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Adaptive Critic Designs

Danil V. Prokhorov,Student Member, IEEEaNnd Donald C. Wunsch, lISenior Member, IEEE

Abstract—We discuss a variety of adaptive critic designs handle. If we have a series of control actions that must
(ACD’s) for neurocontrol. These are suitable for learning in noisy, pe taken in sequence, and we do not find out the quality

nonlinear, and nonstationary environments. They have common ¢ yhqce actions until the end of that sequence, how do
roots as generalizations of dynamic programming for neural re-

inforcement learning approaches. Our discussion of these origins W& design an optimal controller? This is a much harder
leads to an explanation of three design families: Heuristic dy- problem than simply designing a controller to reach a set
namic programming (HDP), dual heuristic programming (DHP),  point or maintain a reference trajectory. Although dynamic
and globalized dual heuristic programming (GDHP). The main  hrogramming can handle both deterministic and stochastic

emphasis is on DHP and GDHP as advanced ACD’s. We suggest . . A .
two new modifications of the original GDHP design that are C2S€S: here we illustrate it in a deterministic context. Dynamic

currently the only working implementations of GDHP. They Programming prescribes a search tracking backward from
promise to be useful for many engineering applications in the the final step, rejecting all suboptimal paths from any given

areas of optimization and optimal control. Based on one of these point to the finish, but retaining all other possible trajectories
modifications, we present a unified approach to all ACD’s. This ;. memory until the starting point is reached. This can be
leads to a generalized training procedure for ACD’s. . “ . . . . -
considered a “smart” exhaustive search in that all trajectories
Indelx BeH”IL‘SEAdaDFiVe critic design (%CDDH)iDbaﬁEF’;Opﬁgat_io'ﬁ' are considered, but worthless ones are dropped at the earliest
33222% proglrarr{%?rrlg,cnzijc:'?a:anne’tr?/vlgglé, neuroéontrol,’rei?\?cglrig? pOS,SibIe point. However, many trajECtories_ that aref extremely
ment learning. unlikely to be valuable are nonetheless retained until the search
is complete. The result of this is that the procedure is too
computationally expensive for most real problems. Moreover,
the backward direction of the search obviously precludes the
REINFORCEMENT LEARNING, DYNAMIC use of dynamic programming in real-time control.
PROGRAMMING, AND BACKPROPAGATION The other references cited above are to works that recog-
REINFORCEMENT learning has been acknowledged hyized the fundamental idea of linking backpropagation with
physiologists since the time of Pavlov [1], and hageinforcement learning via a critic network. In supervised
also been a major focus for the neural-network communil¥arning, a training algorithm utilizes a desired output and,
[2], [3]. At the time of these neural-network developmentshaving compared it to the actual output, generates an error
the existence of backpropagation [4]-[6], was consideredtém to allow the network to learn. It is convenient to use back-
separate approach. Developments in the separate fieldppdpagation to get necessary derivatives of the error term with
dynamic programming [7], [8], led to a synthesis of all thesgspect to training parameters and/or inputs of the network.
approaches. Early contributors to this synthesis included Wefere we emphasize this interpretation of backpropagation
bos [9]-[11], Watkins [12], [13], and Bartet al.[14]. An even merely as a tool of getting required derivatives, rather than
earlier development by Widrow [15] explicitly implements &g complete training algorithm.
critic neural element in a reinforcement learning problem.  critic methods remove the learning process one step from
To begin tracing these developments, consider the diffghe control network (traditionally called “action network”
ence between tradiFionaI supervised Iear.ning and traditiong! “5ctor” in ACD literature), so that desired trajectory or
reinforcement learning [16]. The former is a type of emOfsgniro| action information is not necessary. The critic network
based learning that was an outgrowth of simple percepirpn, g o approximate the cost-to-go or strategic utility func-
[17] or Adaline [18] networks. The latter is a form of matChtion (the function.J of the Bellman’s equation in dynamic
based learning that applies Hebbian learning [19], and, in B?ogramming) and uses the output of an action network

simplest manifestation, is a form of classical conditioningS one of its inputs, directly or indirectly. When the critic

[1]|' Meanwg:le, ?Kn?mlc_:thprogramrrmgt Waks attempt;\ng t %work learns, backpropagation of error signals can continue
solve a problem that neither neural-network approach Coliihng its input pathway back to the action network. To the

backpropagation algorithm, this input pathway looks like just
Manuscript received January 8, 1996; revised February 22, 1997. This wefkother synaptic connection that needs weight adjustment.

was supported by the Texas Tech Center for Applied Research, Ford M . . . . .

Co., and the National Science Foundation Neuroengineering Program (Gr: us, ”9 desired act|o.n signal is needed. What is r'leeded

ECS-9413120). is a desired cost functiory. However, because of various
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Department of Electrical Engineering, T Tech University, Lubbock, TX o . .
7995’35322\? ecirical Engineering, fexas fech Lniversity, Fubboc (e.g., [20] and [21]), it is possible to use these methods without
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one-step cost (or its estimate) further referred to as the utility R(t+1)
U. Thus, some of the architectures we will consider involve

-

. A(t+1) | CRITIC CRITIC

time-delay elements. —_— S
The work of Bartoet al. [14] and that of Watkins [12] .\ 30

both feature table-look up critic elements operating in discrete Af’sﬁgg{"" i Alt)

domains. These do not have any backpropagation path to the '

action network, but do use the action signals to estimate a EL ) >

utility or cost function. Bartoet al. use an adaptive critic A, | GRTIC ACTION

element for a pole-balancing problem. Watkins [12] created - \‘

the system known as Q-learning (the name is taken from his ’

notation), explicitly based on dynamic programming. Wer- (@ (b)

bos has championed a family of systems for approximatimg. 1. (a) Critic adaptation in ADHDP/HDP. This is the same critic network

dynamic programming []_O] His approach genera“zes prew.tWO consecutive moments in time. The critic’s outpi§t + 1) is necessary
. . . in order to give us the training signal/ (¢ + 1) + U(¢), which is the target
OUSIy SqueSted deSIQnS for continuous domains. For exammﬁ%e for J(t). (b) Action adaptationR is a vector of observables} is a

Q-learning becomes a special case of an action-depend&itrol vector. We use the constaf/d.J = 1 as the error signal in order

heuristic dynamic programming (ADHDP; note the actiono train the action network to minimize.

dependent prefix AD used hereafter) in his family of systems.

