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An explicit, dynamic finite element model for the local failure 

of cold-formed trapezoidal sheeting  
 

H.(Hèrm) Hofmeyer1 
 
Abstract 
 
Trapezoidal sheeting, made of cold-formed, thin-walled steel, is widely used for 
the construction of cladding and roofs. At an interior support, the sheeting is 
subject to bending moments and a concentrated load, which leads to possible 
failure followed by two post-failure modes: the yield-arc and yield-eye modes. 
Until recently, it was not fully understood why a specific post-failure mode 
occurs and it was suggested that mode-jumping of the compressed sheeting 
flange may influence the mode occurring. This paper presents new research, in 
which both the compressed flange in isolation and the sheeting are modeled by 
using an explicit, dynamic finite element model. First, it is indicated that the 
mode-jumping phenomenon is not likely to occur for trapezoidal sheeting as 
used in practice. Secondly, it will be shown that whether the yield-arc or yield-
eye post-failure occurs is mainly related to imperfections and the ratio between 
stresses caused by bending moment and concentrated load. Lastly, a simple yet 
accurate formula will be derived, which predicts the post-failure mode 
occurring, thus enabling further investigations into the sheeting's behavior, like 
moment redistribution and behavior of second and third generation sheeting. 
  
1 Introduction 
 
Trapezoidal sheeting, made of cold-formed, thin-walled steel, is widely used for 
the construction of cladding and roofs. At an interior support, the sheeting is 
subject to bending moments and a concentrated load. Either the concentrated 
load leads to failure by so-called web-crippling [Macd06a, MacD11a, MacD11b, 
Tsew08a, Zhou07a], or the combination of web-crippling and bending moment 
may induce failure [Akha04a, Bieg06a, Bieg08a, Chen12a, Guze06a, Heda08a, 
Lang06a].  
 
________________________________________ 
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This latter failure is followed by two possible post-failure modes: the yield-arc 
and yield-eye post-failure modes.  
 
For first generation sheeting, which is sheeting without stiffeners, the so-called 
ultimate failure model enables the prediction of the sheeting's ultimate load for 
combined concentrated load and bending moment, as shown in figure 1 for a 
sheet-section [Hofm02a]. A sheet-section is a part of the sheeting, consisting of 
a compressed flange, two webs, and two half tensioned flanges, assumed to 
represent the behavior of the sheeting itself. 
 

 
 

Figure 1, ultimate failure model 
 
The ultimate failure model first determines the elastic indentation of the sheet-
section's cross-section (defined as web-crippling deformation) due to the 
concentrated load using an energy or beam-on-elastic-foundation approach. This 
web-crippling deformation is then used to calculate the out-of-plane deflection 
of a square part of the compressed flange. This out-of plane deflection is used as 
imperfection in Marguerre's plate equations [Marg38a], which can be used to 
predict the stresses in the square part of the compressed flange. If these stresses 
reach the yield strength at a specific location, the sheet-section is assumed to 
fail. 
 
Recently, an alternative for Marguerre's equations within the ultimate failure 
model was developed, namely the two-strip model. In this model, the nonlinear 
elastic behavior of a compressed plate is described by dividing the plate into two 
strips [Bakk06a]. The edge strip behaves linear elastically whereas the centre 
strip can buckle similar to an Euler column. The initial imperfection and the 
maximum displacement of the centre strip are scaled to the corresponding values 
of the real plate using FE-simulations. The nonlinear behavior can be used to 
predict plate failure by using specific elasto-plastic criteria. The model has been 
used and discussed in literature [Beda09a, Beda10a, Beda11a, Debo09a, 
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Than11a]. Because the two-strip model provides insight in the failure behavior 
of plates without stiffeners and, used within the ultimate failure model, predicts 
the ultimate load of sheet-sections at least equally correctly as the currently used 
design rules, it is a candidate for future design rules. However, the question is 
whether the model is suitable for predicting the behavior of plates with 
stiffeners. Therefore the nonlinear elastic and failure behavior of plates with 
stiffeners was studied. Like for plates without stiffeners, this study was carried 
out with the finite element method because experiments are not accurate enough 
to control exactly the boundary conditions and initial imperfections of a plate. 
However, it was shown that even when using a finite element method the 
boundary conditions cannot be modeled correctly. To explain this, first the 
standard boundary conditions for a plate without stiffeners as used for the two-
strip model are presented (figure 2a). All edges are simply supported, that means 
w = 0. The unloaded edges are free in y-direction (thus the edges are able to 
"wave" in-plane) or are forced to remain straight but are still able to move along 
the y-direction. The loaded edges are kept straight and are loaded using 
displacement control. 
  

