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Adaptive Critic Design Based Neuro-Fuzzy
Controller for a Static Compensator in a

Multimachine Power System
Salman Mohagheghi, Student Member, IEEE, Ganesh Kumar Venayagamoorthy, Senior Member, IEEE, and

Ronald G. Harley, Fellow, IEEE

Abstract—This paper presents a novel nonlinear optimal con-
troller for a static compensator (STATCOM) connected to a power
system, using artificial neural networks and fuzzy logic. The
action dependent heuristic dynamic programming, a member of
the adaptive Critic designs family, is used for the design of the
STATCOM neuro-fuzzy controller. This neuro-fuzzy controller
provides optimal control based on reinforcement learning and
approximate dynamic programming. Using a proportional-inte-
grator approach the proposed controller is capable of dealing with
actual rather than deviation signals. The STATCOM is connected
to a multimachine power system. Two multimachine systems are
considered in this study: a 10-bus system and a 45-bus network
(a section of the Brazilian power system). Simulation results are
provided to show that the proposed controller outperforms a
conventional PI controller in large scale faults as well as small
disturbances.

Index Terms—Adaptive Critic designs, multimachine power
system, neuro-fuzzy systems, optimal control, static compensator.

I. INTRODUCTION

STATIC compensators (STATCOM) are power electronics
based shunt flexible ac transmission system (FACTS) de-

vices which can control the line voltage at the point of connec-
tion to the electric power network. Regulating the reactive and
active power injected by this device into the network provides
control over the power flows in the line and the dc link voltage
inside the STATCOM, respectively, [1] as illustrated in Fig. 1.
A power system containing generators and FACTS devices is
a nonlinear system. It is also a nonstationary system since the
power network configuration changes continuously as lines and
loads are switched on and off.

In recent years most of the papers have suggested methods
for designing STATCOM controllers using linear control tech-
niques, in which the system equations are linearized at a spe-
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Fig. 1. STATCOM in a multimachine power system.

cific operating point. Based on the linearized model, the PI con-
trollers are fine tuned in order to have the best possible per-
formance [2]–[5]. The drawback of such PI controllers is that
their performance degrades as the system operating conditions
change. Linearizing the nonlinear system in the vicinity of the
operating condition cannot be a practical solution because of
the ever-changing nature of the power network, either due to
faults and disturbances or the normal changes in the operating
conditions. Moreover, the process of fine tuning a PI controller
in such a highly nonlinear environment is a complex and chal-
lenging task.

Traditional nonlinear adaptive controllers on the other hand
can give good control capability over a wide range of operating
conditions [6]–[9], but they have a more sophisticated structure
and are more difficult to implement compared to linear con-
trollers. In addition, they need a mathematical model of the
system to be controlled, which in most of the cases cannot be
obtained easily.

Intelligent controllers, on the other hand, have the potential
to overcome the above mentioned problems. Fuzzy-logic-based
controllers have, for example, been used for controlling a
STATCOM [10], [11]. The performance of such controllers can
further be improved by adaptively updating their parameters.
Mohagheghi et al. [13] applied the controller output error
method introduced by Anderson et al. [12] in order to imple-
ment an adaptive fuzzy controller for the STATCOM. Artificial
neural-network-based indirect adaptive controllers have also
been used to provide adaptive control for a STATCOM [14].

0885-8950/$20.00 © 2006 IEEE
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However, even the adaptive controllers suffer from the disad-
vantage of being “short-sighted”. The error at one step ahead
is used for updating the parameters of the adaptive controller,
without considering the fact that in a real power system, the
actions which take the system as close to the set point as
possible at time , may end up taking the system further
away from the set-point a moment later. The basic fact is that
the controller is not even addressing the problem of how to stay
close to the desired trajectory for more than one time period
into the future [15], resulting in time-based solutions that are
by no means optimal or close to optimal.

The powerful and well established theory of optimal control
and dynamic programming can be used as an alternative. While
mathematically proven to provide an optimal control policy, this
technique has its own disadvantages. Solving the dynamic pro-
gramming algorithm in most of the cases is not feasible. Even
a numerical solution requires overwhelming computational ef-
forts, which increases exponentially as the size of the problem
increases (curse of dimensionality). These restrictive conditions
lead the solution to a suboptimal control scheme with limited
look-ahead policies [17]. The complexity level is even further
exacerbated when moving from finite horizon to infinite horizon
problems, while also considering the stochastic effects, model
imperfections and the presence of the external disturbances.

