferences, and detection range versus time in sec-
onds.

DAPC desires. The quantization factor is simply the ratio be-
tween the actual and desired transmission power . This
ratio is divided by the next power calculation to improve esti-
mation accuracy and maintain system stability.

VI. RESULTS AND ANALYSIS

A. Simulation Results

In Fig. 11, the output power, interference level, and detection
range versus time at a particular reader are plotted for DAPC in a
dense network. It is seen that DAPC attempts to achieve the de-
sired range by increasing power, however the interference level
is too high and, therefore, the reader reaches maximum power
and enters selective back-off scheme. It is also observed that as
the reader backs off to low power value, the interference level in-
creases meaning that other readers are taking the advantage and
accessing the channel. This plot also demonstrates the changes
in back-off time corresponding to desired range achievement,
for example, time interval 12 to 24 s and 28 to 37 s.

The analysis of performances in sparse networks is discussed
first. With the minimum distance of 9 m between any two
readers, the average percentage of time attaining desire range
across all readers is presented in Fig. 12. Note that each reader
has a maximum detection range of 3 m without interference
and the desired range is set to 2 m in the presence of multiple
readers. DAPC is observed to have superior performances
over the two PPC algorithms for this sparse network. DAPC
converges to 100% desired range achievement with the appro-
priate parameter estimation and closed-loop feedback control
described in Section III.

The results justify the theoretical conclusions. It is also
shown that performs better than in
terms of . With distribution, every reader will be
on and transmitting at medium power most of the time. With
sparse networks and small interferences, the medium power
overcomes the interference produced and, therefore, achieving
desired range. In contrast, has a 30% probability

Fig. 12. Number of readers versus percentage of time achieving desired range.

Fig. 13. Number of readers versus average detection range in meters.

being off, therefore, the probability of attaining desired range
will be low.

In Fig. 13, considering the average detection range for the
same scenario, DAPC converges to the 2-m desired range and
outperforms both PPC algorithms. We can also observe the av-
erage power level used for each algorithm in Fig. 14. Since the
mean for both and is 0.5, the average
reader output power lays at 500 mW, which is half of the max-
imum power. Meanwhile, DAPC is able to dynamically adjust
its output power to find the optimal level for which desired range
can be achieved as the size of the network varies.

Performance of the power control schemes in denser net-
works is now analyzed. For network with minimum distance
of 6 m, the desired range is not attainable by all readers since
the transmission power is not able to overcome the interference
forcing the yielding strategy of each algorithm to test. The de-
tection range and percentile versus number of readers are pre-
sented in Figs. 15 and 16, respectively. As the number of readers
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Fig. 14. Number of readers versus average output power per reader.

Fig. 15. Number of readers versus percentage of time achieving desired range.

increases, the overall interference in the network will also in-
crease. Consequently, the percentage of time a reader attains
its desired range will drop as shown in Fig. 15.

It is observed that PPC with offers the best
performances in terms of . This is because on average 30%
of the readers will be switched off for each time interval while
for the other 30% they transmit at full power. Hence, readers
in full power have great probability in attaining the desired
range, whereas the average detection range is sacrificed for
this achievement. The relatively poor performance in average
detection range compared to DPC and PPC can be
observed in Fig. 7.

While the percentage of time achieving a target range is low
for , it provides the best average detection range out
of all three algorithms. DAPC with selective back-off scheme
finds a balance between the two evaluation metrics. These show
that there is a tradeoff between percentage time achieving the
target range and average detection range achieved.

Fig. 16. Number of readers versus average detection range.

B. Hardware Implementation Results

In this section, hardware implementation results for DAPC
are presented. Various experiments are executed to create
channel interferences in order to thoroughly evaluate the per-
formance of DAPC. Due to range and power limitations, the
SNR for the test platform can reach to a maximum of 80 dB.
Therefore, the system control parameter and are very
small and selected as 1e-15 and 0.01, respectively. Note that the
experiments are conducted under normal office environments.

In general, a paired connection between a transmitter and re-
ceiver is established. The transmitter sends a 100-byte packet to
the receiver every 500 ms. The receiver sends the reply with a
100-byte packet immediately after reception. This also indicates
that the power update rate is 2 times/s. Essentially, the nodes
act as transmitters and receivers, and DAPC is implemented on
both of them. The working ranges for the experiments are usu-
ally within 5 m. DAPC results are also presented for the RFID
scenario where the DAPC feedback loop is internal to the reader
based on observed interference.

1) Path Loss Effect: In this setup, a paired connection is es-
tablished. The receiver was slowly moved towards the trans-
mitter and then taken away. The desired SNR for the receiver
is set at 40 dB. Fig. 17 demonstrates the performance of DAPC.
In red, the SNR at the receiver is plotted. In blue, the output
power of the transmitter is plotted. The receiver SNR was kept
very closely to the target SNR. We can clearly see that at packet
number 65, the receiver starts moving close to the transmitter
resulting a reduction in the power level. At the 180th packet,
the radio had been moved back to its original location and the
output power for the transmitter has increased to provide re-
quired SNR. This experiment shows that DAPC accurately es-
timate the channel loss in a noninterfered environment.