 
 

Figure 2, boundary conditions for stiffened plates 
 
If these boundary conditions are used for a plate with an eccentric stiffener and 
the prescribed displacement along the loaded edge is also applied to the 
stiffener, the plate bends due to the fact that the load resultant of the prescribed 
displacement is not in line with the neutral axis, even for a linear elastic 
simulation, figure 2b. But if only the flat parts of the loaded edges are loaded, 
the stiffener is not loaded, which does not resembles the situation in practice. A 
solution for this problem is to model the plate for one half of the convex curved 
geometry and one half for the concave curved part, figure 2c. Now, the loaded 
edges of these parts do not rotate in practice and thus no clamping stresses can 
occur. 
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However, for an elastic nonlinear simulation, even this solution is not adequate. 
This because for the convex part (part A in figure 2c) the largest part (neutral 
axis will be only slightly below the plate surface) of the stiffener is under 
compression, whereas for the concave part B, the largest part of the stiffener is 
under tension. This means that for part A the compressed stiffener will amplify 
the bending of the plate and part B experiences a reduced bending. For this case, 
it is unlikely that the wave lengths of convex and concave parts are still the 
same, and the model as shown in figure 2c may show to be erroneous in using 
the same lengths for both parts. The only solution for these problems is the 
modeling of the complete compressed flange and applying boundary conditions 
such that the actions of the webs, the concentrated load and the supports for the 
sheeting as shown in figure 1 are taken into account. 
 
Modeling the complete compressed flange led, in some situations, to 
convergence problems in the implicit and static simulations. Therefore explicit 
and dynamic simulations were used, which revealed that so-called mode-
jumping may occur in the sheeting's compressed flange. At this stage, it was 
realized that first of all the mode-jumping phenomenon should be studied more 
thoroughly, as its occurrence would undermine the assumptions of the models 
developed so far, and secondly, the explicit and dynamic simulations, able to 
handle mode-jumping and other convergence problems, could also be used to 
investigate the reason why the two specific post-failure modes occur. Namely, 
until recently, the yield-eye post-failure mode could not be investigated 
numerically due to convergence problems and these convergence problems 
could also be linked to mode-jumping. However, it is important to understand 
why a certain post-failure mode occurs for making design improvements for the 
sheeting, and for understanding moment redistribution and the behavior of 
second and third generation sheeting. Therefore, using the dynamic, explicit 
finite element model, new research was undertaken and the results are presented 
in this paper. 
 
2 Mode-jumping 
 
Related to which was mentioned above, a difference between the yield-arc and 
yield-eye post-failure modes could be the fact that before the yield-eye post-
failure mode, mode-jumping occurs (which could explain the simulation 
difficulties for this post-failure mode) whereas this is not the case for the yield-
arc post-failure mode. In order to investigate this hypothesis further, in this 
section, possible mode-jumping phenomena will be investigated for trapezoidal 
sheeting. This is carried out by modeling the only part possibly prone to mode-
jumping (i.e. a part of the compressed flange of the sheeting), in a finite element 
model such that dynamic behavior (mode-jumping) can be taken into account. 
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Therefore, explicit dynamic simulations have been used, by means of the 
program LS-DYNA [Ansy11a]. 
 
First of all, an eigen-mode analysis has been carried out as shown in figure 3. 
The plate shown in figure 3 resembles a part of the compressed flange of 
trapezoidal sheeting. All edges of the model are simply supported and the model 
is loaded by a displacement in x-direction of the edge at x = +/- a/2 (thus the 
stress and strain in the plate are constant initially). In y-direction NE1 (NE1 
being a scalar variable to be specified) elements are applied and in x-direction 
NE1 a/b elements, which will result in square elements for every value of a/b 
(as long as a/b yields an integer). The element type used to mesh the plate is 
SHELL181 [Ansy11a]. The calculation of the eigen-modes starts with 
performing a static analysis with prestress effects. Next, a buckling analysis is 
performed using the subspace solution method and the first three eigen-modes 
are extracted. The eigen-modes are saved and will be used in the next analysis as 
shape for the initial imperfection.  
 