Adaptive Critic design (ACD)-based controllers can over-
come the above mentioned problems. These are powerful
techniques designed to perform approximate dynamic pro-
gramming (ADP) in the presence of noise and uncertainties,
even in nonstationary cases and provide optimal control over
the infinite horizon of the problem [15]. Such controllers do not
need prior information of the plant to be controlled and can be
trained online without any large amount of offline data.

In earlier work reported in [16], the authors designed an
ACD-based neurocontroller for a STATCOM in a small power
system. They also showed in [11] and [13] that fuzzy logic
controllers can be used for effectively controlling a STATCOM
in a multimachine power system. The major advantage of the
optimal fuzzy-logic-based controller proposed in this study
over the similar neural-networks-based approaches in [13],
[16] is its “white box” nature. As opposed to a neurocontroller,
the rule base of a fuzzy-logic-based controller provides a
heuristic reasoning for controlling the plant. Hence, the design
engineer has a clear understanding of the parameters and their
effects on the system performance. In other words, similar to
the analytical approaches, the input-output relationship in a
fuzzy controller can be explained in terms of the physical rules
governing the behavior of the system. Table I summarizes the
main advantages and disadvantages of the conventional and
intelligent control schemes for the STATCOM.

In addition, the controller proposed in [16] requires extra
training in order to obtain a set of stable initial weights for the
controller (action network), whereas the initial parameters of the
proposed neuro-fuzzy controller can be easily derived using the
heuristics of the plant performance. Therefore, another advan-
tage of optimal FLC over the optimal neurocontroller designs is
clearly less time in development.

This paper combines the ACD neural-networks-based de-
sign for implementing an optimal neural network based fuzzy

TABLE I
CONVENTIONAL AND INTELLIGENT CONTROL SCHEMES FOR A STATCOM

(neuro-fuzzy) controller for a STATCOM. A proportional-in-
tegrator approach is also used which enables the designed
neuro-fuzzy controller to deal with actual signals and not
deviations, therefore making it an efficient solution for the
conditions in which the steady-state conditions of the system
change, such as during step changes in the reference values
of the controllers and/or changes in the topology of the power
system. The proposed controller uses the action-dependent
heuristic dynamic programming (ADHDP) method, which is
a member of the ACD family, in order to provide nonlinear
optimal control.

The structure of the multimachine power systems and the
conventional control scheme used as the basis of comparison
with the proposed neuro-fuzzy appear in Section II of the
paper. Section III summarizes some of the key concepts be-
hind ACD-based controllers. The structure of the proposed
STATCOM neuro-fuzzy controller is explained in Section IV.
Section V provides the details of the training process required
for the proposed controller. Simulation results are provided in
Section VI in order to compare the effectiveness of the proposed
neuro-fuzzy controller with that of the conventional PI con-
troller during small and large-scale disturbances. Section VII
discusses the practical considerations for implementing the
proposed controller in hardware. Finally, the conclusion is
given in Section VIII.

II. STATCOM IN A MULTIMACHINE POWER SYSTEM

Fig. 1 shows a STATCOM connected to a multimachine
power system. The system is a 10-bus, 500-kV, 5000-MVA
power network and is simulated in the PSCAD/EMTDC en-
vironment. The generators are modeled together with their
automatic voltage regulator (AVR), exciter, governor, and
turbine dynamics taken into account. Detailed parameters of
the network can be found in [18].

The STATCOM is first controlled using a decoupled conven-
tional controller scheme, as shown in Fig. 1. The deviations in
the line voltage and the dc link voltage are passed
through two separate PI controllers in order to determine the
inverter modulation index and the phase shift , respec-
tively. The effectiveness of the proposed decoupled scheme in
Fig. 1 was compared with the controller presented in [2], and the
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Fig. 2. STATCOM in the Brazilian 45-bus power network.

former was found to be more effective in responding to small
scale, as well as large scale, disturbances in the power system.