Werbos goes beyond a critic approximating just the function

J. His systems called dual heuristic programming (DHRyhereY'(¢) stands for either a vectd®(t) of observables of

[23], and globalized dual heuristic programming (GDHP) [22he plant (or the states, if available) or a concatenatioR (@]

are developed to approximate derivatives of the function and a control (or action) vectod(¢). [The configuration for

with respect to the states, and bothand its derivatives, training the critic according to (3) is shown in Fig. 1(a).] It

respectively. It should be pointed out that these systems sleould be noted that, although bofffy (¢)] and J[Y (¢ + 1)]

not require exclusively neural-network implementations: anjepend on weight& « of the critic, we do not account for the

differentiable structure suffices as a building block of th@ependence aof [Y (¢ + 1)] on weightsW¢ while minimizing

systems. the error (2). For example, in the case of minimization in
This paper focuses on DHP and GDHP and their AD fornthe least mean squares (LMS) we could write the following

as advanced ACD'’s, although we start by describing simpié&pression for the weights’ update:

ACD'’s: HDP and ADHDP (Section Il). We provide two new

modifications of GDHP that are easier to implement than the aJ[Y (t

original GDHP design. We also introduce a new design calledVe = _”{J[Y(t)]_’V‘][Y(t"'l)]_U(t)}a[T(c)] (4)

ADGDHP, which is currently the topmost in the hierarchy of

ACD’s (Section II-D). We show that our designs of GDHP angjhere, is a positive learning rate.

ADGDHP provide a unified framework to all ACD’s, i.e., any we seek to minimize or maximizé in the immediate future

ACD can be obtained from them by a simple reconfiguratiofhereby optimizing the overall cost expressed as a sum of all

We propose a general training procedure for adaptation of the:) over the horizon of the problem. To do so we need

networks of ACD in Section Ill. We contrast the advanceghe action network connected as shown in Fig. 1(b). To get

ACD’s with the simple ACD’s in Section IV. In Section V, 3 gradient of the cost functiod with respect to the action’s

we discuss results of experimental work. weights, we simply backpropagafe//d.J (i.e., the constant
1) through the network. This gives ék//90A and 8.J/OW 4
Il. DESIGN LADDER for all inputs in the vectord and all the action’s weight# 4,
respectively.
A. HDP and ADHDP In HDP, action-critic connections are mediated by a model

HDP and its AD form have a critic network that estimatefdr identification) network approximating dynamics of the
the functionJ (cost-to-go) in the Bellman equation of dynami®lant. The model is needed when the problem’s temporal

programming, expressed as follows: nature does not allow us to wait for subsequent time steps
oo to infer incremental costs. When we are able to wait for this
J(t) = Z VUt + k) (1) information or when sudden changes in plant dynamics prevent

=0 us from using the same model, the action network is directly

. . - . connected to the critic network. This is called ADHDP.
where v is a discount factor for finite horizon problems

(0 < < 1), andU(-) is the utility function or local cost. The
critic is trained forward in time, which is of great importancg" DHP and ADDHP
for real-time operation. The critic network tries to minimize DHP and its AD form have a critic network that estimates

the following error measure over time: the derivatives of/ with respect to the vector”. The critic
_ 2 1There exists a formal argument on whether to disregard the dependence of
HEl ” o zt: By (t) (2) J[Y (t41)] onW¢: [24] or, on the contrary, to account for such a dependence

[25]. The former is our preferred way of adaptihi.- throughout the paper
E(t)y=JY®)]—~JY(E+1)]-U®) (3) since the latter seems to be more applicable for finite-state Markov chains [8].
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network learns minimization of the following error measure

. . A (t+1)
over time: CRITIC g ?L(t+1)7aR(t+l)
. - — = Mr+])
Es|| = E5 () Es(t 5 R(t+1
1221 =3 EF B0 ©) 41 Ew
MODEL | : : A1)
where

L aIY(®]  aJY(E+1)]  oU)
EO=Zve " ave  avey ©

whered(-)/0Y (t) is a vector containing partial derivatives of

the scalar(-) with respect to the components of the vector

Y. The critic network’s training is more complicated than in R()
HDP since we need to take into account all relevant pathways

of backpropagation as shown in Fig. 2, where the paths m@f. 2. Adaptation in DHP. This is the same critic network shown in two

derivatives and adaptation of the critic are depicted by dashsgsecutive moments in time. The discount factds assumed to be equal
lines to 1. Pathways of backpropagation are shown by dashed lines. Components
: . . . . of the vectorA(¢ + 1) are propagated back from outpul¢ + 1) of the
In DHP, application of the chain rule for derivatives yieldsnodel network to its inputsi2(z) and A(t), yielding the first term of (7)
and the vectodJ(t 4+ 1)/9A(t), respectively. The latter is propagated back
from outputsA(t) of the action network to its input®(t), completing the

n
8J(t + 1) _ Z (a1 IR, (t + 1) second term in (7). This corresponds to the left-hand backpropagation pathway
8R'(t) - Z( ) 8R'(t) (thicker line) in the figure. Backpropagation of the vec®¥(t)/0A(t)
J — ' ) . -
=1 through the action network results in a vector with components computed

n . as the last term of (8). This corresponds to the right-hand backpropagation
+ Z )\i(t + 1) OR; (t + 1) aAk(t) (7) pathway from the action network (thinner line) in the figure. Following (8),
4 AAL(E) OR,; 3] the summator produces the error vedin(t) used to adapt the critic network.
i The action network is adapted as follows. The vector+ 1) is propagated
back through the model network to the action network, and the resulting

where )\i(t + 1) = 8J(t + 1)/8Ri(t + 1), andn, m are the vectoris added toU(t)/dA(t). Then an incremental adaptation of the action
numbers of outputs of the model and the action networKEWork is invoked with the goal (9).
respectively. By exploiting (7), each af components of the

vector E,(t) from (6) is determined by C. GDHP
GDHP minimizes the error with respect to bothand its
Ea(t) = aJ(t) ,yaJ(tJr 1) oU(t) derivatives. While it is more complex to do this simultane-
! OR;(t) OR;(t) OR;(t) ously, the resulting behavior is expected to be superior. We
mQU(E) DA(E) describe three ways to do GDHP (Figs. 3-5). The first of these
- Z DAL(E) DR () (8) was proposed by Werbos in [22]. The other two are our own
k=1 K J new suggestions.