 
 

Figure 3, finite element model for buckling analyses of part of compressed 
flange 

 
After the eigen-mode analysis, an explicit, dynamic finite element analysis was 
carried out as shown in figure 4. Based on experience [Cour11a], the in-plane 
displacement of the loaded edges was performed by a linear increasing velocity 
of the edges (resulting in a quadratic displacement function), the end 
displacement being reached in 150 ms. Because of the application of the full 
displacement within 150 ms, a small value of alpha damping (1000), applied to 
all elements, was useful for damping out oscillations in the reaction forces 
without compromising the static behavior of the structure too much [Cour11a]. 
For the material, an isotropic elastic material model was used, with ρ = 7.83E-
009 1000 kg/mm2, E = 210000 N/ mm2, and υ = 0.3. Shell elements SHELL163 
were used, having a Belytschko-Tsay formulation and 3 integration points over 
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the thickness. For verification purposes, also implicit simulations, using the 
same model, were carried out. Results are shown in figure 5. 
 

 
 

Figure 4, finite element model for explicit dynamic analyses of part of 
compressed flange 
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Figure 5, dimensionless stress-shortening behavior 
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In figure 5, all the results of the finite element simulations (curves 3,4,5,8) start 
with a manually defined imperfection, this to ensure an exact similar initial 
imperfection. Also, results from an analytical approximation method have been 
obtained (curves 1,2,6,7) [Cour11a]. These have no initial imperfection but the 
difference is negligible because the assumed imperfection in the finite element 
analyses is extremely small compared to the plate’s thickness. Curves 1 and 2 
represent the analytically approached initial post-buckling behavior of a plate 
with the unloaded edges remaining straight and free to wave in-plane 
respectively. Branches 2 and 3 represent the explicit finite element simulation 
results of a plate with the unloaded edges remaining straight and free to wave in-
plane respectively also. Branch 5 is equal to branch 3, although now performed 
via an implicit analysis for verification purposes. Branches 6 and 7 represent the 
behavior obtained by the analytical approximation method using different 
displacement functions. Branch 8, finally is equal to branch 4, although now 
bilinear elasto-plastic material behavior is assumed, which is not relevant for 
this paper. Buckling can be seen around uav/ucr = 1.5 and analytical and finite 
element simulations show mode-jumping for uav/ucr = 21. However, mode-
jumping is only seen for the cases where unloaded edges (those along the 
length) are forced to remain straight. The analytical method and finite element 
simulations show good correlation for all cases and thus the results obtained 
here seem to be trustworthy. 
 
The square plate presented above may not be representative for a compressed 
flange of trapezoidal sheeting. Therefore, finite element simulations were 
carried out on long compressed plates for a/b=5, 10, and 14. Note that for these 
plates, the analytical model is not applicable, however, it was believed that a 
finite element model that was verified for a square plate should also be able to 
indicate the behavior for a non-square, long plate. Results are similar for the 
three a/b ratios selected and are shown in figure 6 for a/b=10, curve 3. After 
buckling the long plate shows 10 buckles, after mode-jumping (at uav/ucr = 9) 14 
buckling show up, which changes into 20 buckles after a second mode-jump (at 
uav/ucr = 28). 
 
An important conclusion that can be drawn from the finite element analyses (and 
the analytical method not presented here) is that for plates, both short and long, 
with longitudinal unloaded edges that are free to wave in-plane, mode-jumping 
does not occur. Based on this conclusion, it is highly unlikely that the 
phenomenon occurs in the compressed flange of trapezoidal sheeting that is 
subjected to a combination of a concentrated load and a bending moment as the 
unloaded edges of the compressed flanges are barely supported inwards by the 
webs. One may think that due to the fact that the webs usually join the flanges at 
an angle larger than 90 degrees, they supply some resistance to the flange 
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waving in-plane, however this effect is thought to be negligible. As such, the 
convergence problems experienced in the past (for simulating the yield-eye post-
failure) are not likely to be caused by mode-jumping phenomena, especially 
because during the research presented above, even some implicit static 
simulations showed to be capable to cover some of mode jumping phenomena 
[Cour11a]. Furthermore, the fact that mode-jumping is not likely to occur, 
makes it unlikely that mode-jumping influences the post-failure mode that 
occurs (yield-arc or yield-eye). 
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Figure 6, dimensionless stress-shortening behavior for a/b=10 (curve 3) 
 