Parameters of the STATCOM’s two conventional PI con-
trollers are derived (at a specific operating point) so that the
controller provides a satisfactory and stable performance when
the system is exposed to small changes in reference values, as
well as large disturbances such as a three-phase short circuit on
the power network.

The proposed neuro-fuzzy controller will replace the line
voltage PI controller (referred to as ), but the dc link
voltage PI controller (referred to as ) has a satisfactory
performance over a wide range of the operating conditions and
is not replaced. Controlling the voltage at the point of con-
nection to the network is the main objective of the STATCOM
considered in this paper.

Fig. 2 illustrates the second multimachine power system
studied in this paper. It is a 45-bus 10-generator power system
and represents a section of the Brazilian power grid. The system
has two voltage levels of 525 and 230, kV respectively, with
14 transmission lines at 525 kV and 41 lines at 230 kV, 24
load buses, and seven buses with shunt compensation. The
total installed capacity of the system is 8940 MVA. All the
generators, transformers, and transmission lines have been
modeled in detail in the PSCAD/EMTDC environment.

After completing a load flow analysis on the power system in
Fig. 2, bus 378 (Joinvile) shows up as having the lowest voltage
in the network at 0.95 p.u. It has several transmission lines and
shunt loads connected to it. A STATCOM is therefore connected
to this bus in order to improve the voltage stability and to control
the voltage during dynamic disturbances. For a detailed expla-
nation of the system, the optimal allocation of the STATCOM
and its impact on the steady state and dynamic performance of
the system the reader is referred to the authors’ previous work
in [32].

III. ADAPTIVE CRITIC DESIGNS

ACDs were first introduced by Werbos in [19] and later in
[20], and by Widrow in the early 1970s [21]. Werbos later pro-
posed a family of ADP designs [22]. These are neural-network-

Fig. 3. Schematic diagram of the ACD neuro-fuzzy controller.

based techniques capable of optimizing a measure of utility or
goal satisfaction, over multiple time periods into the future, in
a nonlinear environment under conditions of noise and uncer-
tainty; in other words, they perform maximization/minimization
of a predefined utility function over time [23], [24].

A utility function along with an appropriate choice of a
discount factor should be defined for the ACD neurocontroller.
At each time step , plant outputs (a set of measured variables)

are fed into the controller, which in turn generates a policy
(control signal ) in a way that it optimizes the expected
value function over the horizon time of the problem, which is
known as the cost-to-go function given by Bellman’s equation
of dynamic programming [23], as follows:

(1)

where is the utility function and is a discount factor for
finite horizon problems . A discount factor of zero
uses the present value of the utility function as the optimization
objective (same as the minimization of one step ahead error),
while a discount factor of unity considers all the future values
of the utility function equally important and is most suitable for
the infinite horizon problems.

The Critic neural network accomplishes the task of dynamic
programming by approximating the true cost-to-go function
with no prior knowledge of the system. Moreover, it avoids the
curse of dimensionality that occurs in some cases of classical
dynamic programming based optimal control [23].

Essentially, ACD-based controllers are based on three dif-
ferent mathematical theories: approximate dynamic program-
ming, optimal control and reinforcement learning. Two major
categories of the ACD family include the model-based ACD de-
signs, where a model of the plant to be controlled is required
in order to train the controller, and the action-dependent ACD
(ADACD) designs, which is a model free approach. The pro-
posed ADHDP ACD neuro-fuzzy controller includes two dif-
ferent parts.

• Critic network; a neural network trained to approximate the
cost-to-go function required for optimization;

• Fuzzy logic controller; which functions as a controller and
is trained to provide the optimum control signals to the
plant, resulting in minimization/maximization of the func-
tion over the time horizon of the problem.

The ADHDP-based ACD neuro-fuzzy controller configura-
tion with the Critic and the fuzzy controller is shown in Fig. 3,
where is the vector of the plant outputs (i.e., the line
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Fig. 4. Schematic diagram of the ADHDP Critic network.

voltage deviations), is the vector of the plant reference
signals (i.e., the STATCOM line voltage reference), and is
the vector of the controller outputs (i.e., the inverter modulation
index ).