_ _ Training the critic network in GDHP utilizes an error
Action-dependent DHP (ADDHP) assumes direct connegeasure which is a combination of the error measures of HDP

tion between the action and the critic networks. Howevesind DHP (2) and (5). This results in the following LMS update
unlike ADHDP, we still need to have a model network becausgle for the critic’s weights:
it is used for maintaining the pathways of backpropagation. aJ (1)
ADDHP can be readily obtained from our design of ADGDHP AWe ==—m[J(t) = vJ(E+1) = U(t)] oW
to be discussed in the Section II-D. n ¢
The action network is adapted in Fig. 2 by propagating _7722 E d*J(t) (11)
j=1

A(t + 1) back through the model down to the action. The * OR;(t) oW
goal of such adaptation can be expressed as follows: L . " :
where E»; is given in (8), and)y; andy, are positive learning
rates.
0J(t+1) =0, vi. 9) A major source of additional complexity in GDHP
is the necessity of computing second-order derivatives
92 J(t)/OR(t)0W . To get the adaptation signal-2 [the second
form in (11)] in the originally proposed GDHP (Fig. 3), we first
need to create a network dual to our critic network. The dual
T network inputs the output and states of all hidden neurons of
ou(t) | 9J(t+1)]" 9A(%) (10) the critic. Its outputd./(t)/0R(t), is exactly what one would
OA(t) K OA(t) OW 4 get performing backpropagation from the critic’'s output to
its input R(¢). Here we need these computations performed
where «v is a positive learning rate. separately and explicitly shown as a dual network. Then we

LI
(t) IA(t)

For instance, we could write the following expression for th
weights’ update when applying the LMS training algorithm:

AWA = —
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It +1) Adaptation Jit+1)
Adaptation Signal - 2 Y-
Sonal 2 V@) aR(l)BU(t) * u() 9% J (1)
;\t - aR(l) R(t > NHDR/ J(t) Explicit aR(t)aVVC
) > > Analytical
£> Calculations
s sl T
» Adaptation
Adaptation Signal - 1
Signal - 1
9°J(1) dU)
OR()OW,. dR(D) B

Fig. 3. Critic’s adaptation in the general GDHP desighis a state vector of Fig, 4. Critic adaptation in our simplified GDHP design. Unlike GDHP in
the networka: (Adaptation Signal-1}- 2 (Adaptation Signal-2) is the total Fig. 3, here we use explicit formulas to compute all necessary derivatives
adaptation signal [see (11)]. The discount factas assumed to be equal to 2 J(t)/OR(t)dW .

one. According to (3), the summator at the upper center outputs the HDP-style

error. Based on (6), the summator to the right produces the DHP-style error

vector. The mixed second-order derivatiiis/ (t)/OR(t)0W: are obtained

by finding derivatives of output®.J(t)/0R(t) of the critic’s dual network JO
with respect to the weightd’ of the critic network itself. (This is symbolized R() - .
by the dashed arrow that starts from the encircled 1.) The multiplier performs [:> GDHP-style

a scalar product of the vector (6) with an appropriate column of the array CRITIC 7:>
8% J(t)/OR(t)0W¢, as illustrated by (16) in the Example. @)

IR(t)
can get the second derivatives sought by a straightforward hut o . . .
careful backpropagation all the way down through the du%'f]' 3. Critic network in a straightforward GDHP design.
network into the critic network. This is symbolized by the
dashed line starting from the encircled 1 in Fig. 3.

We have recently proposed and successfully tested a GDHAExample: This example illustrates how to calculate the
design with critic’s training based on deriving explicit forMixed second-order derivativas®.J(t)/0R(t)0Wc for the
mulas for findingd2.J(t)/OR(t)dWc (Fig. 4) [28], and, to GDHP design of Fig. 4. We consider a simple critic network
the best of our knowledge, it is the first published success&fown in Fig. 6. It consists of two sigmoidal neurons in its
implementation of GDHP [34]. While this design is moré@nly hidden layer and a linear output This network is
specialized than the original one, its code is less compledguivalent to the following function:
which is an important issue since correct implementation of o 3 3
the design of Fig. 3 is not a trivial task. We illustrate how T =wssfs+wsfy t}g?Ro
to obtain 92 J(t)/R(t)oWc for the critic’s training of this = exp (—wosRo — wisR1 — wasRa) 1 1
GDHP design in an example below. Was

Finally, we have also suggested and are currently working
on the simplest GDHP design with a critic network as shown
in Fig. 5 [42]. Here the burden of computing the second
derivativesd? J(t)/OR(t)OWc is reduced to the minimum by Derivativesd.J/dR;, j = 0, - -+, 2, are obtained as follows:
exploiting a critic network with both scalar output of theesti- 4
mate and ve_ctor outpu_t ofJ/OR. Thus, the second glerlvanves 9J _ Z wis fi(1 = fi)wji + ;0w05 (13)
are conveniently obtained through backpropagation. OR =

We do not perform training of the action network through ) _
internal pathways of the critic network of Fig. 5 leading fronfVhere é;o is the Kronecker delta. We can get the mixed
its J output to the inputk because it would be equivalent toSecond-order derivatives with respect to the weights of the
going back to HDP. We already have high quality estimates 8ftPut neuron as follows:

+
exp (—w04R0 — wig Ry — 1U24R2) +1
+ wos Ro. (12)

dJ /IR as the critic’s outputs in the DHP portion of this GDHP a2

design and therefore use them instéabhus, the action’s OR. Owys =fi(l = fi)wji

training is carried out only by the critic’®.J/OR outputs, 52J ’

precisely as in DHP. However, the output implicitly affects ——— =bj0 (14)
the action’s training through the weights’ sharing in the critic. IR, dwos

Of course, we do use the critic’s internal pathways from itghere; = 3,4, andj = 0, ---, 2. For the hidden layer

J output to the inputR to train the action network in the neurons, the required derivatives are
designs of Figs. 3 and 4. 527

2This situation is typical when ACD’s are used for optimal control. In other OR;Owji
application domains where the estimatesdof/ R obtained from the HDP a9%J
portion of the design may be of a better quality than those of the DHP portion, e
the use of these more accurate estimates is preferable [40]. aRj Owg

=wisfi(1 = fi)[L + (1 = 2fi)w;i ]

=wiswyi R fi(1 — fi)(1 —2f;) (15)
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A (t+1):M A (t+1)=m
: OR(t + 1)f f 5 At +1)
R D—I cRITIC
i e , J(t+1)
Ap(t+1), A(t+1)T ;ZA(t+l)
1
ig. 6. impl k for th le of ing th d-ord — I
Cetaiiveso? 11y OR(1 W i our GDUP design given n Fig. 4.~ : ACTION
wherei =3,4,k=0,---,2,5=0,---, 2,andk # j. Thus, 120(03)
based_ on (11), we can adapt weights in the network using the AA(1)
following expression: T
R(1) -
aJ(t)
Awj =—m[J@E) —~J(E+ 1) = Ut
wji = =m0 = 1+ 1) = U] 5 EHO) UG
B 22: aJ(t)  _2J(t+1) AU() Z30) )
Bl o, T omy aRy, i
D o) EEN ST
o R(t) A(D)

where the indexes and j are chosen appropriately. WeFig. 7. Adaptation in ADGDHP. The critic network outputs the scalar