3 Full-size finite element model 
 
As mentioned, in the past, using an implicit, static finite element model, 
convergence problems were experienced in modeling the yield-eye post failure 
mode. Although in the previous section it was shown that these convergence 
problems are not likely to be caused by mode-jumping phenomena, and thus that 
using an explicit, dynamic finite element method may not be a solution, in the 
research to be presented here nevertheless an explicit dynamic finite element 
model has been used. This because an explicit solving strategy may also help 
against other convergence problems, for instance those caused by contact 
problems. The principle of the finite element model is shown in figure 7. 
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Figure 7, experiment at the top, modeled part for the finite element model at the 

bottom 
 
As can be seen at the bottom of figure 7, the finite element simulation models a 
half sheet-section, this because a quarter model, which would be more efficient, 
would not enable the asymmetric yield-eye post-failure mode to occur. Four 
node shell elements (SHELL163) are used to model the sheet-section and a fine 
mesh is used near the load bearing plate. This fine mesh is coupled via a 
transition mesh to the more course meshed outer parts of the section. The corner 
radii are modeled using several elements along the circumference. The hinge 
supports, as shown in figure 7, are modeled by applying boundary conditions to 
the nodes at the hinge supports as follows: fixed in x- and y-direction and for 
rotation around the y- and z-axes, free in z-direction and for rotation around the 
x-axes. In the experiments several steel strips were fixed between the upper 
flange parts (the flange parts under tension) to avoid spreading of the webs. 
These strips have been modeled by fixing the nodes at the strips in x-direction. 
The load bearing plate was modeled by a rigid volume and the contact between 
the load bearing plate and the section was modeled explicitly. The steel material 
was modeled using test coupon data in a piecewise linear plasticity model. For 
this a strain rate dependency was not used as a quasi-static analysis was carried 
out. More details on the finite element model can be found in [Cour11a]. 

Modelled part for finite element model 
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Two parameter studies have been carried out with the finite element model 
above. First of all, the influence has been investigated of relevant finite element 
model related parameters, i.e. imperfection size, solver precision, type of top 
flange support, damping, load type, number of corner elements, and amount of 
friction between the load bearing plate and sheet-section on general behavior. 
Secondly, a parameter study has been undertaken to investigate the effect of 
sheet-section properties and those are the span length, top flange width, web 
width, bottom flange width, angle between web and flange, corner radius, 
imperfection (again), number of corner elements, and strips against sway.  Both 
parameter studies will be presented briefly below.  
 
4 Parameter study for finite element model 
 
The first parameter study is shown in table 1, with simulation TSSv23_1 
(second row) being the reference simulation.  
 

Table 1, geometry and model parameters first study 
 
TSS 
v23 

Lspan 
[mm] 

θw 
[deg] 

rbf 

[mm] 
bbf 

[mm] 
eccent 
[mm] 

lct hct strp msf NErb mech 

0  As 1 but without mass scaling A 
1 2400 50 5 40 0 1 0 1 2 2 A 

1a  As 1 but with single precision A 
1b  As 1 but with load-bearing plate nodes aligned with sheeting nodes A 
1c  As 1 but with full top flange support (no strips) A 
1d  As 1 but with alpha damping (after 12mm displacement of load-bearing plate) A 
1e  As 1 but with lct=2 (constant acceleration) A 
1f  As 1 but with 4 elements modeled in the corner (instead of 2)  A 
3 2400 50 5 40 2.5 1 0 1 2 2 E 

3a  As 3 but with friction (0.7 static friction coefficient) E 
3b  As 3 but with friction (0.15 static friction coefficient) E 
3c  As 3a but with full top flange support (no strips) E 

4 
2400 70 5 40 * 1 0 1 2 2 

E 
 * eccentricity due to smaller thickness at one side of load-bearing plate 

 