The simulation step size of 50 is selected for the PSCAD
simulations, while the sampling time for training the controller
is 2.0 ms (500 Hz).

IV. STATCOM NEURO-FUZZY CONTROLLER STRUCTURE

A. Critic Network

The Critic network in Fig. 3 learns to approximate a cost-to-
go function using the plant input and outputs which are fed to
the Critic from the plant and the controller. If, for a controllable
system, this neural network converges to the correct cost-to-go
function, the controller will stabilize that system; in other words
provided the Critic network converges correctly, the neurocon-
troller will provide universal stable adaptive control [23].

The ADHDP Critic network structure is shown in Fig. 4. It
is a three-layer feedforward multilayer perceptron (MLP)-type
neural network having a single hidden layer with hyperbolic tan-
gent activation functions; and the backpropagation algorithm is
used for training this network and updating its synaptic weight
matrices [25]. The Critic network predicts the value of the corre-
sponding cost-to-go function at time , given the plant output

at times , and , along with the controller
output at time as the input vector. The number of neurons in
the hidden layer of the Critic network is heuristically chosen to
be seven.

Bellman’s equation in (1) indicates

(2)

Therefore, the instantaneous error can be defined as a function
of two successive values of the cost-to-go function . This is
normally referred to as the temporal difference error

(3)

The objective of training the Critic network is to minimize
the following mean-squared error function

(4)

A steepest descent method is used for updating the synaptic
weights of the Critic network in the negative direction of the
derivative of the error function, shown in (5) as follows:

(5)

where is the Critic network learning rate and the weight up-
date equation can be rewritten as in (6). For a detailed expla-
nation of the backpropagation training algorithm, the reader is
referred to [26]

(6)

in (1) is the utility function which defines the optimiza-
tion objective of the optimal neurocontroller. Selection of the
utility function has a major impact on the performance and the
convergence of the ACD controller. Lendaris and Neidhoefer
[27] have reviewed the common approaches for selecting the
utility function. A unipolar function, as the absolute value of
the linear combination of the present and past values of the plant
output is selected in this work, which fits the training procedure
of the Critic and Action networks best. The selected utility func-
tion for this study is given in (7)

(7)

B. Neuro-Fuzzy Controller

The proposed neuro-fuzzy controller has two inputs, the line
voltage error and the change in the line voltage error

(Fig. 3). Providing
helps the controller to respond faster and more accurate to dis-
turbances in the system. A time step of 2.0 ms is selected for cal-
culating the change in error. A proportional-integrator approach
is applied in order to enable the fuzzy controller to deal with
the actual signals rather than deviation signals. This is achieved
by adding the instantaneous controller output to the pre-
vious accumulated total control signal (Fig. 3)

(8)

where the final control output replaces the inverter modu-
lation index in Fig. 1.

Seven membership functions are considered for the line
voltage deviation and the controller output .
These membership functions are associated with the terms
Negative Big, Negative Medium, Negative Small, Zero, Positive
Small, Positive Medium, and Positive Big for each variable.
Also three membership functions, i.e., Positive, Zero and Nega-
tive are assigned to the line voltage error . The rule base
implemented for the fuzzy controller is shown in Table II.

Shrinking span Gaussian membership functions, introduced
by Chen and Hsieh [28], are used for the fuzzy input variables.
This method creates membership functions with shrinking spans
(Fig. 5), in a way that the controller generates large and fast con-
trol actions when the system output is far from the set point and
makes moderate and slow changes when it is near the set point.
For details of creating SSMF, the reader is referred to [28]. In
an earlier paper, the authors compared the effectiveness of the
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TABLE II
FUZZY RULE BASE

Fig. 5. Shrinking-span Gaussian membership functions.

SSMF method with the conventional membership function de-
sign for a fuzzy logic controller for a STATCOM in a multima-
chine power system, and showed that the SSMF method is more
effective in controlling the STATCOM [13].

The equation for the Gaussian membership function of
the input variable can be expressed as

(9)

where and represent the center and the dispersion of the
corresponding membership function.