2) Slowly Varying Interference: In this experiment, a paired
connection between a transmitter and a receiver is setup. At the
same time, a constant interfering source is introduced to alter the
channel with small variations per step. The time varying trans-
mission power for the interfering source is displayed in Fig. 18.
The transmission power for the interferer varies from 16 dBm
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Fig. 17. Receiver SNR and transmitter power corresponding to channel uncer-
tainties due to path loss.

Fig. 18. Power variation of a slow changing interferer.

to 13 dB at a slow rate. Note that the rate for power update at
the receiver is three times faster then rate of change of output
power on the interferer.

At desired SNR value equal to 45 dB, we can observe that the
SNR seen at the receiver is obtained very closely to the desired
value. In blue, the output power at the transmitter is plotted. It
shows that the change in transmitter power follows the power
pattern of the interferer (see Fig. 19).

3) Abruptly Changing Channel With Slow Update: The setup
here is the same as the previous experiment except that the inter-
ferer varies the transmission power randomly. The rate for the
power update is three times faster then the rate of the interferer.
This is considered as a very brutal interferer. The interference
level is shown here in Fig. 20.

In Fig. 21, we can observe that the SNR at the receiver is not
very well leveled comparing to a slowly varying channel due to
the vast brutal interferer. However, it is still kept at an acceptable
margin around 45 dB.

Fig. 19. Receiver SNR and transmitter power corresponding to channel uncer-
tainties from a slow changing interferer.

Fig. 20. Power variation of an interferer with random output power.

4) Abruptly Changing Channel With Fast Update: In this
setup, the same interferer is used as the previous experiment.
However, the rate for the power update is now 10 times faster
then the interferer. With the desired SNR equal to 45 dB, we can
observe that the SNR at the receiver performs very well with a
faster update rate (see Fig. 22).

5) DAPC for RFID Applications: A simplified DAPC for
passive RFID systems is also presented. In such system, RFID
tags harvest energy from the RFID readers to power internal cir-
cuits and obtain communication. Readers operating in the same
frequency interferer with the others resulting reduced detection
range and read rate. In addition, since the tags are at low cost,
any intelligent power control must be designed on the reader
side only. Since the reader and tag range is relatively stationary
and short in distance, interference by others is considered as the
main source for channel uncertainties in RFID systems. There-
fore, by assuming in (11) to be constant, the DAPC feedback
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Fig. 21. Receiver SNR and transmitter power level corresponding to channel
uncertainties from a brutal interferer—slow power update.

Fig. 22. Receiver SNR and transmitter power level corresponding to chan-
neluncertainties from a brutal interferer—fast power update.

loop can be internal to the reader and only interference measure-
ments are necessary. Received SNR can be directly converted
into detection range and measure system performances.

RFID reader networks with four readers are implemented
using the G-4SSN setup. The desired SNR for the readers is at
10 dB and a channel attenuation between the tag and reader is
assumed to be 40 dB . First, a system with no power control
scheme is tested and the output power of all four readers is set
to be 2 dBm. In Fig. 23, the performances of all four readers
are shown and it is clear that two of the readers never achieve
desired SNR and the others with very unstable SNR.

A network of readers with DAPC implementation is then
tested in the same setup as the uncontrolled case. As shown in
Fig. 24, all four readers reach the desired SNR of 10 dB at var-
ious power levels.

Fig. 23. RFID network performances of four nodes with no power update.

VII. CONCLUSION

Two algorithms for RFID reader read range and interference
management based on distributed power control are explored
and analyzed. Both algorithms can be implemented as power
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Fig. 24. RFID network performances of four nodes using DAPC.

control MAC protocols for MATLAB-based RFID reader net-
work simulation. DAPC is seen to converge at a fast rate to the

required SNR if it is achievable within power limitations. Selec-
tive back-off algorithm in DAPC enhances the channel utiliza-
tion in denser networks. PPC is not fully implemented in simu-
lation to tune in with the network density, however, it still shows
advantages in scalability and fairness of channel assessment.
Furthermore, the implementation details for DAPC scheme are
discussed.

In this paper, we have provided a novel interpretation of
the reader collision problem. We have demonstrated that high
power RFID network suffers from severe interferences and
causes problem on other lower power RF devices. Other dis-
tributed sensor networks, such as radar and ultrasonic systems
face the similar interference problems. These problems may not
be resolved easily at the RF communication level, and, there-
fore, a novel power control algorithm, DAPC is introduced.
Finally, hardware implementation of DAPC is developed and
tested for both the ad hoc wireless networking and RFID
scenarios and shown to maintain required SNR and detection
range respectively while optimizing transmission power and
reducing interference levels.
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