; _ __and two vectorsAr andX 4. The vectorh 4(t + 1) backpropagated through
also assume that elthe?J(t)/aRO ,Yaj(t + 1)/8R0 the action network is added for(t + 1). The vectorAr(t + 1) propagates

AU(t)/dRy = 0, or OU(t)/dRy = 0 since Ry is a constant pack through the model, then it is is split in two vectors. One of them goest
bias term. into the square summator to be added to the veddtt)/dR(t) and to

: : rightmost term in (18) (not shown). The second vector is added to the
The example above can be easily generalized to Iard/%?:torab’(t)/al%(t) in another summator. both of these summators produce
networks. two appropriate error vectorB: (t), as in (19) and (20). According to (3),

It is clear that HDP and DHP can be readily obtainethﬁedriﬁht ov?l sum;nator Corgputes theherEr(f)-TWO iffOL vectorsi (1) )
; ; i ; ; iy ,and the scalaf; (¢) are used to train the critic network. The action networ
from a GD!_!P des'g” with the CI’I'tIC C?f Fig. 5. The §|mpI|C|tyiS adap ted by the direct paths(t 4+ 1) between the critic and the action
and versatility of this GDHP design is very appealing, and petworks.
prompted us to a straightforward generalization of the critic

of Fig. 5 for AD forms of ACD’s. Thus, we propose action-

dependent GDHP (ADGDHP), to be discussed next. where
aJ(t+1)
D. ADGDHP 4
) aJ(t+1)
As all AD forms of ACD’s, ADGDHP features a direct Ag, (t+1) = AT 1)
connection between the action and the critic networks. Fig. 7 9Tt + 1 %U :
shows adaptation processes in ADGDHP. Although one could Aa, (1) (t+1) (t)
utilize critics similar with those illustrated in Figs. 3 and 4, we IAR(t)  OAL(H)

found ADGDHP easier to demonstrate when a critic akin Téhd n, m are the numbers of Outputs of the model and the
one of F|g 5is used. In addition, we gained Versatility in th%“on networksi respective'y_
the deSign of Flg 7 can be readily transformed into ADHDP Based on (17) and (18)’ we obtain two error vectors,

or ADDHP. ER(t) € R* and E3'(t) € R™ from (6) as follows:
Consider training of the critic network. We can write
_aJ(t) aJ(t+1) B aU(t)

ER@t) = - (19)
e . 2O =or,0 TV OR(® ok,
% =Y Art 1)% 17) g = 0 0J0ED) _0Un) o0
k(1) k() MY =040 T oA T oA
9J(t+1) _ Z Mg, (t+ 1)8Ri(t +1) As in GDHP, the critic network is additionally trained by the
IR;(t) P ' IR;(t) scalar errork (¢) according to (3). If one applies the LMS
m AAL(E) algorithm, it results in an update rule similar to (11).
+> N, (@) IR (18)  Fig. 7 also shows the direct adaptation path(t + 1)
k=1 J between the action and the critic networks. We express the
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goal of action’s training as follows: —
. :
Gusts N(0,1.5) %, out of 600 test trials

Aa(t)=0, Vi (21) GDHP | DHP | HDP |ADHDP | PID

L. . . . tight
Similar with what we stated in the Section II-C on GDHP,1.ieq with success

training of the action network is not carried out through th&yind shear only | loose
internal pathways of the critic network leading from ifs success
output to the inputd since it would be equivalent to returning Trained with tight
to ADHDP. To train the action network, we use only thewind shear ;“;::55
critic's 9.J/9A outputs so as to meet (21). The goal (21) isand wind gusts | g,ccess| 98 98 97 97 98

the same for all AD forms of ACD’s.

73 71 50 1 0

99 99 98 98 99

71 70 45 0 0

Average number of
training attempts to land
I1l. GENERAL TRAINING PROCEDURE AND RELATED ISSUES —-

This training procedure is a genera"zation of that Suggestéig. 8. Test results of the autolander problem given for one of the most

; . ] challenging cases where wind gusts were made 50% stronger than in standard
n [26]' [301' [33]’ [38]’ and [43]’ and it is appllcable to conditions. After the ACD’s were trained on the number of landings shown,

any ACD. It consists of two training cycles: critic’'s andthey were tested in 600 more trials, without any adaptation. Although the
action’s. We always start with critic’s adaptation alternating fiverage training is much longer for GDHP and DHP than for HDP and

; [ : . HDP, we could not observe an improvement of performance for either
with action’s until an acceptable performance is reached. P or ADHDP if we continued their training further. Tight success means

assume no concurrent adaptation of the model network, whighding within a shortened touchdown region of the runway (it is the most

is previously trained offline, and any reasonable initializatiofportant characteristic). Loose success means landing within the limits of
the standard runway. Similar results were obtained in various other flight
for W4 and Wc.

.. . . _conditions.
In the critic’s training cycle, we carry out incremental opti-

mization of (2) and/or (5) by exploiting a suitable optimization

technique (e.g., LMS). We repeat the following operations Poth the cycles to avoid duplicating the computations in lines

times: 1.1-1.4. After the action’s training cycle is completed, one
may check action’s performance, then stop or continue the
training procedure entering the critic’s training cycle again, if

1000 | 1000 100 100 N/A

__for HDP, DHP, GDHP for ADHDP, ADDHP, ADGDHP 4,0 herformance is not acceptable Jet.
1.0. Initialize t+ = 0 and R(0) Initialize t = 0, R(0), and A(0) . . L
11 V() = fo[R(t), We V(1) = fo[R(t), A(t), Wel It is very important that the whole system consisting of
12, A(t) = fa[R(1), Wa] R(t+1) = ACD and plant would remain stable while both the networks of
FulR(), At), Wil ACD undergo adaptation. Regarding this aspect of the training
13. R(t+1)= A(t+1) = fA[R(E+ 1), W4 procedure, we recommend to start the first training cycle of
Far[R(E), A(t), Wag] the critic with the action network trained beforehand to act as
14, V(t4+1)= fo[R(t+1), We] V(E+1) = a stabilizing controller of the plant. Such a pretraining could
felR(t+1), A(t+ 1), Wel be done on a linearized model of the plant (see, e.g., [45]).
1.5. ComputeE (t), Ea(t) from (2) and/or (5), andV'(t)/0We, to be Bradtke et al. [26] proved that, in the case of the well-
used in an optimization algorithm, then invoke the algorithmto  known linear quadratic regulation, a linear critic network
perform one update of the critic's weight:. For the update with quadratic inputs trained by the recursive least squares
example, see (4) and (11). algorithm in an ADHDP design converges to the optimal cost.
1.6. t =t + 1; continue from 1.1.