Due to the fact that a STATCOM (or any other FACTS de-
vice) in a power system goes through fast changes in terms of
system parameters and dynamics, the Takagi-Sugeno model is
selected for designing the STATCOM fuzzy logic controller in
this paper. This inference mechanism was proposed by Takagi,
Sugeno and Kang in an effort to develop a systematic approach
for generating fuzzy rules from a given data set [29], [30]. A
fuzzy rule in the Takagi-Sugeno inference mechanism can be
typically expressed as

where the antecedent values are fuzzy sets and the
function in the consequent is a crisp function, usually a poly-
nomial. Depending on the order of the fuzzy consequent func-
tion , the controller can be a zero-, first-, or higher-order TS
model. The zero-order TS model can also be viewed as the spe-
cial case of the Mamdani fuzzy inference system, in which each
rule’s consequent is specified by a fuzzy singleton.

Fig. 6. Schematic diagram of the neuro-fuzzy controller.

Since each rule has a crisp output, the overall output of the
fuzzy controller is obtained using the centroid defuzzification
in order to provide a smooth result. The instantaneous output of
the controller can be written as follows:

(10)

where is the rule firing strength and is the typical linear
function of the input variables

(11)

where, in this study, the coefficients are considered the
only nonzero coefficients. The coefficients of the consequent
functions are initially derived by trial and error, by testing the
STATCOM performance during the step change disturbances,
as well as large scale faults.

Fig. 6 illustrates the schematic diagram of the proposed
neuro-fuzzy controller. This type of network is also referred to
in the literature as the adaptive-network based fuzzy inference
system (ANFIS) [31]. It can be seen that the fuzzy controller
is modeled as a connectionist learning system, such as a neural
network, with the hidden neurons performing as the fuzzy
membership functions and the fuzzy functions and

.
The ACD-based neuro-fuzzy controller optimizes the overall

cost over the time horizon of the problem (minimizing the func-
tion ) by providing an optimal control input to the plant. In
order for the controller to be able to minimize the cost-to-go
function over the infinite horizon of the problem, it should be
trained with the following error signal:

(12)

where is the desired value for the cost-to-go function,
which in the case of dealing with deviation signals is zero. The
mean-squared error function in (13) is used as the objective
function for executing the backpropagation algorithm

(13)
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The coefficients of the fuzzy output polynomials are
considered to be the adaptive parameters of the fuzzy controller.
A gradient-descent learning algorithm is applied for adjusting
these values, where each parameter is updated in the negative
direction of the gradient of the objective function as
follows:

(14)

where is the fuzzy controller learning rate parameter. The par-
tial derivative of the objective function with respect to any pa-
rameter can be derived using the following chain rule:

(15)

The first term in (15) is equal to and the second term can
be derived by backpropagating constant 1.0 through the neu-
roidentifier. The reader is referred to [26] for more mathematical
details. The last term in (15) can also be simplified as follows:

(16)

In this study, only the polynomial function coefficients are up-
dated. It is also possible to apply a full updating scheme where
the parameters of the membership functions in (9) are adaptively
adjusted as well. The same logic mentioned above can be ex-
tended for implementing the latter. However, a partial updating
scheme is used here due to the fact that the membership func-
tion parameters are efficiently selected by applying the SSMF
method.

V. NEURO-FUZZY CONTROLLER TRAINING PROCESS

Before the training process is started, the membership func-
tions and the consequent parameters of the fuzzy logic controller
in Fig. 3 are derived in a way that it provides stable performance
at a single operating point.

A. Step 1: Critic Network Forced Training Stage

A period of forced training is applied in this stage, during
which the power system reference is manually disturbed
in order for the Critic network to learn the response of the system
to small-scale disturbances. It is important in this stage to have
all the natural modes of the system excited. This is ensured by
applying the pseudorandom binary signal (PRBS) disturbance
to the line voltage reference of the plant to be controlled (Fig. 3).
The PRBS is a randomly generated external signal which in this
study is a combination of three different frequencies 0.5, 1, and
2 Hz. The magnitude of the PRBS signal is limited to 5% of
the line voltage. The reader is referred to the authors’ previous
work in [16] for more details of PRBS training. In this training

Fig. 7. ACD neuro-fuzzy controller training.

phase, the fuzzy controller is controlling the plant; however, its
parameters do not undergo training.