Mass scaling is a technique in which the (mass) density of a structure is 
increased, which results in a larger minimum required time step during explicit 
simulations, thus reducing the total simulation time. However, modifying the 
mass influences the dynamic behavior and is thus only suitable for quasi-static 
simulations in which the kinetic energy (=external work minus strain energy) is 
low. Compared against a simulation without mass scaling (TSSv23_0, first row), 
the reference simulation shows that mass scaling decreases simulation time with 
a factor 3, however influences the correctness of the simulations with only 2 
percent. Simulation TSSv23_1a shows that single precision seems to yield the 
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same post-failure mode (yield-arc) as the reference simulation, however if nodal 
displacements are studied in more detail, differences in symmetry can be found 
for the single precision case (in the order of number accuracy), which may 
trigger a yield-eye post-failure mode. Therefore double precision should be 
used. A similar issue can be seen if load-bearing plate nodes are aligned exactly 
at nodes of the sheeting (TSSv23_1b). Also in this case some small differences 
in nodal displacements occur, such that symmetry is not completely fulfilled. If 
nodes of the load bearing plate are halfway between the sheeting nodes, as in the 
reference case, this goes without problems. Whether discrete strips or 
continuous boundary conditions along the length of the top flange are modeled 
proofs not to make any difference in sheeting behavior, both for the yield arc 
post-failure mode (shown by simulation 1c) and for the yield-eye mode (shown 
in the following section). Regarding the load application, alpha damping 
(simulation 1d) and constant acceleration (simulation 1e) do not change the 
post-failure mode to occur, however, do not improve the reference simulations 
with respect to load fluctuations after ultimate load, and as such, they are not 
used for further simulations. This is also the case for using 4 instead of 2 
elements in the corner (simulation 1f). Simulations 3, 3a to c, and 4 show that 
introducing an imperfection, regardless due to a load bearing plate eccentricity 
or a smaller thickness of the sheeting at one location, a yield-eye post-failure 
mode occurs, as shown in figure 8. 
 

 
 

Figure 8, yield-eye post-failure mode 
 

5 Parameter study for post-failure modes 
 
To understand under which conditions a certain post-failure mode occurs (i.e. a 
yield-arc or a yield-eye post-failure mode), the finite element model as 
investigated in the previous section (the reference model TSSv23_1) is now 
used for the simulation of specific experiments carried out in the past 
[Hofm02a]. These simulations can be seen as a parameter study for which 
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sheeting properties are varied that also vary normally in practical applications, 
table 2. For every case, the table also lists the post-failure mode and ultimate 
load as they were observed during the experiments. 
 

Table 2, geometry and model parameters first study 
 

Experiment number [#] Post-failure mode [A/E] Ultimate load [N] 

   
rbf 1 5 

   
rbf 1 5 

   
rbf 1 5 

   
Llb 100 100 

   
Llb 100 100 

   
Llb 100 100 

Lspan θw bbf         Lspan θw bbf  
    Lspan θw bbf  

    

1800 90 100     46 1800 90 100     A 1800 90 100     2768 

70 100     48 70 100     A 70 100     2630 

50 40   42   50 40   A   50 40   2388   

2400 90 100     58 2400 90 100     A 2400 90 100     2169 

50 40   54 63 50 40   E E 50 40   2572 1756 

  

All the experiments in table 2 were simulated twice: once with modeled strips 
preventing spreading of the webs (thus simulating exactly the sheet-section 
experiments) and once with continuous boundary conditions along the top flange 
edge (this situation models sheeting). All experiments were given a 2.5 mm load 
bearing plate eccentricity to provoke a possible yield-eye post failure mode. For 
experiment 58 and 63, an additional imperfection equal to 5 mm was tried as 
well. 
 
For the simulations, both the ultimate load and the occurring post-failure modes 
correspond accurately to the experiments. One exception however, the post-
failure mode of experiment 63 is predicted by the simulation to be a (symmetric) 
yield-arc post-failure mode in the case of 2.5 mm eccentricity. For a double 5 
mm eccentricity, the correct (asymmetric) yield-eye post-failure mode is 
simulated. This indicates that to simulate a yield-eye post-failure mode, the 
(single) imperfection should be selected large enough, even if this imperfection 
is not expected to be present with this magnitude in the experiment. This seems 
to be acceptable, as in the experiment it is possible that several smaller 
imperfections (material properties, out-of-plane deflections, etc.) add up to an 
effect that can be compared with a slightly larger single imperfection in the 
finite element model.  Now it may be questioned whether a double eccentricity 
may result in other analyses, which first showed a yield-arc post-failure mode, 
now showing a yield-eye post-failure mode (while the experiment shows a 
yield-arc). This has been examined by applying a double eccentricity to the 

420



simulation of experiment 58, but here still a yield-arc is found. This leads to the 
conclusion that the size of the eccentricities is very important because when 
chosen too small, a yield-arc will be found although the yield-eye should be 
found. The other way around, applying a larger eccentricity to a sheet section 
that should yield a yield-arc (according to the experiments) does not lead to a 
yield-eye post-failure mode. So sections with properties that lead to a yield-eye 
in the experiments are more sensitive to eccentricities (and imperfections). 
Finally, no differences were found for the simulations with strips preventing 
spreading of the webs or those with continuous boundary conditions along the 
top flange edge (corresponding to sheeting in practice). 
 