If the regulator always outputs actions which are optimal with
respect to the target vector for the critic’s adaptation, i.e.,

HereV/(t) stands for/(z) or Ay (t), fa (-, Wa), fe (-, We), A*(t) = arg min vJ[R(t), A(t)] (22)
and fu (-, Wyr) are the action, the critic and the model A
networks, with their weight$¥;, respectively. hereJ[R(t), A(t)] = vJ[R(t+1), A(t+1)]+U[R(), A(t)],

In the action’s training cycle, we also carry out incrementz\#len the sequenca* (#) is stabilizing, and it converges to the
learning through an appropriate optimization routine, as in tt& '

o o . . %timal control sequence.
critic’s training cycle above. The list of operations for the Control sequences obtained through classical dynamic pro-
action’s training cycle is almost the same as that for the critic’

; amming are known to guarantee stable control, assumin
cycle above (lines 1.0-1.6). However, we need to use (9) pr 9 9 9

. perfect match between the actual plant and its model used
(21), rather than (2) and/or (5); ar@ld(t)/0W 4 instead of . ; : :
dV (t)/0W before invoking the optimization algorithm l‘orIn dynamic programming. Balakrishnan al. [43] suggested

dating th fion iohts” 10) for th dat to stretch this fact over to a DHP-based ACD for linear
gsarig;g] e action’s weights/, [see (10) for the up al® and nonlinear control of systems with known models. In

. . . their design, one performs a training procedure similar to the
The action’s training cycle should be repeat&fl times 9 P gp

while keeping the critic's weightd3¥ fixed. We point out  3Like many other training procedures, ours also implicitly assumes a

that N and M are Iengths of the Correspondlng tralnlnguﬁ:lclently varied set of training examples (e.g., different training tl’ajectories)
| Th bl d d £l ﬁj eated often enough in order to satisfy persistent excitation—a property well
cycles. ey are problem-dependent parameters of loos wn in a modern identification and adaptive control literature (see, e.g.,

specified values. IfAf = N = 1 we can easily combine [37]).
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above. Each training cycle is continued till convergence of tlikis enhancement, we still expect better performance from the
network’s weights (i.e.N — oo, M — oc in the procedure advanced ACD'’s.

above). Itis also suggested to use a new randomly chBsen Furthermore, Baird [39] showed that the shorter the dis-

on every return to the beginning of the critic’s training cycleretization interval becomes, the slower the training of AD-

(line 1.6 is modified as followst = £ + 1; continue from 1.0). HDP proceeds. In continuous time, it is completely incapable
It is argued that whenever the action’s weights converge oot learning.

has a stable control, and such a training procedure eventualfpHP and ADDHP have an important advantage over the
finds the optimal control sequence. simple ACD’s since their critic networks build a representation

While theory behind classical dynamic programming dder derivatives of J by being explicitly trained on them
mands choosing the optimal vecter*(¢) of (22) for each throughaU(t)/0R(t) anddU(t)/dA(t). For instance, in the
training cycle of the action network, we suggest incrementatea of model-based control we usually have a sufficiently
learning of the action network in the training procedure abovaccurate model network and well-definéd/(¢)/dR(t) and
A vector A(t) produced at the end of the action’s traininglU(t)/dA(t). To adapt the action network we ultimately need
cycle does not necessarily match the vectd(t). However, the derivatives).J/dR or 8.J/8A, rather than theJ function
our experience [28], [30], [44], [46], along with successfultself. But an approximation of these derivatives is already
results in [33], [38], and [43], indicates that choosidg(t) a direct output of the DHP and ADDHP critics. Although
precisely is not critical. multilayer neural networks are well known to be universal

No training procedure currently exists that explicitly adapproximators of not only a function itself (direct output of the
dresses issues of an inaccurate or uncertain mggeél W,,). network) but also its derivatives with respect to the network’s
It appears that model network errors of as much as 20#puts (indirect output obtained through backpropagation) [41],
are tolerable, and ACD'’s trained with such inaccurate modek note that the quality of such a direct approximation is
networks are nevertheless sufficiently robust [30]. Althougllways better than that of any indirect approximation for given
it seems consistent with assessments of robustness of cgimes of the network and the training data. Work on a formal
ventional neurocontrol (model-reference control with neurgkoof of this advantage of DHP and ADDHP is currently in
networks) [31], [32], further research on robustness of contrptogress, but the reader is referred to the Section V for our
with ACD is needed, and we are currently pursuing this workxperimental justification.

To allow using the training procedure above in presenceCritic networks in GDHP and ADGDHP directly approxi-
of the model network’s inaccuracies, we suggest to run theate not only the functiotf but also its derivatives. Knowing
model network concurrently with the actual plant or anothdxoth J and its derivatives is useful in problems where avail-
model, which imitates the plant more accurately than the modsility of global information associated with the functioh
network but, unlike this network, it is not differentiable. Thatself is as important as knowledge of the slopeJ/ofi.e., the
plant’s outputs are then fed into the model network every sterivatives ofJ [40]. Besides, any shift of attention paid to
often (usually, every time step) to provide necessary aligmalues ofJ or its derivatives during training can be readily
ments and prevent errors of multiple-step-ahead predictiomscommodated by selecting unequal learning rateand 7
from accumulating. Such a concurrently running arrangement(11) (see Section 1I-C). In Section II-C we described three
is known under different names including teacher forcinGDHP designs. While the design of Fig. 5 seems to be the
[35] and series-parallel model [36]. After this arrangememhost straightforward and beneficial from the viewpoint of
is incorporated in an ACD, the critic will usually inputsmall computational expenses, the designs of Figs. 3 and 4
the plant's outputs, rather than the predicted ones from thse the critic network more efficiently.
model network. Thus, the model network is mainly utilized Advanced ACD’s include DHP, ADDHP, GDHP, and
to calculate the auxiliary derivative8R(t + 1)/8R(¢t) and ADGDHP, the latter two being capable of emulating all
OR(t + 1)/0A(2). the previous ACD's. All these designs assume availability

of the model network. Along with direct approximation of

the derivatives of/, it contributes to a superior performance

of advanced ACD'’s over simple ones (see the next Section
IV. SiMPLE ACD's VERSUS ADVANCED ACD's for examples of performance comparison). Although the final