Fig. 7 illustrates the schematic diagram of training the Critic
network. The two Critic networks shown are identical and they
undergo the same weight update. One network predicts the real
time value of the cost-to-go function at time , whereas the
second one predicts its value at time .

The Critic network training error is formed as in (3) and the
weight update (5) is applied for updating its synaptic weight
matrices. In this way the neural network is trained to estimate
the positive cost-to-go function as a result of the deviations in
the line voltage reference.

Higher values of discount factor in (1) indicate that the Critic
network needs to take more future values of the utility func-
tion into account. Simulation results indicate that with a high
discount factor, the Critic network weights take a long time to
converge. Conversely, starting with a low value for the discount
factor and gradually increasing it, helps speed up the learning
process of the Critic network. The training process is therefore
started with a low discount factor of 0.2, and after the Critic
weights have converged, the discount factor is increased to 0.5
and ultimately to 0.8. It should be noted the Critic network gen-
erates output values that are used to train itself (Fig. 7). As a re-
sult, at the early stages of the training process its output may be
considered equivalent to noise, therefore this annealing process
helps the Critic network learn the dynamics of the cost-to-go
function faster, more accurately and easier [27].

A preliminary learning rate of 0.02 is selected for the first
stages of training the Critic, and this value is gradually reduced
to 0.002 as the training proceeds. This is done to ensure that the
neural network does not forget the previously learned informa-
tion and its weights are not drastically changed unless there is
a considerable change in the operating conditions of the power
system.

This process is repeated several times at various operating
conditions so that the Critic network learns the dynamics of the
cost-to-go function over the whole operating range of the power
system. The duration of training at each operating point is about
400 s of simulation time.
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B. Step 2: Neuro-Fuzzy Controller Forced Training Stage

With the Critic network weights already converged, the
neuro-fuzzy controller is trained online, in other words it is
controlling the plant while being trained.

The same PRBS disturbance as in the previous section is ap-
plied to the voltage reference of the plant and the ACD neuro-
fuzzy controller is trained by the cost function defined in (7)
using the update equations in (14)–(16), so that its output coeffi-
cients are adjusted for optimum performance. Clearly, the Critic
network is now providing the training signal for the controller.

Similar to the case of the Critic network, the neuro-fuzzy
controller should be trained at several different operating points
with the same duration in order to ensure global convergence.
Moreover, a learning rate annealing process is adopted for the
neuro-fuzzy controller, which gradually reduces the learning
rate parameter in (14) from 0.01 to 0.001 at every operating
condition.

C. Step 3: Neuro-Fuzzy Controller Natural Training Stage

In this final stage of training, the PRBS disturbance is re-
moved from the plant input reference and the system is now
exposed to natural faults and disturbances, such as three-phase
short circuits and line/loads being switched on/off and suchlike.

The controller parameters are updated by the error signal
generated by the Critic network, which undergoes training
itself. Since the magnitudes of the signals during the natural
training stage are larger than during the forced training stage,
small constant values of 0.002 and 0.001 are chosen as the
learning rate parameters of the Critic network and the fuzzy
controller, respectively.

The training process explained in steps A, B, and C is
repeated several times, until no noticeable change is ob-
served in the ACD neuro-fuzzy controller parameters and/or
performance.

VI. SIMULATION RESULTS

Several tests are now carried out in order to evaluate the effi-
ciency of the proposed neuro-fuzzy controller compared to the
conventional controller of Fig. 1. Two multimachine power
systems are considered in this section: a 10-bus multimachine
power system (Fig. 1) and the 45-bus section of the Brazilian
power network (Fig. 2).

A. Case Study 1: 10-Bus Multimachine Power System

In the first test a step change is applied to the line reference
voltage of the STATCOM and the performances of the two con-
trollers (the neuro-fuzzy and the ) are shown in Fig. 8. It can
be seen that the proposed neuro-fuzzy controller is faster than
the in following the reference signal.