6 Prediction of the occurring post-failure mode 
               
During experiments and simulations, the observed behavior of the two post-
failure modes suggest that a ratio between the concentrated load, which deforms 
the cross-section locally, and the bending moment in the sheet-section, which 
causes an (elasto-plastic) shortening of the compressed flange, may predict the 
occurrence of either the yield-arc or yield-eye post-failure mode. Namely, the 
yield-arc post-failure mode shows severe cross-sectional deformations, 
presumably caused by the concentrated load, whereas the yield-eye post-failure 
shows a clear shortening of the compressed flange, probably caused by the 
bending moment, which in turn is caused by the concentrated load and span 
length of the sheet-section. To investigate the usefulness of the suggested ratio, 
stress ratios have been determined for all finite element simulations as shown in 
figure 9. The membrane stress in the compressed (bottom) flange in length 
direction is divided by the membrane stress in height direction in the web. 
 
If the ratios determined as suggested above are plotted with the post-failure 
mode indicated, it is shown that for low ratios indeed the yield-eye post failure 
mode occurs whereas for high ratios a yield-arc is present. An exception is 
simulation TSSv23a63exp.1a, but is was explained in the previous section that 
for this simulation the eccentricity was too small and consequently it should not 
be taken into account here. However, it has been shown that the suggested ratio 
is dependent on the mesh size and additional research should be carried out to 
solve this problem. 
 
Conclusions 
 
This paper presents research on sheeting, in which both the compressed flange 
in isolation and the full sheet-section is modeled by using an explicit, dynamic 
finite element model.  
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Figure 9, ratio between membrane stress in web (due to concentrated load) and 
membrane stress in (compressed) bottom flange 

 
It is indicated that mode-jumping phenomena are not likely to occur for 
trapezoidal sheeting as used in practice. 
 
For a sheet-section for which a yield-eye post-failure mode may occur 
(potentially), the imperfection size is the most determining factor whether the 
yield-arc or yield-eye post-failure mode occurs. 
 
A simple yet accurate prediction formula has been derived, which predicts the 
mode occurring, thus enabling future investigations into the sheeting's behavior, 
like moment redistribution and behavior for second and third generation 
sheeting. 
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Appendix.-Notation 
 

F (Concentrated) load (figure 1) 
Llb Load bearing plate width (figure 1, table 2) 
x,y,z coordinate axes (figure 2) 
u,v,w displacements according coordinate axes x,y,z (figure 2) 
NE1 Number of elements, variable 1 [1] (figure 3) 
a Plate length (figure 3) 
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b Plate width (figure 3) 
uz Out-of-plane plate deformation (figure 3) 
ρ Density [kg/mm2] 
E Young's modulus [N/mm2] 
υ Poisson's ratio [1] 
cr Buckling stress (figure 5) 
av Average stress (figure 5) 
ucr Controlled displacement at buckling (figure 5) 
uav Controlled average displacement (figure 5) 
K Edge b.c.: "0" = straight, "1" = wave in-plane (figure 4) 
Lspan Span length [mm] (figure 1, table 1,2) 
w Angle between web and flange [deg.] (table 1,2) 
rbf Radius of compressed flange corner [mm] (table 1,2) 
bbf Bottom flange width [mm] (table 1,2) 
eccent Eccentricity load bearing plate in length direction [mm] (table 1) 
lct Loading, "1" = via constant speed, "2" = via constant acceleration 

(table 1) 
hct Load bearing plate friction, "0" = no, "1" = yes (table 1) 
strp Preventing spreading of the webs, "1" = strips, "2" = continuous 

support (table 1) 
msf mass scaling factor [1] (table 1) 
NErb Number of elements [1] (table 1) 
mech Post-failure mode: "A" = yield-arc, "E" = yield-eye (table 1) 
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