The use of derivatives of an optimization criterion, rathegelection among advanced ACD's should certainly be based
than the optimization criterion itself, is known as being then comparative results, we believe that in many applications
most important information to have in order to find an adhe use of DHP or ADDHP is quite enough. We also note
ceptable solution. In the simple ACD’s, HDP, and ADHDPthat the AD forms of the designs may have an advantage in
this information is obtained indirectly: by backpropagatioffaining recurrent action networks.
through the critic network. It has a potential problem of being
too coarse since the critic network in HDP is not trained to
approximate derivatives of directly. An approach to improve
accuracy of this approximation has been proposed in [27]. It is
suggested to explore a set of trajectories bordering a volumeThis section provides an overview of our experimental work
around the nominal trajectory of the plant during the critic’en applying various ACD'’s to control of dynamic systems. For
training, rather than the nominal trajectory alone. In spite dfetailed information on interesting experiments carried out by

V. EXPERIMENTAL STUDIES



1004 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

(@)

|

351 +

301 A

0.2 T
04 4
-0.6
-0.8 -

(b)

Fig. 9. Test results of two neurocontrollers for the ball-and-beam system. Edges of the beam correspbnahi its center is at zero. Dotted lines are the
desired ball positions; (set points), solid lines are the actual ball trajectoty). (a) Conventional neurocontroller trained by the truncated backpropagation
through time with NDEKF; (b) DHP action network tested on the same set points as in (a).

other researchers in the field, the reader is referred to [38kingularity ath(t) = 0, we treat both termd/h(t) as fixed
and [43]. to unity wheneveri(t) < 1 ft.

The first problem deals with a simplified model of a com- We found the problem with its original system of con-
mercial aircraft which is to be landed in a specified touchdowsiraints not challenging enough since even the nonadaptive
region of a runway within given ranges of speed and pitdPID controller provided in [22] could solve it very well. We
angle [22]. The aircraft is subject to wind disturbances thabmplicated the problem by shortening the touchdown region
have two components: wind shear (deterministic) and turbulesft the runway by 30%.
wind gusts (stochastic). To land safely, an external controllerWe have compared the PID controller, ADHDP, HDP, and
should be developed to provide an appropriate sequenceDd{P for the same complicated version of the autolander
command elevator angles to the aircraft's pitch autopilgbroblem. Implementation details are discussed in [28] and
Along with actual states of the plane, a controller may al480], and results are summarized in Fig. 8. The most important
use desired values of the altitude and the vertical speed conclusion is that in going from the simplest ACD, ADHDP,
vh. supplied by an instrument landing system (ILS). to the more advanced ACD’s one can attain a significant

To trade off between closely following the desired landingnprovement in performance.
profile from the ILS when far from the ground, and meeting We have also applied DHP to control of actual hardware,
the landing constraints at the touchdown, one could use theball-and-beam system [44]The goal is to balance the

following utility function: ball at an arbitrary specified location on the beam. We use
the recurrent multilayer perceptron for both model and action
Ut) = {1 _ L} {a1[h(t) = he(t)]? networks. The model network inputs the current position of the
h(t) ball, z(¢), and the servo motor control signal, the latter being
+ az[vh(t) — vho(t)]*} the only output of the action network with a sigmoidal output
as[vh(t) + 22 + ayfz(t) — 1502 node. It predicts the next ball positiom(t + 1). The action
+ h(t) (23)  networks inputsz(¢) from the model network andy(t + 1),
the desired ball position at the next time step. The critic
wherea;, i = 1, ---, 4, are experimentally determined con-

stan_ts, andh(t), Uh(t)’_ and z(t) ?‘_re the actual altitude, _ “Although we initially attempted an HDP design, we failed to make it work:
vertical speed, and horizontal position of the plane. To avoid critic was not accurate enough to allow the action’s training.



PROKHOROV AND WUNSCH: ADAPTIVE CRITIC DESIGNS 1005

; .'-. . 'l_.'\.\ i .A ! ".' ,«.\ ;\ ,~\.\

-1.5

151
1 T 'y
0.5 4 g ; \

(@)

1_._

\--.\

¥ PR TR

(b)

JAWS f\f\vwf\/\ ALAAN A
z 7 100\/ IV

©

(=]

-2

(d)

Fig. 10. Performance of HDP [plots (a) and (b)] and DHP [(c) and (d)] for the MIMO plant. Dotted lines are the reference trajgftanes;, solid
lines are the actual outputs (t) and y2(¢). The rms error for DHP is 0.32 versus 0.68 for HDP.

network usese(t + 1) and z4(¢t + 1) to produce an output, performance of a conventional neurocontroller is also given.
aJ(t + 1)/8x(t + 1). This neurocontroller of the same architecture as the action
We trained the action network off-line using a sufficientlynetwork was trained with the same model network by truncated
accurate model network trained in the parallel identificatidmackpropagation through time with NDEKF [32].
scheme [36]. We trained the DHP design according to theAnother example experiment deals with a nonlinear
training procedure described in Section Ill. As the utilifyt), multiple-input/multiple-output (MIMO) system proposed by
we have used the squared difference betwefgh andz4(¢). Narendra and Mukhopadhyay [45] controlled by HDP and
Training was performed using the node-decoupled extende#iP designs [46]. This plant has three states, two inputs, and
Kalman filter (NDEKF) algorithm [31]. The typical training two outputs, and it is highly unstable for small input changes.
trajectory consisted of 300 consecutive points, with two drhe maximum time delay between the first control input and
three distinct desired locations of the ball. We were usualtile second output is equal to three time steps. The goal is
able to obtain an acceptable controller after three alternatittg develop a controller to track two independent reference
critic’'s and action’s training cycles. Starting with = 0 in  signals as closely as possible.
(6), we moved on tey = 0.6 and 0.9 for the second and the Although Narendra and Mukhopadhyay have explored sev-
third critic’s cycles, respectively. eral control cases, here we discuss only the case of fully
Fig. 9 shows a sample of performance of the DHP acti@tcessible states and known plant equations. Thus, instead
network when tested on the actual ball-and-beam systerihthe model network, we utilize plant equations within the
for three set pointsot used in training. For comparison,framework of both ACD’s.
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The action network inputs the plant state variablegt),  [5]
i = 1,-.-,3, and the desired plant outputg (¢ + 1) and ]
y3(t+1), to be tracked by the actual plant outpyi$t+1) =
z1(t+ 1) andya(t + 1) = x2(¢t 4+ 1), respectively. Since we [7]
have different time delays for each control input/plant outpu[s]
pair, we used the following utility:

Ult]

[9
Hi(t+1) =g+ DP + [t +2) — g3 (¢ +3))°  110]

+ly2(t+3) — w3t +2)F} (24)

11
The critic’s input vector consists ofy (¢t + 1), yi(t + 1), -
y2(t+2), ya (t+2), y2(t+3), y5(¢+3). Both the action and the 12
critic networks are simple feedforward multilayer perceptrons
with one hidden layer of only six nodes. This is a much smallé¥3]
size than that of the controller network used in [45], and W,y
attribute our success in training to the NDEKF algorithm.