In a second test a 100-ms three-phase short circuit is applied
to bus 5 (Fig. 1). The generator is disconnected after the fault
is cleared and connected back to the system after 50 ms. Fig. 9
shows the performance of the controllers during this transient
condition. It can be seen that the neuro-fuzzy controller is far
more effective than the . This happens since the Critic net-
work is providing the controller with the correct training signal

Fig. 8. Voltage at bus 5 (Fig. 1) during step changes applied to the STATCOM
line voltage reference.

Fig. 9. Generator 3 terminal voltage during a 100-ms three-phase short circuit
at bus 5 (Fig. 1).

that ensures an optimal performance over the infinite horizon of
the problem.

Fig. 10 shows the utility function and the cost-to-go function
approximated by the Critic network. The Critic network uses
the changes in with respect to the control output in order to
provide the appropriate training signal for the fuzzy controller
parameters.

In another test, the system is exposed to a 100-ms three-phase
short circuit at the load area (bus 9 in Fig. 1). Fig. 11 shows some
typical results. It can be seen that the neuro-fuzzy is consider-
ably faster than the in maintaining the steady-state voltage
of the system.

The reactive power injected by the STATCOM into the net-
work is another measure for comparing the efficiency of the
two controllers. Fig. 12 shows that the neuro-fuzzy controller
damps out the oscillations with less reactive power injection
and therefore less current through the inverter switches. This
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Fig. 10. Neuro-fuzzy controller utility function and the cost-to-go function
during a 100-ms three-phase short circuit at the generator 3 terminals.

Fig. 11. Voltage at bus 5 (Fig. 1) during a 100-ms three-phase short circuit at
the load area.

Fig. 12. Reactive power injected by the STATCOM during a 100-ms three-
phase short circuit at the load area.

Fig. 13. STATCOM inverter modulation index during a 100-ms three-phase
short circuit at the load area.

Fig. 14. Voltage at bus 378 (Fig. 2) during a 150-ms three-phase short circuit
at one of the parallel transmission lines 377–378.

means that switches with smaller current ratings can be used in
the STATCOM inverter.

The performance of the two controllers can also be compared
in terms of the modulation index of the STATCOM inverter.
Fig. 13 shows that the controller forces the inverter to go to
overmodulation for a considerably longer period than the pro-
posed neuro-fuzzy controller, which means the latter causes less
harmonic distortion.

B. Case Study 2: 45-Bus Brazilian Power System

The performances of the two controllers are now compared
for a STATCOM connected to the 45-bus Brazilian power
system. In the first test, a 150-ms three-phase short circuit is
applied to one of the transmission lines connecting busses 377
and 378 (Fig. 2). The is fine tuned at a single operating
point, while this short-circuit test drastically changes the op-
erating conditions of the system. Fig. 14 shows the responses
of the two controllers to the fault. The takes the system
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Fig. 15. Reactive power injected by the STATCOM during a 150-ms three-
phase short circuit at one of the parallel transmission lines 377–378.

Fig. 16. Voltage at bus 378 (Fig. 2) when one of the transmission lines con-
necting busses 377–378 is disconnected and the shunt load at bus 378 is switched
on.

towards a severe overvoltage, while the neuro-fuzzy controller
parameters are adjusted in order to provide a smooth response
with better damping.

Fig. 15 illustrates the reactive power injected by the
STATCOM into the power system. Clearly, the neuro-fuzzy
controller restores the system to steady-state conditions with a
smaller amount of reactive power injection.

The performance of the two controllers can also be compared
during a dynamic disturbance. In this test, one of the parallel
transmission lines connecting busses 377 and 378 is discon-
nected at 1 s, when a shunt load has just been switched on to bus
378. Fig. 16 compares the effectiveness of the two controllers.
The proposed neuro-fuzzy controller adjusts its own parameters
in order to respond fast to the voltage sag. The parameters
could also have been tuned in order to respond faster to this spe-
cific disturbance, but that will cause more overshoot during large
scale faults such as the short-circuit test in Fig. 14.

Fig. 17. Voltage at bus 378 (Fig. 2) during a 150-ms single-phase-to-ground
short circuit at bus 378.

The shunt load is now removed and the transmission line
is switched back on. The system is now exposed to a 150-ms
single-phase-to-ground short circuit at bus 378 (Fig. 2), where
the STATCOM is connected to the power system. Fig. 17 once
again illustrates the advantage of the neuro-fuzzy controller.