The typical training procedure lasted three alternations of
critic’s and action’s training cycles (see Section III). Thé!®
action network was initially pretrained to act as a stabilizing
controller [45], then the first critic’s cycle began with= 0.5  [16]
in (6) on a 300-point trajectory. (171

Fig. 10 shows our results for both HDP and DHP. Wgs]
continued training both designs until their performance was
no longer improving. The HDP action network performe@lg]
much worse than its DHP counterpart. Although there is sti#0]
room for improvement (e.g., using a larger network), we dou
that HDP performance will ever be as good as that of DHP.
Recently, KrishnaKumar [47] has reported HDP performand?]
better than ours in Fig. 10(a) and (b). However, our DHEs]
results in Fig. 10(c) and (d) still remain superior. We think
that this is a manifestation of an intrinsically less accurate

1]

approximation of the derivatives of in HDP, as stated in (24]
Section IV. [25]
VI. CONCLUSION [26]

We have discussed the origins of ACD’s as a conjunction
of backpropagation, dynamic programming, and reinforcement]
learning. We have shown ACD'’s through the design ladd
with steps varying in both complexity and power, from HD
to DHP, and to GDHP and its action-dependent form at the
highest level. We have unified and generalized all ACD’s vig®!
our interpretation of GDHP and ADGDHP. Experiments with
these ACD’s have proven consistent with our assessment[3f
their relative capabilities.

8]

(31]
ACKNOWLEDGMENT

The authors wish to thank Drs. P. Werbos and L. Feldkantg?]
for stimulating and helpful discussions.
(33]
REFERENCES

[1] 1. P. Pavlov,Conditional Reflexes: An Investigation of the Physiological
Activity of the Cerebral Cortex. London: Oxford Univ. Press, 1927.

[2] S. Grossberg, “Pavlovian pattern learning by nonlinear neural networks,”
in Proc. Nat. Academy Scil971, pp. 828-831.

[3] A. H. Klopf, The Hedonistic Neuron: A Theory of Memory, Learning[35]
and Intelligence. Washington, DC: Hemisphere, 1982.

[4] P.J. Werbos, “Beyond regression: New tools for prediction and analy<i36]
in the behavioral sciences,” Ph.D. dissertation, Committee on Appl.
Math., Harvard Univ., Cambridge, MA, 1974.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997

, The Roots of Backpropagation: From Ordered Derivatives to
Neural Networks and Political ForecastingNew York: Wiley, 1994.

Y. Chauvin and D. Rumelhart, EdsBackpropagation: Theory, Archi-
tectures, and Applications.Hillsdale, NJ: Lawrence Erlbaum, 1995.

R. E. Bellman,Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1957.

D. P. BertsekasPynamic Programming: Deterministic and Stochastic
Models. Englewood Cliffs, NJ: Prentice-Hall, 1987.

] P. J. Werbos, “The elements of intelligenc&ybern.,no. 3, 1968.

, “Advanced forecasting methods for global crisis warning and
models of intelligence,"General Syst. Yearbookpl. 22, pp. 25-38,
1977.

, “Applications of advances in nonlinear sensitivity analysis,” in
Proc. 10th IFIP Conf. Syst. Modeling and Optimizatid®, F. Drenick
and F. Kosin, Eds. NY: Springer-Verlag, 1982.

C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, Cam-
bridge Univ., Cambridge, U.K., 1989.

C. Watkins and P. Dayan, “Q-learningylachine Learningyol. 8, pp.
279-292, 1992.

] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike elements

that can solve difficult learning control problemdEEE Trans. Syst.,
Man, Cybern.vol. SMC-13, pp. 835-846, 1983.

B. Widrow, N. Gupta, and S. Maitra, “Punish/reward: Learning with a
critic in adaptive threshold systemdPEE Trans. Syst., Man, Cybern.,
vol. SMC-3, pp. 455-465, 1973.

R. S. SuttonReinforcement Learning.Boston, MA: Kluwer, 1996.

F. RosenblattPrinciples of Neurodynamics.Washington, D.C.: Spar-
tan, 1962.

B. Widrow and M. Lehr, “30 years of adaptive neural networks:
Perceptron, madaline, and backpropagatidfrdc. IEEE,vol. 78, no.

9, pp. 1415-1442, 1990.

D. O. Hebb,The Organization of Behavior.New York: Wiley, 1949.

R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,”Machine Learningyol. 3, pp. 9-44, 1988.

P. J. Werbos, “Backpropagation through time: What it is and how to do
it,” Proc. IEEE,vol. 78, no. 10, pp. 1550-1560, 1990.

W. T. Miller, R. S. Sutton, and P. J. Werbos, Edseural Networks for
Control. Cambridge, MA: MIT Press, 1990.

D. A. White and D. A. Sofge, EdsHandbook of Intelligent Control:
Neural, Fuzzy, and Adaptive Approache®ew York: Van Nostrand
Reinhold, 1992.

P. J. Werbos, “Consistency of HDP applied to a simple reinforcement
learning problem,Neural Networksyol. 3, pp. 179-189, 1990.

L. Baird, “Residual algorithms: Reinforcement learning with function
approximation,” inProc. 12th Int. Conf. on Machine Learningan
Francisco, CA, July 1995, pp. 30-37.

S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic
control using policy iteration,” ifProc. Amer. Contr. ConfBaltimore,
MD, June 1994, pp. 3475-3479.

N. Borghese and M. Arbib, “Generation of temporal sequences using
local dynamic programmingNeural Networksno. 1, pp. 39-54, 1995.
D. Prokhorov, “A globalized dual heuristic programming and its ap-
plication to neurocontrol,” inProc. World Congr. Neural Networks,
Washington, D.C., July 1995, pp. 11-389-392.

D. Prokhorov and D. Wunsch, “Advanced adaptive critic designs,” in
Proc. World Congress on Neural Networl&an Diego, CA, Sept. 1996,
pp. 83-87.

D. Prokhorov, R. Santiago, and D. Wunsch, “Adaptive critic designs:
A case study for neurocontrolReural Networksyol. 8, no. 9, pp.
1367-1372, 1995.

G. Puskorius and L. Feldkamp, “Neurocontrol of nonlinear dynamical
systems with Kalman filter trained recurrent networkEEE Trans.
Neural Networksyol. 5, pp. 279-297, 1994.

G. Puskorius, L. Feldkamp, and L. Davis, “Dynamic neural-network
methods applied to on-vehicle idle speed contrBidc. IEEE,vol. 84,

no. 10, pp. 1407-1420, 1996.

F. Yuan, L. Feldkamp, G. Puskorius, and L. Davis, “A simple solution
to the bioreactor benchmark problem by application of Q-learning,” in
Proc. World Congr. Neural Network®Vashington, D.C., July 1995, pp.
11-326-331.

] P. J. Werbos, “Optimal neurocontrol: Practical benefits, new results

and biological evidence,” inProc. World Congr. Neural Networks,
Washington, D.C., July 1995, pp. [1-318-325.

R. Williams and D. Zipser, “A learning algorithm for continually running
fully recurrent neural networksNeural Computa.yol. 1, pp. 270-280.

K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural network&EE Trans. Neural Networks,
vol. 1, pp. 4-27.



PROKHOROV AND WUNSCH: ADAPTIVE CRITIC DESIGNS 1007

[37]

(38]

(39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Donald C. Wunsch, Il (SM'94) completed a Hu-
manities Honors Program at Seattle University, WA,
in 1981 and received the B.S. degree in applied
mathematics from the University of New Mexico,
Albuquerque, in 1984, the M.S. degree in applied
mathematics and the Ph.D. degree in electrical engi-
neering from the University of Washington, Seattle,

K. S. Narendra and A. M. Annaswamy5table Adaptive Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

R. Santiago and P. J. Werbos, “A new progress toward truly brain-li
control,” in Proc. World Congr. Neural Network§an Diego, CA, June
1994, pp. 1-27-33.

L. Baird, “Advantage updating,” Wright Lab., Wright Patterson AFB
Tech. Rep. WL-TR-93-1146, Nov. 1993.

S. Thrun, Explanation-Based Neural Network Learning: A Lifelong in 1987 and 1991, respectively.

Learning Approach. Boston, MA: Kluwer, 1996. ‘ He was Senior Principal Scientist at Boeing,
H. White and A. Gallant, “On learning the derivatives of an unknow Seattle, WA, where he invented the first optical im-
mapping with multilayer feedforward networkd\eural Networksyol. plementation of the ART1 neural network, featured

5, pp. 129-138, 1992. . ) » o in the 1991 Annual Report, and other optical neural networks and applied
D. Wunsch and D. Prokhorov, “Adaptive critic designs,”@@mputa- research contributions. He has also worked for International Laser Systems

tional Intelligence: A Dynamic System Perspectiie,J. Marks, Il,.et  gng Rockwell International, both at Kirtland AFB, Albuquerque, NM. He is

al, Eds. New York: |EEE Press, 1995, pp. 98-107. Director of the Applied Computational Intelligence Laboratory at Texas Tech

S. N. Balakrishnan and V. Biega, “"Adaptive critic based neural network$,;ersity, Lubbock, TX, involving six other faculty, several postdoctoral

for control,” in Proc. Amer. Contr. Conf.Seattle, WA, June 1995, pp. 5sqnciates, doctoral candidates, and other graduate and undergraduate students.

33%;?32' D. Prokhorov. and D. Wunsch. “Neurocontrollers for ball-an I-Jis cgrrent (esea_rch includgs neural optimizati(_)n, forecasting, and contrc_)l,

b. 't' > it ”’. t E h L Svst Th h Artifici Iqlnanmal engineering, fuzzy risk assessment for high-consequence surety, wind
eam systems,” Inntefigent Engineering Systems through Artiliclaly  inearing, characterization of the cotton manufacturing process, intelligent

_Neural Netwqus 6 (Proc. Conf. Art'f'c.'al Neural Networks in Engmeer-agems’ and Go. He is heavily involved in research collaborations with former

ing), C. Dagli et al., Eds. New York: Amer Soc. Mech. Eng. Press,SOViet scientists.

1996, pp. 551-557. ; S ) i
K. S. Narendra and S. Mukhopadhyay, “Adaptive control of nonlinear Dr. Wunsch is an Academician in the International Academy of Tech

A ; nological Cybernetics and the International Informatization Academy. He is
nmoultlsvagsbl7e3s7>is7tggnsllégzg neural networkiigural Networksyol. 7, recipient of the Halliburton Award for excellence in teaching and research at

N. Visnevski and D. Prokhorov, “Control of a nonlinear muItivariableTexas Tech. He is a member of the International Neural Network Society and

system with adaptive critic designs,” Intelligent Engineering Systems a past member of the IEEE Neural Network Council.
Through Artificial Neural Networks 6 (Proc. Conf. Artificial Neural

Networks in Engineering);. Dagliet al.,Eds. NY: Amer. Soc. Mech.

Eng. Press, 1996, pp. 559-565; note misprints in rms error values.

K. KrishnaKumar, “Adaptive critics: Theory and applications,” tutorial

at Conf. Artificial Neural Networks in Engineering (ANNIE’96%t.

Louis, MO, Nov. 10-13, 1996.

Danil V. Prokhorov (S'95) received the Honors
Diploma in Robotics from the State Academy of
Aerospace Instrument Engineering (formerly LIAP),
St. Petersburg, Russia, in 1992. He is currently com-
pleting the Ph.D. degree in electrical engineering at
Texas Tech University, Lubbock, TX.

He worked at the Institute for Informatics and
Automation of the Russian Academy of Sciences
(formerly LIIAN), St. Petersburg, Russia, as a Re-
search Engineer. He worked at the Research Labora-
tory of Ford Motor Co., Dearborn, Ml, as a Summer

Intern in 1995-1997. His research interests are in adaptive critics, signal
processing, system identification, control, and optimization based on various
neural networks.

Mr. Prokhorov is a member of the International Neural Network Society.



	Adaptive Critic Designs
	Recommended Citation

	Adaptive critic designs