VII. PRACTICAL CONSIDERATIONS

A. Hardware Implementation

The proposed ACD-based neuro-fuzzy controller can be im-
plemented on a DSP board. Venayagamoorthy et al. [33], [34]
have successfully implemented a neurocontroller on a turbogen-
erator. The authors have also reported successful implementa-
tion of a fuzzy controller for a STATCOM in the multimachine
power system in Fig. 1 [35]. The controller, built on a DSP
board, sends the control signals to the power system which is
implemented on a real-time digital simulator (RTDS).

B. Real-Time Development of Neuro-Fuzzy Controller

Essentially, the training process of the fuzzy system is of the
greatest importance and delicacy. This is due to the fact that
the forced and natural training stages of the Critic network can
be conducted offline; however, the training process of the fuzzy
controller should be executed online while it is controlling the
plant.

In a real power system, applying the PRBS disturbances for
training the neuro-fuzzy controller (Section V) might not be de-
sirable or practical. In such cases, training data can be obtained
from the normal operation of the power system, as the network
is exposed to natural changes to its operating condition and/or
configuration, as well as possible large scale faults. Clearly, the
Critic network should be trained first. Once its weights have
converged, the fuzzy controller can undergo training. In this way
the controller parameters will take a longer time to converge, but
this will not cause any problems for the power system, since the
following are true.

• The initial parameters of the fuzzy controller (the member-
ship function and the consequent parameters) are derived in
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a way that it stabilizes the power system. At worst case, the
fuzzy controller acts as a nonlinear gain scheduling con-
troller which is yet more effective than a PI controller [35].

• A Critic network with its weights converged, is guaranteed
to provide optimal training signals to the controller [23].

It is possible, in this case, to define an adaptive learning
rate parameter for the controller, which is increased when a
change occurs in the value of its inputs and is a small number
when the input values are almost constant. This prevents the
controller weights/parameters to forget the previously learned
information.

C. Installment Cost

Implementing a neuro-fuzzy controller like the one proposed
in this paper requires a larger amount of capital investment com-
pared to a PI controller. However, it should be noted that the
installment cost of a DSP-based neuro-fuzzy controller for a
STATCOM is negligible compared to the capital investment re-
quired for the FACTS device itself.

Moreover, the neuro-fuzzy controller improves the overall
performance of the system by reducing the periods of over-
modulation and therefore, the harmonic injection to the net-
work. In addition, less amount of reactive power injected by the
STATCOM controlled by a neuro-fuzzy controller compared to
a PI, reduces the ratings of the inverter switches and hence its
cost.

VIII. CONCLUSIONS

Dynamic programming provides truly optimal solutions to
nonlinear stochastic dynamic systems. However, for the ma-
jority of the real-life engineering problems, this technique is not
practical due to the curse of dimensionality. Even if practical,
it will be at the cost of tremendous computational effort. Adap-
tive Critic designs are methods that combine the concepts of ap-
proximate dynamic programming and reinforcement learning in
order to provide near-optimal performance for the highly non-
linear nonstationary systems in the presence of noise and uncer-
tainty, such as a power system.

Fuzzy logic controllers are among well established tech-
niques for nonlinear control. Adaptive Critic designs can be
applied to obtain a fuzzy controller that provides optimal
solutions. In this paper, an ADHDP Critic neural network
based Takagi-Sugeno fuzzy controller is designed for a Static
Compensator connected to a multimachine power system. Two
systems are considered: a 10-bus multimachine power system
and a 45-bus power system, a section of the Brazilian power
network. The proposed neuro-fuzzy controller is capable of
controlling the plant in an optimal fashion, in the presence
of noise and uncertainty. For the most part, the neuro-fuzzy
controller can be adapted/tuned online while controlling the
plant.

The effectiveness of the ACD neuro-fuzzy controller is com-
pared with that of the tuned conventional controller for
the STATCOM. Simulation results indicate that the ACD neuro-
fuzzy controller is more effective in responding to small scale
disturbances such as step changes to the STATCOM voltage ref-
erence, as well as to the large-scale faults, such as three-phase
short circuits.
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